
Tanagra Tutorial R.R.

25 août 2017 Page 1

1 Introduction

Comparison of various linear classifiers on artificial datasets.

The aim of supervised learning is inferring a function f(.) between target attribute Y that we want to

explain/predict, and one or more input attributes (descriptors) (X1, X2, …, Xp). The function may have

parameters i.e. Y = f(X1, X2, …, Xp ; ), where α is a vector of parameters related to f(.).

We are faced with two issues in this process.

The first issue is the choice of the function f (.). We are talking about “representation bias”. There

are a multitude of possible forms of relationship between the target and the input variables. Linear

models are generally distinguished from nonlinear models. A priori, we always have an interest in

choosing the most complex formulation, i.e. a nonlinear model: "which can do more, can do less". In

fact, the situation is more subtle. The relationship between the descriptors and the target variable is

a conjecture. Trying to express a hypothetical causality with a mathematical function is always risky.

Thus, some authors advocate, at first when we have no idea about the nature of the relationship

between the target and the descriptors, to check the behavior of linear models on the data that we

deal with (Duda and al., 2001; page 215).

The second problem is the calculating the parameters of the function f(.). We want to build the most

effective function possible on the population. But we only have one sample, called training sample,

for the learning process. The “search bias” describes how to explore the solutions. It allows you to

choose between various competing solutions. It also helps to restrict the search. Often, but this is not

always the case, the search bias is expressed by the criterion to be optimized during the learning

process (maximum likelihood, least squares, margin maximization, etc.). A priori, we have an interest

in choosing a method that explores all possible hypothesis so as to choose the best one. But this is

not as simple as that. We run the risk of learning the noise of the data instead of the underlying

relationships between the variables. This phenomenon is called “overfitting” i.e. the algorithm

incorporates in the predictive model informations specific to the learning sample which are irrelevant

in the population. The situation is even more difficult as it is likely that some descriptors are not

relevant for the prediction. They can disturb the learning process.

In this tutorial, we study the behavior of 5 linear classifiers on artificial data. Linear models are often

the baseline approaches in supervised learning. Indeed, based on a simple linear combination of

predictive variables, they have the advantage of simplicity: the reading of the influence of each

descriptor is relatively easy (signs and values of the coefficients); learning techniques are often (not

always) fast, even on very large databases. We are interested in: (1) the naive bayes classifier; (2) the

linear discriminant analysis; (3) the logistic regression; (4) the perceptron (single-layer perceptron);

(5) the support vector machine (linear SVM).

We are in a particular context for the data. We generate an artificial dataset for a binary problem i.e.

target attribute Y has 2 possible values {positive, negative}. The number of predictive variables can

https://en.wikipedia.org/wiki/Supervised_learning
https://en.wikipedia.org/wiki/Overfitting
https://en.wikipedia.org/wiki/Naive_Bayes_classifier
https://en.wikipedia.org/wiki/Linear_discriminant_analysis
https://en.wikipedia.org/wiki/Logistic_regression
https://en.wikipedia.org/wiki/Perceptron
https://en.wikipedia.org/wiki/Support_vector_machine

Tanagra Tutorial R.R.

25 août 2017 Page 2

be parameterised (p ≥ 2), but only the first two ones (X1, X2) are relevant. The boundary which

enables to distinguish the positives from the negatives instances is represented by a straight line in a

two-dimensional representation space (X1, X2). To increase the difficulty, we can randomly add noise

to the labels. We will then see which methods are the best ones, according to the size of the learning

sample and the number of descriptors.

The experiment was conducted under R. The source code accompanies this document. My idea,

besides the theme of the linear classifiers that concerns us, is also to describe the different stages of

the elaboration of an experiment for the comparison of learning techniques. In addition, we show

also the results provided by the linear approaches implemented in various tools such as Tanagra,

Knime, Orange, Weka and RapidMiner.

2 Dataset

We use the following R source code to generate the dataset with n instances and p descriptors (+ the

target attribute). The level of noise is also a parameter.

#function for generating dataset

generate.data <- function(n=100, p=2, noise=0.05){

 #generating the descriptors

 X <- data.frame(lapply(1:p,function(x){runif(n)}))

 colnames(X) <- paste("x",1:p,sep="")

 #create the labels

 y.clean <- ifelse(X$x2 > 4*X$x1,1,2)

 #possible adding noise (if noise > 0)

 y <- factor(ifelse(runif(n)>(1.0-noise),3-y.clean,y.clean))

 levels(y) <- c("neg","pos")

 all.data <- cbind(y,X)

 return(all.data)

}

The descriptors follows a uniform distribution U(0, 1). The label is assigned according to the

following classification rule:

IF (X2 > 4 * X1) THEN Y = Negative ELSE Y = Positive

We have imbalanced data with approximately: negative = 12.5%, positive = 87. 5%.

The noise is added on the class attribute by turning the label around in of (100*noise)% cases i.e.

each individual, whatever is class value, has (100*noise)% of chance to have a modified label (Note:

this mode of modification may change the proportions of the positive and negative instances in the

dataset). By construction, it is impossible with a linear classifier to obtain an error rate lower than

“noise” (occasionally on some test samples, but not in average).

We can observe the theoretical separating boundary for a sample with n = 20,000 instances, p = 2

descriptors and noise = 5% (Figure 1). We use the following source code to generate the dataset.

Tanagra Tutorial R.R.

25 août 2017 Page 3

#number of descriptors

p <- 2

#noise on the class attribute - theoretical error rate

noise <- 0.05

#generating test set

n.test <- 20000

test.data <- generate.data(n.test,p,noise)

#plotting test set

plot(test.data$x1,test.data$x2,pch=21,bg=c("red","blue")[unclass(test.data$y)])

We can see also the data points (5% of the instances) which are in the bad side of the boundary.

Figure 1 – Theoretical boundary on n = 20,000 instances

Unfortunately, and this is the crucial problem of the supervised learning process, the labeled data are

rare, difficult to obtain in some contexts. Here, we generate a learning set with n = 300 instances

with the same characteristics (underlying concept, number of descriptors, level of noise).

#training set size

n.train <- 300

#training set

train.data <- generate.data(n.train,p,noise)

#plotting training set

plot(train.data$x1,train.data$x2,pch=21,bg=c("red","blue")[unclass(train.data$y)])

The boundary is less obvious on a sample with n = 300 instances (Figure 2). If we try to draw it

freehand, we do not really find the right solution. And moreover, if we have another learning sample

of the same size, the boundary line induced will be (a little) different.

And yet, the learning algorithms only has this information (n.train = 300) to try to detect the “true”

boundary line. This is the main issue of the supervised learning process.

Separating line : X2 - 4*X1 = 0

n=20000

Tanagra Tutorial R.R.

25 août 2017 Page 4

Figure 2 - Sample of 300 observations submitted to the supervised learning algorithms

Note: The value of using artificial data is that we control the conditions of the experiment fully. For

instance, we know very well that our dataset goes against the assumptions underlying the

discriminant analysis or naive Bayesian (conditional normality). The nature of the results should not

surprise us, these methods will be disavantaged. On the other hand, the magnitude of the

differences will be interesting to study, especially in terms of the number of instances and the

number of irrelevant descriptors. In addition, we can modify the level of noise. Because we know the

underlying concept to learn, we know in advance the best error rate that we can get.

3 Comparison of linear classifiers

We evaluate various learning algorithms in this section. The outline is always the same: we learn the

model on the training set (n.train = 300 instances) (Figure 2); we measure the error rate on a second

sample (which serves as test set, n.test = 20,000 instances) (Figure 1); we compare the inferred

boundary with the theoretical separation line.

We use the following R source code to measure the error rate and visualize the boundary:

#function for computing error rate

#plotting the data points and the separation line

#data.test is the test set, data.test$y the target attribute

#pred is the prediction of the classifier to evaluate

#the function displays the confusion matrix and returns the error rate

error.rate.plot <- function(data.test,pred){

 #displaying the data points according to their class membership

 plot(data.test$x1,data.test$x2,pch=21,bg=c("red","blue")[unclass(pred)])

 #the boundary is a straight line

 abline(0,4,col="green",lwd=5)

 #confusion matrix and error rate

n=300

Tanagra Tutorial R.R.

25 août 2017 Page 5

 mc <- table(data.test$y,pred)

 print(mc)

 err.rate <- 1-sum(diag(mc))/sum(mc)

 return(err.rate)

}

3.1 Theoretical model

First, to evaluate the baseline configuration, we calculated the error rate of the theoretical model

using the following instructions:

#theoretical prediction

pred.thq <- factor(ifelse(test.data$x2-4*test.data$x1>0,1,2))

print(error.rate.plot(test.data,pred.thq))

The test error rate is 5.19%, close to the theoretical error (5%). The measured test error rate will be

all the more accurate as we increase the size of the test sample.

The theoretical boundary (green) is perfectly reproduced. In red, we have the prediction of the

negative instances, in blue the positive instances (Figure 3).

Figure 3 - Prediction of the theoretical model on the test set

3.2 Naive bayes classifier

The naïve bayes classifier is based on two assumptions about the conditional distribution of the

descriptors over the class attribute Y: the conditional independence of the descriptors i.e. the

Tanagra Tutorial R.R.

25 août 2017 Page 6

descriptors are independents conditionally to the values of Y; each descriptor follows a Gaussian

distribution for a given value of Y.

These two assumptions are not really observed on our dataset. The conditional densities show that

the Gaussian nature of the distributions is not really credible (Figure 4)1.

Figure 4 - Distributions of X1 and X2 conditionally to Y

Let us see what happens when we learn and test the naive bayes algorithm on our dataset.

#load the e1071 package that we must install before

library(e1071)

#learning process – training set

model.nb <- naiveBayes(y ~ ., data = train.data)

print(model.nb)

#function for prediction on the test set

prediction.nb <- function(model,test.data){

 return(predict(model,newdata=test.data))

}

#plotting the boundary, measuring the test error rate

print(error.rate.plot(test.data,prediction.nb(model.nb,test.data)))

R displays the conditional average and standard deviation for X1 and X2.

The test error rate is 10.23%. We are far from the theoretical error rate (5%).

1 We use the following R code to obtain these graphs:

library(lattice)

densityplot(test.data$x1,groups=test.data$y)

densityplot(test.data$x2,groups=test.data$y)

x1

x2

Tanagra Tutorial R.R.

25 août 2017 Page 7

Indeed, the inferred boundary is shifted compared with the optimal separating line (Figure 5).

Figure 5 – Boundary inferred by naïve bayes classifier (in green the right separating line)

We can infer from the information provided by R the coefficients of the equation defining the

separation line. We will see below that Tanagra can provide them directly (it will the same for linear

discriminant analysis and linear SVM) (section 4).

3.3 Linear discriminant analysis

Linear discriminant analysis is also a parametric machine learning algorithm. It is based on two

assumptions: the descriptors follow a multivariate gaussian distribution conditionally to the values of

the target attribute Y; the conditional covariances matrices are the same i.e. the shapes of the class-

conditional point clouds are identical.

Naive Bayes prediction

Tanagra Tutorial R.R.

25 août 2017 Page 8

A quick glance to the scatter graph above (Figure 1) shows that these assumptions are not satisfied

on our dataset. We know however that linear discriminant analysis is rather robust. We check if this

is true on our dataset.

#load the MASS package

library(MASS)

#learning process

model.lda <- lda(y ~ ., data = train.data)

print(model.lda)

#function for prediction on the test set

prediction.lda <- function(model,test.data){

 return(predict(model,newdata=test.data)$class)

}

#graph and test error rate

print(error.rate.plot(test.data,prediction.lda(model.lda,test.data)))

This is not much better compared to naive bayes classifier. The test error rate is equal to 10.35%,

Alike naive bayes, the boundary is shifted (Figure 6). Essentially because the conditional point clouds

have not identical size and shape. We find the same characteristic when we display the conditional

covariance matrices below. They are very different.

Y = neg

Y = pos

Tanagra Tutorial R.R.

25 août 2017 Page 9

Figure 6 - Boundary inferred by linear discriminant analysis (in green the right separating line)

3.4 Logistic regression

Logistic regression is a statistical approach. Its main assumption is the linearity of the logit (log-odds).

The second characteristic is that the output is considered to have an underlying probability

distribution belonging to the family of exponential distributions. These include the normal

distribution underlying the discriminant analysis which can be considered as one particular case

(Bardos, 2001; page 64). Thus, the logistic regression is based on less restrictive assumptions.

#logistic regression

model.glm <- glm(y ~ ., data = train.data, family = binomial)

print(summary(model.glm))

#function for logistic regression prediction

prediction.glm <- function(model,test.data){

 return(factor(ifelse(predict(model,newdata=test.data)>0.5,2,1)))

}

#error rate

print(error.rate.plot(test.data,prediction.glm(model.glm,test.data)))

The obtained test error rate is 7.45%, much better than those of naive bayes classifier or discriminant

analysis.

LDA prediction

Tanagra Tutorial R.R.

25 août 2017 Page 10

We are approaching the theoretical separation line (Figure 7).

Figure 7 - Boundary inferred by logistic regression (in green the right separating line)

3.5 Perceptron (single-layer perceptron)

The Perceptron is a nonparametric approach. It minimizes a least squares criterion. In the case of a

single-layer perceptron, we have a linear classifier.

We install and load the nnet package first under R.

#single layer perceptron (neural network)

library(nnet)

model.nn <- nnet(y ~ ., data = train.data,skip=TRUE,size=0)

print(summary(model.nn))

#function for the prediction

prediction.nn <- function(model,test.data){

https://en.wikipedia.org/wiki/Perceptron

Tanagra Tutorial R.R.

25 août 2017 Page 11

 return(factor(predict(model,newdata=test.data,type="class")))

}

#graph and error rate

print(error.rate.plot(test.data,prediction.nn(model.nn,test.data)))

The test error rate is 8.715%.

We have the same shift than the other previous approaches compared with the optimal separation

line (Figure 8).

Figure 8 - Boundary inferred by perceptron (in green the right separating line)

3.6 Support vector machine

With a linear kernel, the model coming from the support vector machine (SVM) algorithm is a linear

classifier. Yet, few software provides the explicit equation of the separation line (or the hyperplane in

higher dimension, p > 2). The procedure svm() from the e1071 package for instance simply provides

the list of support points. We have no information about the influence of the descriptors, even if we

can deploy the model on unseen instance with this information.

https://en.wikipedia.org/wiki/Support_vector_machine

Tanagra Tutorial R.R.

25 août 2017 Page 12

#linear support vector machine

library(e1071)

model.svm <- svm(y ~ ., data = train.data,kernel="linear")

print(model.svm)

#function for svm prediction

prediction.svm <- function(model,test.data){

 return(predict(model,newdata=test.data))

}

#graph and error rate

print(error.rate.plot(test.data,prediction.svm(model.svm,test.data)))

The test error rate is 7.465%. This is the best model among all the linear methods presented in this

section.

We are getting closer to the theoretical separation line (Figure 9).

Figure 9 - Boundary inferred by linear SVM (in green the right separating line)

The e1071 package offers an excellent tool for visualizing the regions associated to the classes, and

therefore the separation line. It also identifies the support points related to the classifier.

Tanagra Tutorial R.R.

25 août 2017 Page 13

#plotting data points “o” and support points “x”

plot(model.svm,data=train.data,svSymbol="x",dataSymbol="o")

The scatter graph is transposed in relation to ours (X2 in abscissa, X1 in ordinate). But the nature of

the results is quite the same: the regions associated to the classes are linearly delimited. Due to noise

(noise = 5%), the support points are relatively numerous despite the simplicity of the underlying

concept (Figure 10). They would be less numerous and located along the separation line if the data

were not noisy.

Figure 10 - SVM: regions associated to classes, data points (“o”) and support points (“x”)

3.7 Behavior of some nonlinear approaches

We know that the frontier separating the classes is linear because it has been intentionally

generated. In real studies, we do not have that information. We would therefore have to test

different learning algorithms before choosing the model adapted to the problem to be handled. A

priori, we said in introduction, nonlinear models with a more efficient representation system would

be better. But, in addition to the difficulties of interpreting the results, we are faced with the greater

variability of these techniques because they are often more complex. We need more observations to

combat overfitting. This is often not possible in practice. We cannot define the learning set size.

In this section, we study the behavior of some nonlinear approaches. We analyze their performance

and the shape of the inferred boundary.

3.7.1 Decision tree – CART

A decision tree is a nonlinear classifier. It divides the feature space into axis-parallel rectangles. When

we split a node using a descriptor during the learning process, we define an axis-parallel separation

line. The combination of these separations provides a nonlinear classifier. We use the rpart()

https://en.wikipedia.org/wiki/Decision_tree_learning

Tanagra Tutorial R.R.

25 août 2017 Page 14

procedure coming from the rpart package which implements an approach very similar to the famous

CART algorithm (Breiman and al., 1984).

#decision tree learning

library(rpart)

model.tree <- rpart(y ~ ., data = train.data)

print(model.tree)

pred.tree <- predict(model.tree,newdata=test.data,type="class")

print(error.rate.plot(test.data,pred.tree))

The decision tree uses successively and repeatedly the variables x1 and x2 for the splitting processes.

The test error rate is 8.475%. Although the estimated decision boundary appears visually rather

rough (Figure 11), it is aligned to the separation line. Ultimately, the performances are quite

comparable to those of the linear methods.

Figure 11 - Boundary inferred by decision tree (in green the right separating line)

The approximation depends on the number of the leaves of trees, which itself is dependent on the

size of the learning sample. If it (the learning sample) is infinite size (impossible in practice), the

separation is perfectly reproduced. In fact, the performance of trees, more than any other method,

depends heavily on the availability of observations.

X1 < 0.1527

X2 < 0.404

X2 < 0.6219

X1 < 0.2079

Tanagra Tutorial R.R.

25 août 2017 Page 15

3.7.2 Random Forest

The Random Forest (Breiman & Cutler, 2000) is an ensemble learning method. The idea is to make

cooperate an ensemble of decision trees learned from various version of the learning set. The

decision tree learning algorithm is also modified to improve the diversity of the trees. One of the

main consequences of the approach is that it transcends the constraint of tree representation, to the

point of being able to approach the linear boundary directly (because each individual tree is very

deep, with a low representation bias), with the same learning sample of 300 observations.

We install and load the rf package before using the randomForest() procedure.

#random forest

library(randomForest)

model.rf <- randomForest(y ~ ., data = train.data)

print(model.rf)

pred.rf <- factor(predict(model.rf,newdata=test.data,type="response"))

print(error.rate.plot(test.data,pred.rf))

The test error rate is 6.96%. This is the best classifier of our comparative study.

The classifier is not linear by nature. It is nevertheless able to produce a good approximation of the

theoretical decision boundary (Figure 12).

Figure 12 - Boundary inferred by random forest (in green the right separation line)

This is impressive. Especially since, in relation to the characteristics of random forest, we are placed

in extreme conditions: the number of instances is low, producing sufficiently dissimilar bootstrap

https://en.wikipedia.org/wiki/Random_forest
http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm

Tanagra Tutorial R.R.

25 août 2017 Page 16

samples is difficult; we only have the two relevant variables in the dataset (no other descriptors),

producing sufficiently diversified trees in these conditions is not obvious.

3.7.3 K-Nearest Neighbors

K-Nearest Neighbors is not constrained by a representation system. The parameter “k” (the number

of neighbors to account in the prediction of the labels of unseen instance) influence the behavior of

the classifier. If we increase “k”, we reduce the variance of the approach but increase the bias. On

the other hand, if we decrease “k”, we can represent complex concept, but overdependence to the

learning sample may occur (overfitting). In our experiment, we try “k = 1” and “k = 5”.

The knn() procedure is available into the class package. There is not a learning process strictly

speaking. We deploy directly the “model” on the test set. First, we evaluate the approach with k = 1

neighbors used for the classification of the instances.

#nearest neighbor

library(class)

#k = 1

print(error.rate.plot(test.data,knn(train.data[,2:3],test.data[,2:3],train.data$y,k=1)))

The test error rate is 10.84%. Performances seem acceptable compared to some linear techniques.

Indeed, the separation line seems to be more or less accurately reproduced (Figure 13).

Figure 13 – Regions of assignment inferred by the 1-NN (in green the right separation line)

But we also note that some mislabelled observations have defined areas of erroneous influence on

both sides of the theoretical separation line (Figure 13). Of course, these areas would not have

existed if we have data without noise on labels.

These areas disappear when we set k = 5, improving the error rate (7.55%).

https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm

Tanagra Tutorial R.R.

25 août 2017 Page 17

But there are still areas of bad decision along the border line (Figure 14).

Figure 14 - Regions of assignment inferred by the 5-NN (in green the right separation line)

3.8 Summary of the results

In this section, we make a recap of the results. Of course, we must be cautious about the following

table, it comes from the result of an experiment on only one dataset. But maybe we can draw some

tendencies however.

Approach Test error rate (%)

Theoretical model 5.19

Linear methods

Naïve bayes 10.23

Discriminant analysis 10.35

Logistic regression 7.45

Perceptron 8.71

Linear SVM 7.46

Nonlinear methods

Decision tree 8.48

Random Forest 6.96

1-NN 10.84

5-NN 7.55

Finally, apart from the 3 wrong approaches, because based on assumptions that are not adapted to

our dataset (naïve bayes, linear discriminant analysis) or because based on bad values of the

parameters (1-NN), the methods seem have similar behavior. Except that, and this is a very

important element, linear classifiers offer explicit models that can be easily interpreted (the

Tanagra Tutorial R.R.

25 août 2017 Page 18

coefficients of the linear combination) and deployed. Aside from the decision trees, these tasks are

not easy for the random forest or the nearest neighbors.

4 Processing with Tanagra

While linear classifiers are produced, R (about the packages used) does not provide the coefficient of

the separation line for certain methods, notably concerning naive bayes (section Erreur ! Source du

renvoi introuvable.) and linear SVM (section 3.6). In this section, we use Tanagra to reproduce the

calculations on the same learning sample. The interest is that Tanagra provides the explicit equation

when it produces a linear model. We will be able to compare the obtained coefficients.

4.1 Data importation

From R, we export the learning set with the write.table() command (text file with tabulation-

separated values).

write.table(train.data,file="training_set.txt",sep="\t",dec=".",quote=F,row.names=F)

After launching Tanagra, we create a new diagram (File/New menu) and we import the data file.

4.2 Naive bayes

We specify the role of the variables with the DEFINE STATUS component that we add into the

diagram. Y is the target attribute, (X1, X2) are the input ones.

Tanagra Tutorial R.R.

25 août 2017 Page 19

Then, we add the NAIVE BAYES CONTINUOUS tool (SPV LEARNING tab). We click on the VIEW

contextual menu.

From the two classification functions, we can deduce the equation which defines the separation line.

Tanagra Tutorial R.R.

25 août 2017 Page 20

Separating

Descriptors pos neg pos-neg Line

Intercept -3.6958 -4.5534 0.8575 -0.4448

x1 7.7570 2.7226 5.0344 -2.6115

x2 6.1027 8.0305 -1.9278 1.0000

Classification functions

Here is the corresponding equation:

Naïve bayes: X2 – 2.6115 * X1 = 0.4448

Knowing that the true (theoretical) equation of the boundary is:

Theoretical boundary: X2 – 4.0 * X1 = 0

4.3 The other approaches

We have done the same for the other linear approaches. Here is the processing diagram under

Tanagra (Figure 15) :

Figure 15 – Processing diagram under Tanagra – Results of Linear Discriminant Analysis

All methods, which can detect the influence of the variables, have highlighted the relevance of X1

and X2 (naive bayes, linear discriminant analysis, logistic regression).

Tanagra Tutorial R.R.

25 août 2017 Page 21

Figure 16 – Tanagra - Results of the SVM component (Linear kernel)

About SVM (Figure 16), we used our implementation (SVM) because it provides the coefficients of

the linear model. The C-SVC component from the librairy LIBSVM does not do it. We have

standardized the variables for SVM.

4.4 Overview – Comparing the coefficients of the separation line

In this section, we analyze the equations provided by the various approaches by comparing them

with the theoretical frontier.

Approach Equation of the frontier

Theoretical frontier X2 - 4.0000 * X1 = 0.0000

1 – Naïve Bayes X2 - 2.6115 * X1 = 0.4448

2 – Linear Discriminant Analysis X2 - 2.4083 * X1 = 0.4384

3 – Logistic Regression X2 - 2.9525 * X1 = 0.2901

4 – Perceptron X2 - 2.9468 * X1 = 0.2024

5 – Linear SVM (SVM component – Tanagra) X2 - 2.9231 * X1 = 0.2294

All boundaries are shifted to the left of the theoretical frontier. This positioning is the consequence

of the approach we used to add noise to the labels. But the differences are not the same. We can

draw the inferred separation line by the various approaches into a graph. In this way, we can analyze

the divergences and the resemblances between the approaches (Figure 17).

http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Tanagra Tutorial R.R.

25 août 2017 Page 22

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

nbayes

lda

reg.log

perceptron

svm

Optimal

Figure 17 – Separation lines inferred by the various approaches (in green the right separation line)

5 Processing with other data mining tools

Various data mining tools provide linear classifiers. Some of them incorporate variants (e.g. kernel

estimation for naive bayes, original display of the results with the “nomograms” for Orange, etc.). In

this section, we create a processing diagram for these tools, diagram which is like the one defined

under Tanagra. We use Knime, Orange, RapidMiner and Weka.

We summarize below the characteristics of the methods implemented in these data mining tools2.

2 The French version of this tutorial was written in May 2013. The versions of the softwares used correspond to that

available at this period.

https://www.knime.com/
https://orange.biolab.si/
https://rapidminer.com/products/studio/
http://www.cs.waikato.ac.nz/ml/weka/

Tanagra Tutorial R.R.

25 août 2017 Page 23

Approach Knime 2.6.4 (Figure 18) Orange 2.6.1 (Figure 19)3 RapidMiner 5.2.008 (Figure 20) Weka 3.7.4 (Figure 21)

Naive bayes Gaussian assumption. Outputs:
conditional average and standard
deviation of the descriptors.

Kernel estimation of the conditional
probabilities. Description of the
influence of the variables using the
“nomogram”.

Gaussian assumption. Outputs:
conditional average and standard
deviation of the descriptors.

Kernel estimation of the conditional

probabilities or discretization of the

variables on-the-fly. Outputs:

conditional average and standard of

the descriptors.

Linear
discriminant
analysis

- -

Display only the distribution of the
classes (???).

-

Logistic
regression

Display the coefficients of the regression
equation, including the tests for
significance.

X2 – 2.9524 * X1 = 0.2901

Possibility of variable selection
(stepwise approaches). Description of
the influence of the variables with the
“nomogram”.

Based on the myKLR4 implementation
and not on the usual “Fisher scoring”.
Display the coefficients of the
equation.

X2 – 2.9606 * X1 = 0.2319

Based on the BFGS implementation.

Provide the coefficients but not the

tests for significance.

X2 – 2.9524 * X1 = 0.2901

Perceptron For a single-layer perceptron, we must
set only one neuron into the hidden
layer. The standard display includes only
the decreasing of the error. The weights
are available into the PMML output.

X2 – 4.0106 * X1 = 0.0617

-

The single layer is available. The
output includes the weights of the
linear equation.

X2 – 13 * X1 = 0 (???)

0 neuron into the hidden layer to

obtain the single-layer perceptron.

X2 – 3.9886 * X1 = 0.0219

Linear SVM Set a polynom with a degree 1 to obtain
a linear SVM. Display the supports points
for each class.

Based on the LIBSVM library. The
supports points are visualized into a
table or a graph (limited to a two-
dimensional representation space).

Based on LIBSVM. It provides both
the support points and the
coefficients of the hyperplane for the
linear kernel.

X2 – 2.5144 * X1 = 0.1315

It provides the coefficients of the
hyperplane when we set a linear
kernel.

X2 – 2.8646 * X1 = 1.3680

Most of the results are consistent. There are still some disparities for some software/methods. The failure of the calculations can be the result of a poorly controlled setup. I
tried to set the same parameters from one software to another, when the comparison was possible. I have systematically disabled the normalization/standardization of
variables since X1 and X2 are defined on the same scale (0, 1).

3 Online documentation: http://orange.biolab.si/docs/latest/widgets/rst/

4 http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYKLR/index.html.en

http://orange.biolab.si/docs/latest/widgets/rst/
http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYKLR/index.html.en

Tanagra Tutorial R.R.

25 août 2017 Page 24

Figure 18 – Linear classifiers under Knime

Figure 19 - Linear classifiers under Orange

Tanagra Tutorial R.R.

25 août 2017 Page 25

Figure 20 - Linear classifiers under RapidMiner

Figure 21 - Linear classifiers under Weka

Tanagra Tutorial R.R.

25 août 2017 Page 26

6 Experiment 1 – Size of the learning sample “n”

In this section, we study the influence of the training set size of the behavior of the various linear

approaches. To do this, we increase gradually the training set size and we measure the error rate on

the test set.

It is not reasonable to draw definitive conclusions from the experiment conducted on only one

dataset. To control results-related variability, we repeat 100 times the experiment for a given

learning set size “n.train”. On the other hand, we use a large dataset as test set with “n.test” =

100,000 instances. By using the same test sample throughout the experiments, the performances of

the models are directly comparable, it is a form of pairing.

6.1 Program for the experiment

We combine various values of n.train = (250, 500, 1000, 2000, 3000, 5000) and the 5 linear machine

learning methods (naive bayes, linear discriminant analysis, logistic regression, perceptron, linear

svm). We repeat K = 100 times the experiment for each combination. We detail the R program

below.

#function for the calculation of the error rate

#pred is the prediction of a classifier

error.rate <- function(data.test,pred){

 mc <- table(data.test$y,pred)

 err.rate <- 1-sum(diag(mc))/sum(mc)

 return(err.rate)

}

#one experiment for a learning sample of size “n”

#the function returns the test error rate for each classifier

experiments <- function(n,test.set){

 #generation of a learning sample (size n)

 learning <- generate.data(n,p,noise)

 print(nrow(learning))

 #preparation of the vector gathering the results

 #5 learning algorithms to evaluate

 result <- numeric(5)

 #naive bayes classifier

 model.nb <- naiveBayes(y ~ ., data = learning)

 result[1] <- error.rate(test.set,prediction.nb(model.nb,test.set))

 #linear discriminant analysis

 model.lda <- lda(y ~ ., data = learning)

Tanagra Tutorial R.R.

25 août 2017 Page 27

 result[2] <- error.rate(test.set,prediction.lda(model.lda,test.set))

 #logistic regression

 model.glm <- glm("y ~ .", data = learning, family = binomial)

 result[3] <- error.rate(test.set,prediction.glm(model.glm,test.set))

 #single layer perceptron

 model.nn <- nnet(y ~ ., data = learning,skip=TRUE,size=0)

 result[4] <- error.rate(test.set,prediction.nn(model.nn,test.set))

 #linear support vector machine

 model.svm <- svm(y ~ ., data = learning,kernel="linear")

 result[5] <- error.rate(test.set,prediction.svm(model.svm,test.set))

 print(result)

 return(result)

}

#various learning set size to evaluate

size.training <- c(250,500,1000,2000,3000,5000)

#generation of the unique test set

#used during the whole experiment

set.seed(25032003)

other.data.test <- generate.data(100000,p,noise)

#load the package needed for the learning algorithms

library(MASS)

library(e1071)

library(nnet)

#experiment for a given learning set size: “size.learning”

one.expe.session <- function(size.learning){

 results <- mapply(experiments,size.learning,MoreArgs=list(test.set=other.data.test))

 return(results)

}

#K: number of repetition for each experiment

K <- 100

set.seed(05092008)

all.results <- replicate(K,one.expe.session(size.learning=size.training),simplify="matrix")

#all.results is a table with K = 100 columns

#and 30 rows (5 learning methods x 6 learning set sizes)

#preparing the results for a new table:

Tanagra Tutorial R.R.

25 août 2017 Page 28

#in rows, 5 methods; in columns, 6 learning set sizes

#the summary measure is the mean of the K = 100 trials

mean.results <- matrix(0,nrow=5,ncol=length(size.training))

colnames(mean.results) <- size.training

rownames(mean.results) <- c("naive.bayes","lda","log.reg","perceptron","svm.linear")

for (i in 1:5){

 for (j in 1:length(size.training)){

 mean.results[i,j] <- mean(all.results[i+(j-1)*5,])

 }

}

print(mean.results)

#the same calculations but using the median as summary measure

med.results <- mean.results

for (i in 1:5){

 for (j in 1:length(size.training)){

 med.results[i,j] <- median(all.results[i+(j-1)*5,])

 }

}

print(med.results)

The calculations are slow. We really need to do several tests to calibrate the experiment, to make

sure that the results are generated correctly, and that they are collected adequately.

6.2 Discussion of the results

Here are the curves of the error according to the learning sample size.

0.075

0.08

0.085

0.09

0.095

0.1

0.105

0.11

0 1000 2000 3000 4000 5000

Te
st

 e
rr

o
r

ra
te

 (
n

.t
e

st
=

1
0

0
,0

0
0

)

Training set size

Mean for K = 100 replicates logistic.reg

lda

svm.linear

naive.bayes

single.layer.perceptron

Figure 22 – Mean of the error rate according to learning sample size

Tanagra Tutorial R.R.

25 août 2017 Page 29

At a first glance, if we use the mean as summary indicator (Figure 22):

1. Clearly, the methods based on too restrictive assumptions are not relevant (naive bayes, linear

discriminant analysis and, in a lesser extent, the logistic regression).

2. SVM and Perceptron are therefore the best on our data, quite similarly.

0.075

0.08

0.085

0.09

0.095

0.1

0.105

0.11

0 1000 2000 3000 4000 5000

Te
st

 e
rr

o
r

ra
te

 (
n

.t
e

st
=

1
0

0
,0

0
0

)

Training set size

Median for K = 100 replicates logistic.reg

lda

svm.linear

naive.bayes

single.layer.perceptron

Figure 23 - Median of the error rate according to the learning sample size

But some additional conclusions are also of interest:

3. Linear SVM seems to have a catastrophic behavior on small learning samples (n.train ≤ 500)

(Figure 22). In fact, the computational library has failed on a large proportion of these samples.

The curve is quite different – for SVM – when we use the median as summary measure (Figure

23). This kind of problems sometimes happens in experiments. It is necessary to check, re-check,

and still check the results before thinking about publishing them.

4. The test error rate decreases when the learning sample size increases. Fortunately. The contrary

would have been counterintuitive. But, from “n.train = 2000”, the improvement is insignificant. I

think, it is due to the simplicity of the concept to learn (linear frontier with only two descriptors).

5. However, none of the methods converge on optimal performance (5%), even with a large

learning sample. This is the consequence of the noise added to the labels. When we generate

data without noise, all methods, except naive bayes and linear discriminant analysis which are

constrained by their restrictive assumptions, find the theoretical frontier.

7 Experiment 2 – Number of descriptors “p”

In this section, we set “n.train = 500”, and we check the influence of the number of descriptors on

the quality of the inferred classifiers. We know that only (X1, X2) are relevant. The additional

descriptors are thus irrelevant. They may be considered as another kind of noise added to the data.

Tanagra Tutorial R.R.

25 août 2017 Page 30

7.1 Program of the experiment

We combine the values of “p” [p = (2, 5, 10, 25, 50, 70) – knowing that (p-2) are irrelevant] and the 5

learning algorithms. We repeat each combination K = 100 times. We detail below the program for R.

It has strong similarities to the source code in the previous section.

#Experiment: influence of the number of descriptors p

#learning sample size = 500

experiments.dimension <- function(p,test.set){

 #learning set

 learning <- generate.data(500,p,noise)

 #vector containing the results

 result <- numeric(5)

 #naive bayes classifier

 model.nb <- naiveBayes(y ~ ., data = learning)

 result[1] <- error.rate(test.set,prediction.nb(model.nb,test.set))

 #linear discriminant analysis

 model.lda <- lda(y ~ ., data = learning)

 result[2] <- error.rate(test.set,prediction.lda(model.lda,test.set))

 #logistic regression

 model.glm <- glm("y ~ .", data = learning, family = binomial)

 result[3] <- error.rate(test.set,prediction.glm(model.glm,test.set))

 #single layer perceptron

 model.nn <- nnet(y ~ ., data = learning,skip=TRUE,size=0)

 result[4] <- error.rate(test.set,prediction.nn(model.nn,test.set))

 #linear support vector machine

 model.svm <- svm(y ~ ., data = learning,kernel="linear")

 result[5] <- error.rate(test.set,prediction.svm(model.svm,test.set))

 print(result)

 return(result)

}

#generate the test samples with

#n.test = 100000 instances and p = 100 descriptors

set.seed(25032003)

second.data.test <- generate.data(100000,100,noise)

Tanagra Tutorial R.R.

25 août 2017 Page 31

#print

print(colnames(second.data.test))

print(table(second.data.test$y))

#various dimension size

size.p <- c(2,5,10,25,50,70)

#one experiment for various dimensionality

one.expe.dimension <- function(size.dimension){

 results <- mapply(experiments.dimension,size.dimension,MoreArgs=list(test.set=second.data.test))

 return(results)

}

#repeat K times the experiments

K <- 100

set.seed(21102011)

all.results <- replicate(K,one.expe.dimension(size.dimension=size.p),simplify="matrix")

#summary measure: mean

mean.results <- matrix(0,nrow=5,ncol=length(size.p))

colnames(mean.results) <- size.p

rownames(mean.results) <- c("naive.bayes","lda","log.reg","perceptron","svm.linear")

for (i in 1:5){

 for (j in 1:length(size.p)){

 mean.results[i,j] <- mean(all.results[i+(j-1)*5,])

 }

}

print(mean.results)

#summary measure: median

med.results <- mean.results

for (i in 1:5){

 for (j in 1:length(size.p)){

 med.results[i,j] <- median(all.results[i+(j-1)*5,])

 }

}

print(med.results)

The test sample “second.data.test” is generated with 100,000 instances and 100 descriptors. It is

operable for the various values of descriptors we try p = (2, 5, 10, 25, 50, 70).

Tanagra Tutorial R.R.

25 août 2017 Page 32

The test sample has 16.25% of negative instances, and 83.75% of positive ones. That is an important

information. It means that the error rate of the default classifier (predicting systematically the most

frequent class) is 16.25%. We will see that some classifiers do not fare better when we increase the

number of irrelevant descriptors.

7.2 Discussion of the results

0.075

0.095

0.115

0.135

0.155

0.175

0 10 20 30 40 50 60 70

Te
st

 e
rr

o
r

ra
te

 (
n

.t
e

st
=

1
0

0
,0

0
0

)

p : number of descriptors, 2 only are relevant

Median for K = 100 replicates

logistic.reg

lda

svm.linear

naive.bayes

single.layer.perceptron

Figure 24 - Median of the error rate according to the number of descriptors

We present the median of error rates for K = 100 trials (Figure 24). We can make several comments:

1. The curse of dimensionality is not a myth. All the approaches fails when we add in a high

proportion the irrelevant variables.

2. But not in the same way however. For instance, the Perceptron and SVM, which are the best

when we use only the two relevant descriptors, evolve differently. Clearly, SVM resists better to

the addition of noisy variables than the perceptron. This last one is close to the default classifier

in the worst case.

3. The good surprise is that the discriminant analysis and the naive bayes, previously dominated,

are rather robust towards the dimensionality (knowing that we are far from the optimal error

anyway). But is this really a surprise? A restrictive search bias becomes beneficial when we

present erratic datasets to the learning process.

4. The Naive Bayes stands out because the number of parameters to be estimated is very low

(conditional mean and standard deviations of descriptors simply). It even surpasses the SVM

when the representation space is extremely noisy (for our dataset).

5. The logistic regression is really disturbed when the dimension increases. It is not better than the

default classifier when “p = 70” (68 descriptors are irrelevant).

All this shows above all that the variable selection is an essential aspect of supervised learning,

both for the interpretation of models and for their predictive qualities, including on an easy to

Tanagra Tutorial R.R.

25 août 2017 Page 33

learn concept that we used to generate the data in this tutorial (linear separator in a two-

dimensional representation space).

8 Conclusion

Our initial goal was to show and compare the behavior of the most popular linear classifiers. We

have first detailed the working of the methods by describing the boundaries induced on an artificial

data set (sections 3 et 4). There is no doubt that linear methods subdivide the area of representation

into regions by using straight lines (or hyperplane if we are in higher than 2-dimensions

representation spaces). We have also seen that some techniques, because of their underlying

assumptions, are struggling to infer the right solutions when they are placed in situations that

disadvantage them.

In a second step, to give better viability to the results, we expand experiments, by trying to analyze

the impacts of the learning sample size and dimensionality on the quality of the results. The value of

using artificial data is that we fully control the evaluation process. We know the characteristics of the

data generated which can explain the nature of the obtained results. Among our main results, we

observe that some methods are more robust than the others when they are placed in a difficult

context.

Finally, as a prospective, we could explore the influence of the level and the kind of noise on the

behavior of the learning algorithms. To achieve this, only few changes are needed to adapt the

program accompanying this tutorial.

9 References

Bardos M., « Analyse Discriminante – Application au risque et scoring financier », Dunod, 2001;

chapter 2, « Fisher Discriminant Analysis », pp. 29 à 59; chapter 3, « Logistic Discrimination », pp. 61

à 79 [in French].

Bishop C., « Pattern Recognition and Machine Learning », Springer, 2006; Chapter 4, « Liner Models

for Classification », pp. 179 à 224.

Duda R., Hart P., Stork D., « Pattern Classification », John Wiley and Sons, 2001; chapter 5, « Linear

Discriminant Functions », pp. 215 à 281.

Hastie T., Tibshirani R., Friedman J., « Elements of Statistical Learning », 10th printing, Janvier 2013,

http://www-stat.stanford.edu/~tibs/ElemStatLearn/ ; chapter 4, « Linear Methods for

Classification », pp. 101 à 137.

Theodoridis S., Koutroumbas K., « Pattern Recognition », Elsevier Inc., 2009; chapter 3, « Linear

Classifiers », pp. 91 à 150.

http://www-stat.stanford.edu/~tibs/ElemStatLearn/

	1 Introduction
	2 Dataset
	3 Comparison of linear classifiers
	3.1 Theoretical model
	3.2 Naive bayes classifier
	3.3 Linear discriminant analysis
	3.4 Logistic regression
	3.5 Perceptron (single-layer perceptron)
	3.6 Support vector machine
	3.7 Behavior of some nonlinear approaches
	3.7.1 Decision tree – CART
	3.7.2 Random Forest
	3.7.3 K-Nearest Neighbors

	3.8 Summary of the results

	4 Processing with Tanagra
	4.1 Data importation
	4.2 Naive bayes
	4.3 The other approaches
	4.4 Overview – Comparing the coefficients of the separation line

	5 Processing with other data mining tools
	6 Experiment 1 – Size of the learning sample “n”
	6.1 Program for the experiment
	6.2 Discussion of the results

	7 Experiment 2 – Number of descriptors “p”
	7.1 Program of the experiment
	7.2 Discussion of the results

	8 Conclusion
	9 References

