Tanagra Tutorial R.R.

1 Introduction

Comparison of various linear classifiers on artificial datasets.

The aim of supervised learning is inferring a function f(.) between target attribute Y that we want to

explain/predict, and one or more input attributes (descriptors) (X1, Xo, ..., Xp). The function may have

parameters i.e. Y = f(X1, Xy, ..., Xp; o), where a is a vector of parameters related to f(.).
We are faced with two issues in this process.

The first issue is the choice of the function f (). We are talking about “representation bias”. There
are a multitude of possible forms of relationship between the target and the input variables. Linear
models are generally distinguished from nonlinear models. A priori, we always have an interest in
choosing the most complex formulation, i.e. a nonlinear model: "which can do more, can do less". In
fact, the situation is more subtle. The relationship between the descriptors and the target variable is
a conjecture. Trying to express a hypothetical causality with a mathematical function is always risky.
Thus, some authors advocate, at first when we have no idea about the nature of the relationship
between the target and the descriptors, to check the behavior of linear models on the data that we

deal with (Duda and al., 2001; page 215).

The second problem is the calculating the parameters of the function f(.). We want to build the most
effective function possible on the population. But we only have one sample, called training sample,
for the learning process. The “search bias” describes how to explore the solutions. It allows you to
choose between various competing solutions. It also helps to restrict the search. Often, but this is not
always the case, the search bias is expressed by the criterion to be optimized during the learning
process (maximum likelihood, least squares, margin maximization, etc.). A priori, we have an interest
in choosing a method that explores all possible hypothesis so as to choose the best one. But this is
not as simple as that. We run the risk of learning the noise of the data instead of the underlying
relationships between the variables. This phenomenon is called “overfitting” i.e. the algorithm
incorporates in the predictive model informations specific to the learning sample which are irrelevant
in the population. The situation is even more difficult as it is likely that some descriptors are not

relevant for the prediction. They can disturb the learning process.

In this tutorial, we study the behavior of 5 linear classifiers on artificial data. Linear models are often
the baseline approaches in supervised learning. Indeed, based on a simple linear combination of
predictive variables, they have the advantage of simplicity: the reading of the influence of each
descriptor is relatively easy (signs and values of the coefficients); learning techniques are often (not

always) fast, even on very large databases. We are interested in: (1) the naive bayes classifier; (2) the

linear discriminant analysis; (3) the logistic regression; (4) the perceptron (single-layer perceptron);

(5) the support vector machine (linear SVM).

We are in a particular context for the data. We generate an artificial dataset for a binary problem i.e.

target attribute Y has 2 possible values {positive, negative}. The number of predictive variables can

25 ao(t 2017 Page 1

https://en.wikipedia.org/wiki/Supervised_learning
https://en.wikipedia.org/wiki/Overfitting
https://en.wikipedia.org/wiki/Naive_Bayes_classifier
https://en.wikipedia.org/wiki/Linear_discriminant_analysis
https://en.wikipedia.org/wiki/Logistic_regression
https://en.wikipedia.org/wiki/Perceptron
https://en.wikipedia.org/wiki/Support_vector_machine

Tanagra Tutorial R.R.

be parameterised (p = 2), but only the first two ones (X1, X2) are relevant. The boundary which
enables to distinguish the positives from the negatives instances is represented by a straight line in a
two-dimensional representation space (X1, X2). To increase the difficulty, we can randomly add noise
to the labels. We will then see which methods are the best ones, according to the size of the learning

sample and the number of descriptors.

The experiment was conducted under R. The source code accompanies this document. My idea,
besides the theme of the linear classifiers that concerns us, is also to describe the different stages of
the elaboration of an experiment for the comparison of learning techniques. In addition, we show
also the results provided by the linear approaches implemented in various tools such as Tanagra,

Knime, Orange, Weka and RapidMiner.

2 Dataset

We use the following R source code to generate the dataset with n instances and p descriptors (+ the

target attribute). The level of noise is also a parameter.

#function for generating dataset
generate.data <- function (n=100, p=2, noise=0.05) {
fgenerating the descriptors
X <- data.frame (lapply(l:p, function(x) {runif (n)}))
colnames (X) <- paste("x",1l:p,sep="")
#create the labels
y.clean <- ifelse (X$x2 > 4*X$x1,1,2)
#possible adding noise (if noise > 0)
y <- factor(ifelse(runif(n)>(1.0-noise),3-y.clean,y.clean))
levels(y) <= c("neg","pos")
all.data <- cbind(y,X)
return (all.data)

}

The descriptors follows a uniform distribution U(0, 1). The label is assigned according to the

following classification rule:
IF (X2 >4 * X1) THEN Y = Negative ELSE Y = Positive
We have imbalanced data with approximately: negative = 12.5%, positive = 87. 5%.

The noise is added on the class attribute by turning the label around in of (100*noise)% cases i.e.
each individual, whatever is class value, has (100*noise)% of chance to have a modified label (Note:
this mode of modification may change the proportions of the positive and negative instances in the
dataset). By construction, it is impossible with a linear classifier to obtain an error rate lower than

“noise” (occasionally on some test samples, but not in average).

We can observe the theoretical separating boundary for a sample with n = 20,000 instances, p = 2

descriptors and noise = 5% (Figure 1). We use the following source code to generate the dataset.

25 ao(t 2017 Page 2

Tanagra Tutorial R.R.

#number of descriptors

p <- 2

#noise on the class attribute - theoretical error rate

noise <- 0.05

#generating test set

n.test <- 20000

test.data <- generate.data(n.test,p,noise)

#plotting test set

plot (test.datas$xl, test.data$x2,pch=21,bg=c ("red", "blue") [unclass (test.datas$y)])

We can see also the data points (5% of the instances) which are in the bad side of the boundary.

1X2-4*X1=0

test.data$x2

test.data$x1

Figure 1 — Theoretical boundary on n = 20,000 instances

Unfortunately, and this is the crucial problem of the supervised learning process, the labeled data are
rare, difficult to obtain in some contexts. Here, we generate a learning set with n = 300 instances

with the same characteristics (underlying concept, number of descriptors, level of noise).

#training set size

n.train <- 300

#training set

train.data <- generate.data(n.train,p,noise)

#plotting training set

plot (train.data$xl,train.data$x2,pch=21,bg=c ("red", "blue") [unclass (train.datas$y)])

The boundary is less obvious on a sample with n = 300 instances (Figure 2). If we try to draw it
freehand, we do not really find the right solution. And moreover, if we have another learning sample

of the same size, the boundary line induced will be (a little) different.

And yet, the learning algorithms only has this information (n.train = 300) to try to detect the “true”

boundary line. This is the main issue of the supervised learning process.

25 ao(t 2017 Page 3

Tanagra Tutorial R.R.

2 ® . .
- - R L LI .
e o °° s, %o . o .
L] o* * L]
. %o e e : hd
@ | °® . .+ T, N * oe
° ey *3 ° . Y . . % ‘e .
* w ® o o .
e @ .« * * : & . .
°% . . e
- -
] g 7 % . LA . S ;
& ° LT b .
% i " LR L L) .
S ® * s o * .
] 3 o ® . o®
c . . N
™ ® e ¢ . ° . b e ® o
B =T P .o . * * 4
. -’ . .t . .t .
.1 PP Y 'o .Oo. L .
Fid . v
™ * * . .'o * e, 8¢ o hd .
= R * . .
Y . Fi
M s . P . ..‘..0‘
. * . * o * °
.
o | . i ‘. * . .. o.. ¢
o
T T T T T T
0.0 02 04 06 08 1.0
frain.data$x1

Figure 2 - Sample of 300 observations submitted to the supervised learning algorithms

Note: The value of using artificial data is that we control the conditions of the experiment fully. For
instance, we know very well that our dataset goes against the assumptions underlying the
discriminant analysis or naive Bayesian (conditional normality). The nature of the results should not
surprise us, these methods will be disavantaged. On the other hand, the magnitude of the
differences will be interesting to study, especially in terms of the number of instances and the
number of irrelevant descriptors. In addition, we can modify the level of noise. Because we know the

underlying concept to learn, we know in advance the best error rate that we can get.

3 Comparison of linear classifiers

We evaluate various learning algorithms in this section. The outline is always the same: we learn the
model on the training set (n.train = 300 instances) (Figure 2); we measure the error rate on a second
sample (which serves as test set, n.test = 20,000 instances) (Figure 1); we compare the inferred

boundary with the theoretical separation line.

We use the following R source code to measure the error rate and visualize the boundary:

#function for computing error rate
#plotting the data points and the separation line
#data.test is the test set, data.test$y the target attribute
#pred is the prediction of the classifier to evaluate
#the function displays the confusion matrix and returns the error rate
error.rate.plot <- function(data.test,pred) {
#displaying the data points according to their class membership
plot (data.test$xl,data.test$x2,pch=21,bg=c ("red", "blue") [unclass (pred)])
#the boundary is a straight line
abline (0,4, col="green", lwd=5)

#confusion matrix and error rate

25 ao(t 2017 Page 4

Tanagra Tutorial R.R.

mc <- table(data.test$y,pred)
print (mc)
err.rate <- l-sum(diag(mc))/sum(mc)

return (err.rate)

3.1 Theoretical model

First, to evaluate the baseline configuration, we calculated the error rate of the theoretical model

using the following instructions:

#theoretical prediction
pred.thg <- factor(ifelse(test.data$x2-4*test.data$x1>0,1,2))
print (error.rate.plot (test.data,pred.thq))

The test error rate is 5.19%, close to the theoretical error (5%). The measured test error rate will be

all the more accurate as we increase the size of the test sample.

> print{error.rate.plot(test.data,pred.thg))
pred
1 2
neg 2320 a07
pos 131 16642
[1] 0.0519

The theoretical boundary (green) is perfectly reproduced. In red, we have the prediction of the

negative instances, in blue the positive instances (Figure 3).

data test$x2
08 08 10

04

02

00

00 02 04 08 08 10

data test$x1

Figure 3 - Prediction of the theoretical model on the test set

3.2 Naive bayes classifier

The naive bayes classifier is based on two assumptions about the conditional distribution of the

descriptors over the class attribute Y: the conditional independence of the descriptors i.e. the

25 ao(t 2017 Page 5

Tanagra Tutorial R.R.

descriptors are independents conditionally to the values of Y; each descriptor follows a Gaussian

distribution for a given value of Y.

These two assumptions are not really observed on our dataset. The conditional densities show that

the Gaussian nature of the distributions is not really credible (Figure 4).

Densité
Densité

0.0 0z 0.4 08 LE 10 00 05 10
test datasx1 test datagx2

Figure 4 - Distributions of X1 and X2 conditionally to Y

Let us see what happens when we learn and test the naive bayes algorithm on our dataset.

#load the el071 package that we must install before

library (el071)
#learning process - training set
model.nb <- naiveBayes(y ~ ., data = train.data)

print (model.nb)
#function for prediction on the test set
prediction.nb <- function (model, test.data) {
return (predict (model, newdata=test.data))
}
#plotting the boundary, measuring the test error rate

print (error.rate.plot (test.data,prediction.nb (model.nb, test.data)))

R displays the conditional average and standard deviation for X1 and X2.

The test error rate is 10.23%. We are far from the theoretical error rate (5%).

T We use the following R code to obtain these graphs:

library (lattice)

densityplot (test.data$xl,groups=test.datas$y)
densityplot (test.data$x2,groups=test.datas$y)

25 ao(t 2017 Page 6

Tanagra Tutorial R.R.

call:
naiveBayes.default(x = X, ¥ = ¥, laplace = Taplace)

A-priori probabilities:
Y

neg pos
0.1633333 0. 8366667

conditional probabilities:
x1

Y [,1] [,2]

neg 0.1884570 0.2487047

pos 0.5369284 0.2657678

x2
Y [,1] [,2]
neg 0.6188492 0.2586698
pos 0.4702892 0.2810891

#function for naive bayes prediction
prediction.nb =- function(model,test.data){
return(predict(model,newdata=test.data))

LTS B

print(error.rate.plot(test.data,prediction.nb(model.nb,test.data)))
pred
neg pos
neg 1246 1981
pos 65 16708
[1] 0.1023

Indeed, the inferred boundary is shifted compared with the optimal separating line (Figure 5).

10

08
|

data test$x2

04

0.2

data test$x1

Figure 5 — Boundary inferred by naive bayes classifier (in green the right separating line)

We can infer from the information provided by R the coefficients of the equation defining the
separation line. We will see below that Tanagra can provide them directly (it will the same for linear

discriminant analysis and linear SVM) (section 4).
3.3 Linear discriminant analysis

Linear discriminant analysis is also a parametric machine learning algorithm. It is based on two
assumptions: the descriptors follow a multivariate gaussian distribution conditionally to the values of
the target attribute Y; the conditional covariances matrices are the same i.e. the shapes of the class-

conditional point clouds are identical.

25 ao(t 2017 Page 7

Tanagra Tutorial R.R.

A quick glance to the scatter graph above (Figure 1) shows that these assumptions are not satisfied
on our dataset. We know however that linear discriminant analysis is rather robust. We check if this

is true on our dataset.

#load the MASS package

library (MASS)

#learning process

model.lda <- lda(y ~ ., data = train.data)

print (model.lda)

#function for prediction on the test set

prediction.lda <- function (model, test.data) {
return (predict (model, newdata=test.data) Sclass)

}

#fgraph and test error rate

print (error.rate.plot (test.data,prediction.lda (model.lda, test.data)))

This is not much better compared to naive bayes classifier. The test error rate is equal to 10.35%,

call:
lda(y ~ ., data = train.data)

Prior probabilities of groups:
neg pos
0.1633333 0.8366667

GI"DUp means:

pul x2
neq 0.1884570 0.6188492
pos 0.5369284 0.4702892

Coefficients of linear discriminants:
Lpl

x1 3.535681

x2 -1.468128

#function for linear discriminant analysis prediction
prediction. lda <- function(model,test.datal{
return(predict(model,newdata=test. data) $class)

VOV O+ YWY

print{error.rate.plot(test.data,prediction.lda(model. 1da,test. data)))
pred
neg pos
neg 1221 2006
pos 65 16708
[1] 0.10355

Alike naive bayes, the boundary is shifted (Figure 6). Essentially because the conditional point clouds
have not identical size and shape. We find the same characteristic when we display the conditional

covariance matrices below. They are very different.

> cov(train.datafunclass(train.datasy)==1,2:3])
x1 x2 _

x1 0.06185403 -0.02401864 Y = neg

X2 -0.02401864 0.06691007

> cov(train.datafunclass(train.datasy)==2,2:3])
x1 x2

x1 0.070632534 0.008217225 Y = pos

x2 0.008217225 0.079011072

25 ao(t 2017 Page 8

Tanagra Tutorial R.R.

1.0

08

data test$x2

04

0.2

00

0.0 02 04 06 08 10

data test$x1

Figure 6 - Boundary inferred by linear discriminant analysis (in green the right separating line)
3.4 Logistic regression

Logistic regression is a statistical approach. Its main assumption is the linearity of the logit (log-odds).
The second characteristic is that the output is considered to have an underlying probability
distribution belonging to the family of exponential distributions. These include the normal
distribution underlying the discriminant analysis which can be considered as one particular case

(Bardos, 2001; page 64). Thus, the logistic regression is based on less restrictive assumptions.

#logistic regression
model.glm <- glm(y ~ ., data = train.data, family = binomial)

print (summary (model.glm))

#function for logistic regression prediction
prediction.glm <- function (model, test.data) {

return (factor (ifelse (predict (model, newdata=test.data)>0.5,2,1)))

#error rate

print (error.rate.plot (test.data,prediction.glm(model.glm, test.data)))

The obtained test error rate is 7.45%, much better than those of naive bayes classifier or discriminant

analysis.

25 ao(t 2017 Page 9

Tanagra Tutorial R.R.

call:
gim(formula = y ~ ., family = binomial, data = train.data)

Deviance Residuals:
Min 1g mMedian 30 Max
-3.6337 0.0803 0.2125 0.5173 1.4270

coefficients:
Estimate std. Error z value pr(=|z|)

(Intercept) 0.6660 0.4759 1.399 0.161699

x1 6.7790 1.0986 6.171 6.79e-10 #**

x2 -2.2961 0.6943 -3.307 0.000944 ===

signif. codes: 0 “*%%° 0.001 ‘**' 0.01 ‘*' 0.05 *.” 0.1 ° " 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 267.09 on 299 degrees of freedom
rResidual deviance: 182.55 on 297 degrees of freedom
AIC: 18B.55

Number of Fisher Scoring iterations: 6
#function for Tlogistic regression prediction

prediction.glm <- function(model,test.data){
return{factor (ifelse(predict(model,newdata=test.data)>0.5,2,1)))

VY + + Y

print(error.rate.plot(test.data,prediction. gim(model. glm,test.data)))
pred
1 2
neqg 2290 937
pos 554 16219
[1] 0.07455

We are approaching the theoretical separation line (Figure 7).

0.6 0.8 10

data test$x2

04

0.0
1

00 02 04 06 08 1.0

data test$x1

Figure 7 - Boundary inferred by logistic regression (in green the right separating line)
3.5 Perceptron (single-layer perceptron)

The Perceptron is a nonparametric approach. It minimizes a least squares criterion. In the case of a

single-layer perceptron, we have a linear classifier.

We install and load the nnet package first under R.

#single layer perceptron (neural network)

library (nnet)

model.nn <- nnet(y ~ ., data = train.data,skip=TRUE, size=0)
print (summary (model.nn))

#function for the prediction

prediction.nn <- function (model, test.data) {

25 ao(t 2017 Page 10

https://en.wikipedia.org/wiki/Perceptron

Tanagra Tutorial R.R.

return (factor (predict (model, newdata=test.data, type="class")))
}
#graph and error rate

print (error.rate.plot (test.data,prediction.nn (model.nn, test.data)))

The test error rate is 8.715%.

> #single layer perceptron (neural network)

> library(nnet)

> model.nn <- nnet(y ~ ., data = train.data,skip=TRUE,size=0)

weights: 3

initial wvalue 152.044979

iter 10 value 91.275586

final wvalue 91.275522

converged

> print(summary(model.nn))

a 2-0-1 network with 3 weights

options were - skip-layer connections entropy fitting
b->0 il->0 i2-=0
0.67 6.78 -2.30

prediction.nn <- function(model,test.data){
return(factor (predict(model,newdata=test.data,type="class")))

k

AT S S

print(error.rate. plot(test.data,prediction. nn(model. nn,test.data)))
pred
neg pos
neg 1571 1656
pos 87 16686
[1] 0.08715

We have the same shift than the other previous approaches compared with the optimal separation

line (Figure 8).

1.0

0.8

data test$x2

04

0.2

0.0

data test$x1

Figure 8 - Boundary inferred by perceptron (in green the right separating line)
3.6 Support vector machine

With a linear kernel, the model coming from the support vector machine (SVM) algorithm is a linear
classifier. Yet, few software provides the explicit equation of the separation line (or the hyperplane in
higher dimension, p > 2). The procedure svm() from the e1071 package for instance simply provides
the list of support points. We have no information about the influence of the descriptors, even if we

can deploy the model on unseen instance with this information.

25 ao(t 2017 Page 11

https://en.wikipedia.org/wiki/Support_vector_machine

Tanagra Tutorial R.R.

#linear support vector machine
library(el071)
model.svm <- svm(y ~ ., data = train.data,kernel="linear")
print (model.svm)
#function for svm prediction
prediction.svm <- function (model, test.data) {
return (predict (model, newdata=test.data))
}
#graph and error rate

print (error.rate.plot (test.data,prediction.svm(model.svm, test.data)))

The test error rate is 7.465%. This is the best model among all the linear methods presented in this

section.

call:
svm(formula = vy ~ ., data = train.data, kernel = "Tinear")

Parameters:
SWM-Type: C-classification
sSvM-Kernel: Tlinear
cost: 1
gamma: 0.5

Number of Support vectors: 92
#function for svm prediction

prediction.svm <- function(model,test.data){
return(predict(model,newdata=test.data))

VYV ++ VYV

print(error.rate. plot(test.data,prediction.svm(model.svm,test.data)))
pred
neg pos
neg 1836 1371
pos 122 16651
[1] 0.07465

We are getting closer to the theoretical separation line (Figure 9).

1.0

data test$x2
0.6

04

0.0

data test$x1

Figure 9 - Boundary inferred by linear SVM (in green the right separating line)

The e1071 package offers an excellent tool for visualizing the regions associated to the classes, and

therefore the separation line. It also identifies the support points related to the classifier.

25 ao(t 2017 Page 12

Tanagra Tutorial R.R.

A4 N,

#plotting data points “o” and support points “x

plot (model.svm,data=train.data, svSymbol="x",dataSymbol="0")

The scatter graph is transposed in relation to ours (X2 in abscissa, X1 in ordinate). But the nature of
the results is quite the same: the regions associated to the classes are linearly delimited. Due to noise
(noise = 5%), the support points are relatively numerous despite the simplicity of the underlying
concept (Figure 10). They would be less numerous and located along the separation line if the data

were not noisy.

SVM classification plot
oY)
‘E 5 (+]s] o O(jlx o 08 DD DO
OXog & 0 ¢ oo
g 0o, X 8 L 0o o
o Xp o gt o0 %
0 00
08 -, bay 0o @
8° @ °%g 0 0 L g
0 4] OD] %
) % o 0% o - f
000 00
— 0 [+]
06 @ DGS om C o g
0 0
= ood®?0 mo “ 0 6 x & —
o % o o g © o, o©
&0 0
i o o @@ o &
04 o 00 0 X
0 0 X
020 0% #, o 8 & #
@ 0 X x¥ x X
X X =]
[%50 8 ox *f x U X r 2
02 4 0 x KXx X
¢ “Xgl x K UL xx
o & X
x ok X X §
XOXROX X)}((x ol
x X X 2 0
X X X x X il
T T T T
0.2 0.4 06 0.8
X2

Figure 10 - SVM: regions associated to classes, data points (“0”) and support points (“x”)
3.7 Behavior of some nonlinear approaches

We know that the frontier separating the classes is linear because it has been intentionally
generated. In real studies, we do not have that information. We would therefore have to test
different learning algorithms before choosing the model adapted to the problem to be handled. A
priori, we said in introduction, nonlinear models with a more efficient representation system would
be better. But, in addition to the difficulties of interpreting the results, we are faced with the greater
variability of these techniques because they are often more complex. We need more observations to

combat overfitting. This is often not possible in practice. We cannot define the learning set size.

In this section, we study the behavior of some nonlinear approaches. We analyze their performance

and the shape of the inferred boundary.
3.7.1 Decision tree — CART

A decision tree is a nonlinear classifier. It divides the feature space into axis-parallel rectangles. When
we split a node using a descriptor during the learning process, we define an axis-parallel separation

line. The combination of these separations provides a nonlinear classifier. We use the rpart()

25 ao(t 2017 Page 13

https://en.wikipedia.org/wiki/Decision_tree_learning

Tanagra Tutorial R.R.

procedure coming from the rpart package which implements an approach very similar to the famous

CART algorithm (Breiman and al., 1984).

#decision tree learning

library (rpart)

model.tree <- rpart(y ~ ., data = train.data)

print (model.tree)

pred.tree <- predict (model.tree,newdata=test.data, type="class")

print (error.rate.plot (test.data,pred.tree))

The decision tree uses successively and repeatedly the variables x1 and x2 for the splitting processes.

> model.tree <- rpart(y ~ ., data = train.data)
> print(model.tree)
n= 300

node), split, n, loss, yval, (yprob)
* denotes terminal node

1) root 300 49 pos (0.16333333 0.83666667)
2) x1< 0.1527279 49 14 neg (0.71428571 0.28571429)
4) x2>=0.4041346 31 1 neg (0.96774194 0.03225806) *
5) x2< 0.4041346 18 5 pos (0.27777778 0.72222222) *
3) x1>=0.1527279 251 14 pos (0.05577689 0.94422311)
6) xl< 0.2079262 22 5 pos (0.22727273 0.77272727)
12) x2>=0.6219094 7 2 neg (0.71428571 0.28571429) *
13) x2< 0.6219094 15 0 pos (0.00000000 1.00000000) *
7) x1>=0.2079262 229 9 pos (0.03930131 0.96069869) *
> pred.tree <- predict(model.tree,newdata=test.data,type="class")
> print{error.rate.plot(test.data,pred.tree))
pred
neg pos
neg 1859 1368
pos 327 16446
[1] 0.08475

The test error rate is 8.475%. Although the estimated decision boundary appears visually rather
rough (Figure 11), it is aligned to the separation line. Ultimately, the performances are quite

comparable to those of the linear methods.

X1l < 0.2079
X2 < 0.6219
o~ E
= f=J
§ <
X2 < 0.404
° 7*\ T T T T T
0.0 02 0.4 06 0.8 1.0
X1 < 0.1527 data test$x1

Figure 11 - Boundary inferred by decision tree (in green the right separating line)

The approximation depends on the number of the leaves of trees, which itself is dependent on the
size of the learning sample. If it (the learning sample) is infinite size (impossible in practice), the
separation is perfectly reproduced. In fact, the performance of trees, more than any other method,

depends heavily on the availability of observations.

25 ao(t 2017 Page 14

Tanagra Tutorial R.R.

3.7.2 Random Forest

The Random Forest (Breiman & Cutler, 2000) is an ensemble learning method. The idea is to make

cooperate an ensemble of decision trees learned from various version of the learning set. The
decision tree learning algorithm is also modified to improve the diversity of the trees. One of the
main consequences of the approach is that it transcends the constraint of tree representation, to the
point of being able to approach the linear boundary directly (because each individual tree is very

deep, with a low representation bias), with the same learning sample of 300 observations.

We install and load the rf package before using the randomForest() procedure.

#random forest

library (randomForest)

model.rf <- randomForest(y ~ ., data = train.data)

print (model.rf)

pred.rf <- factor(predict (model.rf,newdata=test.data, type="response"))

print (error.rate.plot (test.data,pred.rf))

The test error rate is 6.96%. This is the best classifier of our comparative study.

call:
randomForest (formula = y ~ ., data = train.data)
Type of random forest: classification
Number of trees: 500
No. of variables tried at each split: 1

00B estimate of error rate: 7%
Confusion matrix:
neg pos class.error
neg 32 17 0.34693878
pos 4 247 0.01593625
> pred.rf <- factor(predict(model.rf,newdata=test.data,type="response"))
> print(error.rate.plot(test.data,pred.rf))
pred
neg pos
neg 2088 1139
pos 253 16520
[1] 0.0696

The classifier is not linear by nature. It is nevertheless able to produce a good approximation of the

theoretical decision boundary (Figure 12).

10

data testpx2
06
L

04

02

00

data test$x1

Figure 12 - Boundary inferred by random forest (in green the right separation line)

This is impressive. Especially since, in relation to the characteristics of random forest, we are placed

in extreme conditions: the number of instances is low, producing sufficiently dissimilar bootstrap

25 ao(t 2017 Page 15

https://en.wikipedia.org/wiki/Random_forest
http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm

Tanagra Tutorial R.R.

samples is difficult; we only have the two relevant variables in the dataset (no other descriptors),

producing sufficiently diversified trees in these conditions is not obvious.

3.7.3 K-Nearest Neighbors

K-Nearest Neighbors is not constrained by a representation system. The parameter “k” (the number

of neighbors to account in the prediction of the labels of unseen instance) influence the behavior of
the classifier. If we increase “k”, we reduce the variance of the approach but increase the bias. On
the other hand, if we decrease “k”, we can represent complex concept, but overdependence to the
learning sample may occur (overfitting). In our experiment, we try “k =1” and “k = 5”.

The knn() procedure is available into the class package. There is not a learning process strictly

|II

speaking. We deploy directly the “model” on the test set. First, we evaluate the approach with k=1

neighbors used for the classification of the instances.

#nearest neighbor

library (class)

#k = 1
print(error.rate.plot(test.data,knn(train.data[,2:3],test.data[,2:3],train.dataSy, k=1)))

The test error rate is 10.84%. Performances seem acceptable compared to some linear techniques.

> print(error.rate.plot(test.data,knn(train.datal[,2:3],test.datal,2:3],train.datasy,k=1)))
pred
neg pos
neg 2006 1221
pos 947 15826
[1] 0.1084

Indeed, the separation line seems to be more or less accurately reproduced (Figure 13).

1.0

08

data test$x2
06
|

04

0.0 02 04 06 08 10

data.test$x1

Figure 13 — Regions of assignment inferred by the 1-NN (in green the right separation line)

But we also note that some mislabelled observations have defined areas of erroneous influence on
both sides of the theoretical separation line (Figure 13). Of course, these areas would not have

existed if we have data without noise on labels.

These areas disappear when we set k = 5, improving the error rate (7.55%).

25 ao(t 2017 Page 16

https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm

Tanagra Tutorial R.R.

> #k=35
> print{error.rate.plot(test.data,knn(train.datal,2:3],test.datal[,2:3],train.data$y,k=5)))
pred
neg pos
neg 1976 1251
pos 260 16513
[1] 0.07555

But there are still areas of bad decision along the border line (Figure 14).

1.0

data test$x2
06 08
Il

04

02

0.0

data test$x1

Figure 14 - Regions of assignment inferred by the 5-NN (in green the right separation line)
3.8 Summary of the results

In this section, we make a recap of the results. Of course, we must be cautious about the following
table, it comes from the result of an experiment on only one dataset. But maybe we can draw some

tendencies however.

Approach Test error rate (%)
Theoretical model 5.19
Linear methods
Naive bayes 10.23
Discriminant analysis 10.35
Logistic regression 7.45
Perceptron 8.71
Linear SVM 7.46
Nonlinear methods
Decision tree 8.48
Random Forest 6.96
1-NN 10.84
5-NN 7.55

Finally, apart from the 3 wrong approaches, because based on assumptions that are not adapted to
our dataset (naive bayes, linear discriminant analysis) or because based on bad values of the
parameters (1-NN), the methods seem have similar behavior. Except that, and this is a very

important element, linear classifiers offer explicit models that can be easily interpreted (the

25 ao(t 2017 Page 17

Tanagra Tutorial R.R.

coefficients of the linear combination) and deployed. Aside from the decision trees, these tasks are

not easy for the random forest or the nearest neighbors.

4 Processing with Tanagra

While linear classifiers are produced, R (about the packages used) does not provide the coefficient of
the separation line for certain methods, notably concerning naive bayes (section Erreur ! Source du
renvoi introuvable.) and linear SVM (section 3.6). In this section, we use Tanagra to reproduce the
calculations on the same learning sample. The interest is that Tanagra provides the explicit equation

when it produces a linear model. We will be able to compare the obtained coefficients.

4.1 Dataimportation

From R, we export the learning set with the write.table() command (text file with tabulation-

separated values).

write.table(train.data,file="training_set.txt",sep="\t",dec=".",quote=F,row.names=F)

After launching Tanagra, we create a new diagram (File/New menu) and we import the data file.

= B
TANAGRA 14.48 E=E=>
Choose your dataset and start download
File Window Hg
]
= Diagram title :
[= Open... Diata rrini Default title
Data mining diagram file name :
|D:\Temp\Exe\default.tdm =
[Exit Dataset (*.txt.*.arff.* xls) :
i |g1dataset_for_soﬁ_dev_a nd_mmpariscm\linear_classiﬁer\training_setixﬂ ﬂ
{
| ™~
| |
I i |
| { Chec:king Missing Values ’ OK H Cancel ” Help] [
i
— R i
Regarder dans : linear_classifier
I Mom - Type
g || training_set.txt Fichier TXT
Emplacements
Data visualization Statistics Monparametrit récents Hon
Regression Factorial analysis PLS! ! ning
Spv learning assessment Scoring Associa Bureau
$ Correlation scatterplot E.Scatterplot with label
Export dataset View dataset = I
E‘Scatterplot E,_';Viaw multiple scatterplot Eibl\c;théques '
| |
LY
= = | ordinateur < 3 4
- Mom du fichier : training_set bt -
‘.L, Types de fichiers [Taxl file #ab-separated values, “txt) '] [Annuler]

4.2 Naive bayes

We specify the role of the variables with the DEFINE STATUS component that we add into the

diagram. Y is the target attribute, (X1, X2) are the input ones.

25 ao(t 2017

Page 18

Tanagra Tutorial R.R.

G TANAGRA 1.4.48 - [Dataset umining_seuxm- Define attribute statuses Cull .

G File Diagam Component Window Help | [pommeims - [EErE

Tbutes

Target Input | lllustrative

Default titl

(= Dataset (training_set.txt)
w7 Define status 1
-~

¥

lev_and_comparisonilinear_classifier\training_set.txt

Clearall Clear selected

Define attribute statuses

Parameters
puributes Taget | Input |ilustrative [
= o x = =
Data visualization | Statistics |c _ = ture construction | Feature selection ‘
[
Regression | Factorial analysis " Spv learning | Meta-spv learning ‘
Spv learning assessment | Scoring
-
@'Correlation scatterplot E.Scatterplot with L
Export dataset View dataset
1, Scatterplot [i,2 View multiple scat

i‘ ;Evl ﬁl Clearall Clear selected
OK Cancel Help

Then, we add the NAIVE BAYES CONTINUOUS tool (SPV LEARNING tab). We click on the VIEW

contextual menu.

— —— o]
E TANAGRA 1.4.48 - [Supervised Learning 1 (Maive bayes continuous) lgﬂu‘

- -
E File Diagram Component Window Help mmm
- =
Default title -
B-- Dataset (training_set.txt) Data description
-} Define status 1
¥ Supervised Learning 1 {Maive bayes continuous) Target attribute vy (2 values)

Parameters... # descriptors 2

Supervised parameters... Linear Model

Execute

Classification functions
Descriptors pos neg F(1,298) p-value
Intercept -3.695834 -4.553360 - .
xi 7.757001 2.722637 71.921750 [§i00000)
x2 6.102745 8030545 11.741191 [FiB0069R

View

Statistics Instance selection

| Monparametric statistics |
Feature selection | Regression | Factorial analysis
| |
| |

Clustering I Spv learning Meta-spv learning

Spv learning assessmen Scoring Aszociation

3:" Multilayer perceptron e Maive bayes Pﬁi’ PLS-DA If_g Prototype-NM
7= Multinomial Logistic Regressio™ {) Naive bayes continuous @PB-LDA 3:" Radial basis funct

4 LI} 3

From the two classification functions, we can deduce the equation which defines the separation line.

25 aolt 2017 Page 19

Tanagra Tutorial

R.R.

Classification functions Separating
Descriptors pos neg pos-neg Line
Intercept -3.6958 -4.5534 0.8575 -0.4448
x1 7.7570 2.7226 5.0344 -2.6115
x2 6.1027 8.0305 -1.9278 1.0000

Here is the corresponding equation:
Naive bayes: X2 —2.6115 * X1 =0.4448
Knowing that the true (theoretical) equation of the boundary is:
Theoretical boundary: X2 -4.0* X1=0
4.3 The other approaches

We have done the same for the other linear approaches. Here is the processing diagram under

Tanagra (Figure 15) :

r ——— 7

E File Diagram Component Window Help mmm
= "
Defauilt title: -
=-EF] Dataset (training_set. txt) S Value p-value
%% Define status 1 Wilks' Lambda 0.7756 -
[¥] Supervised Learning 1 {Maive bayes continuous) Bartlett -- C(2) 75.4716 _

[¥] Supervised Learning 2 (Linear discriminant analysis) Rao -- F(2, 297) 42.9643 _

|I| Supervised Learning 3 (Binary logistic regression)

|I| Supervised Learning 4 (Multilayer perceptron) LDA Summary

------ [¥] Supervised Learning 5 (SVM)

Classification functions Statistical Evaluat

e g nes | wiel el R
1 7.503180 2.375775 0.962094 0.806160 71 3
I xZ 5.808227 T.937290 0.805576 0.962792 11
constant -3.558438 -4.491820 il
4 I | r
Components
Data visualization | Statistics | Monparametric statistics | Instance selection | Feature construction |
Feature selection | Regression | Factorial analysis | PLS | Clustering |
Spv learning | Meta-spv learning | Spv learning assessment | Scoring | Aszociation |
[# Linear discriminant analysis ~ g=Multinomial Logistic Regression [3 PLS-DA 2%+ Radial basis function £
L=Log-Reg TRIRLS [Maive bayes [pLS-LDA £ Rnd Tree
3:"Mul.tilayer perceptron ﬂ["JHai\re bayes continuous I:_-,Prototype—NN = Rule Induction
] [1 3
> o

Figure 15 — Processing diagram under Tanagra — Results of Linear Discriminant Analysis

All methods, which can detect the influence of the variables, have highlighted the relevance of X1

and X2 (naive bayes, linear discriminant analysis, logistic regression).

25 ao(t 2017 Page 20

Tanagra Tutorial R.R.

F ™
B i 148 s s o) S R (ol
EFiIe Diagram Component Window Help mmm
0w B

Default title: P
Target attribute y (2 values)

= Dataset (training_set. txt)
B Define status 1 # descriptors 2

- Iz‘ Supenvised Learning 1 (Maive bayes continuous) Linear classifier

[¥] Supervised Learning 2 (Linear discriminant analysis)
[¥] Supervised Learning 3 (Binary logistic regression) "Reference” class value : neg
i-[¥] Supervised Learning 4 (Multilayer perceptron)

Attribute Weight

------ [¥] Supervised Learning 5 (SVM)

xl -6.107660

2z 2.089469 s
constant -0.479236

m

Computation time : 0 ms.
Created at 09/05/2013 08:22:10 i

4| 11 | (3

Components | |
Monparametric statistics Instance selection |

Statistics

Data visualization

| | |
Feature construction | Feature selection | Regression | Factorial analysis | |
PLS | Clustering | Spv learning | Meta-spv learning |
Spv learning assessment | Scoring | Association |
@'Correlation scatterplot ILSC atterplot ‘u’i ew dataset
Export dataset EScatterplot with label E,_';View multiple scatterplot

Figure 16 — Tanagra - Results of the SVM component (Linear kernel)

About SVM (Figure 16), we used our implementation (SVM) because it provides the coefficients of
the linear model. The C-SVC component from the librairy LIBSYM does not do it. We have
standardized the variables for SVM.

4.4 Overview — Comparing the coefficients of the separation line

In this section, we analyze the equations provided by the various approaches by comparing them

with the theoretical frontier.

Approach Equation of the frontier
Theoretical frontier X2 - 4.0000 * X1 = 0.0000
1 - Naive Bayes X2 -2.6115 * X1 = 0.4448
2 — Linear Discriminant Analysis X2 -2.4083 * X1 = 0.4384
3 — Logistic Regression X2 -2.9525 * X1 =0.2901
4 — Perceptron X2 -2.9468 * X1 = 0.2024
5 — Linear SVM (SVM component — Tanagra) X2 -2.9231 * X1 = 0.2294

All boundaries are shifted to the left of the theoretical frontier. This positioning is the consequence
of the approach we used to add noise to the labels. But the differences are not the same. We can
draw the inferred separation line by the various approaches into a graph. In this way, we can analyze

the divergences and the resemblances between the approaches (Figure 17).

25 ao(t 2017 Page 21

http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Tanagra Tutorial R.R.

= nbayes
Ida
reg.log

= perceptron

svm

= Qptimal

0.4 0.6 0.8 1

Figure 17 — Separation lines inferred by the various approaches (in green the right separation line)

5 Processing with other data mining tools

Various data mining tools provide linear classifiers. Some of them incorporate variants (e.g. kernel
estimation for naive bayes, original display of the results with the “nomograms” for Orange, etc.). In
this section, we create a processing diagram for these tools, diagram which is like the one defined

under Tanagra. We use Knime, Orange, RapidMiner and Weka.

We summarize below the characteristics of the methods implemented in these data mining tools?.

2 The French version of this tutorial was written in May 2013. The versions of the softwares used correspond to that

available at this period.

25 ao(t 2017 Page 22

https://www.knime.com/
https://orange.biolab.si/
https://rapidminer.com/products/studio/
http://www.cs.waikato.ac.nz/ml/weka/

Tanagra Tutorial

R.R.

Approach Knime 2.6.4 (Figure 18) Orange 2.6.1 (Figure 19)° RapidMiner 5.2.008 (Figure 20) Weka 3.7.4 (Figure 21)
Naive bayes Gaussian assumption. Outputs: | Kernel estimation of the conditional | Gaussian assumption. Outputs: | Kernel estimation of the conditional
conditional ~average and standard | probabilities. Description of the | conditional average and standard | probabilities or discretization of the
deviation of the descriptors. influence of the variables using the | deviation of the descriptors. variables on-the-fly. Outputs:
“nomogram”. conditional average and standard of
the descriptors.
Linear Display only the distribution of the
C classes (???).
discriminant - - (772))
analysis
Logistic Display the coefficients of the regression | Possibility — of variable selection | Based on the myKLR* implementation | Based on the BFGS implementation.
. equation, including the tests for | (stepwise approaches). Description of | and not on the usual “Fisher scoring”. | Provide the coefficients but not the
regression S : , : . . i
significance. the influence of the variables with the | Display the coefficients of the | tests for significance.
_ - “nomogram”. equation.
X2-2.9524 * X1 =0.2901 g g X2 —2.9524 * X1 = 0.2901
X2 -2.9606 * X1 =0.2319
Perceptron For a single-layer perceptron, we must The single layer is available. The | O neuron into the hidden layer to
set only one neuron into the hidden output includes the weights of the | obtain the single-layer perceptron.
layer. The sFandard display |nc|udes‘only] linear equation. X2 — 3.9886 * X1 = 0.0219
the decreasing of the error. The weights X2 —13 * X1 =0 (???)
are available into the PMML output.
X2 -4.0106 * X1 =0.0617
Linear SVM Set a polynom with a degree 1 to obtain | Based on the LIBSVM library. The | Based on LIBSVM. It provides both | It provides the coefficients of the
a linear SVM. Display the supports points | supports points are visualized into a | the support points and the | hyperplane when we set a linear
for each class. table or a graph (limited to a two- | coefficients of the hyperplane for the | kernel.
dimensional representation space). linear kernel. X2 — 2.8646 * X1 = 1.3680
X2-2.5144 * X1 =0.1315

Most of the results are consistent. There are still some disparities for some software/methods. The failure of the calculations can be the result of a poorly controlled setup. |
tried to set the same parameters from one software to another, when the comparison was possible. | have systematically disabled the normalization/standardization of
variables since X1 and X2 are defined on the same scale (0, 1).

3 Online documentation: http://orange.biolab.si/docs/latest/widgets/rst/
4 http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYKLR/index.html.en

25 ao(t 2017 Page 23

http://orange.biolab.si/docs/latest/widgets/rst/
http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYKLR/index.html.en

Tanagra Tutorial

R.R.

-
File Edit View Run Search Node Help
D-H@ 4~ i f-3- % - ok L[E00D0BE-HAB~<POO B A
aWorkﬂow Projedsl “Bllaw Logistic regre... I.‘: *0: Linear Classi... 53 | 2 = a Node Description =2 =g
R8BS~ =
=
& Linear Classifier navebyesteame] || Naive Bayes Learner
(& Logistic Reg on Large Dataset
(&) Logistic regression -w
. The node creates a Bayesian model from the
|G=)] given training data. It calculates the number of
Node 3 rows per attribute value per class for nominal
attributes and the Gaussian distribution for
numerical attributes. The created model could be |
File Reader Logistic Regression used in the naive Bayes predictor to predict the |=
(Learner) class membership of unclassified data.
2\ Node Repositary =0
s = Dialog Options
10 -
Databace | Classification Column
Data Manipulation The class value column.
(4 Data Views RProp MLP Learner Skip missing values (incl. class column)
£ Statistics X The node ignores missing values in the model
/W Hypathesis Testing if this option is ticked. I it's not ticked the
’j"".REE'EWU" node treats the missing values as a normal
| Linear Regression (Learner) value and considers them during the class
5 Polynomial Regression (Learner) = probability calculation.
R Predict
fﬁi egression (Predictor) Maximum number of unique nominal values
|, Logistic Regression (Learner) b
¥ Logistic Regression (Predicter) per attribute
N N SVM Learner All nominal columns with more unique values
"1 Linear Correlation
y than the defined number will be skipped
Py Correlation Filter during learning. I the column contains
iy Statistics missing values and the 'Skip missing values'
I Crosstab B | =9 option is not skipped the missing value counts
i Value Counter Node 5 as one value! -
‘g"é"‘g El Console 331$Debug| BubElt B -9~
ayes
Pit) Naive Bayes Leamer NN Gonsole
PLEJ'\W Maive Bayes Predictor HEE Copyright, 2003 - 2012, Uni Konstanz and ENIME GmbH, Germany bl i
& Clustering R R R R R R R R R R R R R R R KRR R R KRR R R KRR R KRR R AR R AR AR R R AR R
& Rule Induction Log file is located at: C:\Program Files\knime 2.4.2\workspace\.metadata\knime\knims.
=2 Neural Network S
1= Decision Tree - || m I b
—

File

HE =

Data | Visualize

Figure 18 — Linear classifiers under Knime

View Options Widget Help

Classify | Regression I Evaluate I Unsupervised I Assodate I VisualizeQt |

AL .

e o

|

CN2 Random Ensemble

5

Maive Logistic Majority kMearest Classification Interactive SWM
Bayes Regression Meighbours Tree Tree Builder Farest
< | T

!

Classification Classifi
Tree Viewer Tree

3

Maive Bayes

Classifier

esian Classifier

MNomogram

MNomogram (2)

Figure 19 - Linear classifiers under Orange

25 ao(it 2017

Page 24

Tanagra Tutorial

File Edit Process Tools WView Help |
|9 d@y A p V@@ |
,D Owerview 1= 6‘? Frocess HML @ Parameters 1= |

= Operators li Repositaries

@ |e»¥
(2] Process Control (38)
3 utility (41)
(2] Repository Access (6)
1 Import (27)
3 Exporit (19)
(2 Data Transformation (114)
B) Modeling (127)
= @ Classification and Regression (61)
[Lazy Modeling (2)
B <) Bayesian Modeling (2)
8 Naive Bayes
MNaive Bayes (Kernel)
(2] Tree Induction (13)
(ZJ Rule Induction (5)
) Meural Met Training (3)
[Function Fitting (7)
B) Logistic Regression (2)
Logistic Regression
Logistic Regression (Evolutionary)
B) Support Vector Modeling (7)
Suppoit Vector Machine (LibSVM)
Support Vector Machine
Support Vector Machine (Linear)
Suppoit Vector Machine (Evolutionar,
Support Vector Machine (PSO)
Fast Large Margin
Hyper Hyper
= '@ Discriminant Analysis (3)
Linear Discriminant Analysis
Quadratic Discriminant Analysis
Regularized Discriminant Analysis
(2] Msta Modeling (14)
(2] Data Transformation (3)
[Attribute Weighting (22)
[fl Clustering and Segmentation (13)
(7] Association and ltem Set Mining (6) L
f:l Correlation and Dependency CUI’HDUIEHII
>

$-TmmenB-

& - - Process &~ 3% O
= & Read CsV
Naive Bayes l)f, Import Configuration Wizard...
inp = mod
csv file
Read CSV | Q =
il out [o
3 S —
o | LDA
— ——m Q mod p——— [trim lines '
- e
| Muitiphy ° use quotes
\imp oud [p—— |
out |y . Logistic Regr... quotes character :]
o S e — I
ot p—o Q i escape character for |\
o) e
out [| e Help
o
= @
Perceptron g Read CSV
—{t= mod ——
Q e) Synopsis
| © This operator can read csv files.
S Description
—qm= Q mod p—— This operator can read csv files, where all
exa) values of an example are writen into one
Q .| line and separated by an constant
separator. The separator might be
B specified in the column separators
— parameter. The default will split the line on
/iy Problems Loy each comma, semicolon and blank
% Mo problems found Arbitrary regular expressions are usable |
as separator. Empty values and the
Message Fixes Location question mark will be read as missing
values. You can quote the values

(including the column separators) with a

Anrikla b) W

amn mnenn

Figure 20 - Linear classifiers under RapidMiner

Himeo

BomE BHE <R @

Untitled1

linear dassifier x

. DataSources
. Datasinks

. Filters
Classifiers

. bayes

h

L-‘Illlvl

)

BayesNet
" Textlemer
MaiveBayes NaiveBayes
+-+ NaiveBayesMultinomial o
f-[NaiveBayesMultinomialTex _em r’
NaiveBayesMultinomialUpg t - wﬁ
NaiveBayesUpdateable § oo =
8 ——datade 1 dataet] Logistic [eabieue
: ——f,
GaussianProcesses Wl *
LinearRegression w <
Logistic ClassAssigner Training G .
MultilzyerPerceptron Sethaker 1m __,_._‘ﬁn"‘» .:@
| sGD o -
SGDText ' Text'dewerd
‘) SimpleLinearRegression Multilayer
SimpleLogistic Feraepiron
=l VotedPerceptron . o
L lazy ? =5
L meta w0 Text\dewerd
- L misc
1. rules -
| trees < | 1 3
b | Clusterers
- || Associations Status | Log
£ | Evaluation Component Parameters Time Status
£ | Visualization
; Tools [KnowledgeFlow] 0:0:23 |OK.
- - Flow CSVLoader M?B100E" Fit - Finished.
- NaiveBayes - Finished,
Logistic R LOE-8-M-1 - Finished,
MultlayerPerceptron (L 0.3-M0.2-N 500 V0 -50-E20-HO - Finished.
SMO HC 1.0 4 0.001 P 1.0E-12 M 2 -V -1 -W 1 K "weka.dassifiers. functions.supportvector. Palykernel -C 25000... - Finished.
] m >

Figure 21 - Linear classifiers under Weka

25 ao(t 2017

Page 25

Tanagra Tutorial R.R.

6 Experiment 1 — Size of the learning sample “n”

In this section, we study the influence of the training set size of the behavior of the various linear
approaches. To do this, we increase gradually the training set size and we measure the error rate on

the test set.

It is not reasonable to draw definitive conclusions from the experiment conducted on only one
dataset. To control results-related variability, we repeat 100 times the experiment for a given
learning set size “n.train”. On the other hand, we use a large dataset as test set with “n.test” =
100,000 instances. By using the same test sample throughout the experiments, the performances of

the models are directly comparable, it is a form of pairing.
6.1 Program for the experiment

We combine various values of n.train = (250, 500, 1000, 2000, 3000, 5000) and the 5 linear machine
learning methods (naive bayes, linear discriminant analysis, logistic regression, perceptron, linear
svm). We repeat K = 100 times the experiment for each combination. We detail the R program

below.

#function for the calculation of the error rate
#pred is the prediction of a classifier
error.rate <- function (data.test,pred) {

mc <- table(data.testS$Sy,pred)

err.rate <- l-sum(diag(mc))/sum(mc)

return (err.rate)

AN

#one experiment for a learning sample of size “n”
#the function returns the test error rate for each classifier

experiments <- function(n,test.set) {

#generation of a learning sample (size n)
learning <- generate.data(n,p,noise)

print (nrow(learning))

#preparation of the vector gathering the results
#5 learning algorithms to evaluate

result <- numeric(5)

#naive bayes classifier
model.nb <- naiveBayes(y ~ ., data = learning)

result[l] <- error.rate(test.set,prediction.nb (model.nb,test.set))

#linear discriminant analysis

model.lda <- lda(y ~ ., data = learning)

25 ao(t 2017 Page 26

Tanagra Tutorial R.R.

result[2] <- error.rate(test.set,prediction.lda (model.lda,test.set))

#logistic regression
model.glm <- glm("y ~ .", data = learning, family = binomial)

result[3] <- error.rate(test.set,prediction.glm(model.glm,test.set))

#single layer perceptron
model.nn <- nnet(y ~ ., data = learning,skip=TRUE, size=0)

result[4] <- error.rate(test.set,prediction.nn (model.nn,test.set))

#linear support vector machine
model.svm <- svm(y ~ ., data = learning,kernel="linear")

result[5] <- error.rate(test.set,prediction.svm(model.svm,test.set))

print (result)

return (result)

fvarious learning set size to evaluate

size.training <- c¢(250,500,1000,2000,3000,5000)

#generation of the unique test set

fused during the whole experiment

set.seed (25032003)

other.data.test <- generate.data(100000,p,noise)

#load the package needed for the learning algorithms
library (MASS)

library(el071)

library (nnet)

#experiment for a given learning set size: “size.learning”
one.expe.session <- function(size.learning) {

results <- mapply(experiments,size.learning, MoreArgs=list(test.set=other.data.test))

return (results)

#K: number of repetition for each experiment

K <- 100

set.seed (05092008)

all.results <- replicate(K,one.expe.session(size.learning=size.training),simplify="matrix")

#all.results is a table with K = 100 columns

#and 30 rows (5 learning methods x 6 learning set sizes)

#preparing the results for a new table:

25 ao(t 2017 Page 27

Tanagra Tutorial R.R.

#in rows, 5 methods; in columns, 6 learning set sizes
#the summary measure is the mean of the K = 100 trials
mean.results <- matrix (0,nrow=5,ncol=length(size.training))
colnames (mean.results) <- size.training
rownames(mean.results) <- c("naive.bayes","lda","log.reg","perceptron","svm.linear")
for (i in 1:5){

for (j in 1:length(size.training)) {

mean.results[i,]] <- mean(all.results[i+(j-1)*5,1)

}

print (mean.results)

fthe same calculations but using the median as summary measure
med.results <- mean.results
for (i in 1:5){

for (j in 1l:length(size.training)) {

med.results[i,j] <- median(all.results[i+(J-1)*5,])

}

print (med.results)

The calculations are slow. We really need to do several tests to calibrate the experiment, to make

sure that the results are generated correctly, and that they are collected adequately.

6.2 Discussion of the results

Here are the curves of the error according to the learning sample size.

Mean for K = 100 replicates —o— logistic.reg

0.11 —
=fi— |da

0105 SN == svm.linear .

=>&= naive.bayes
01 AN -

=ie= single.layer.perceptron

0.095 -~ R - N oo

100,000)

009 7 Ho oo—_—_——

0.085

Test error rate (n.test

0.08 | - oo ’—===QK

0.075

0 1000 2000 3000 4000 5000

Training set size

Figure 22 — Mean of the error rate according to learning sample size

25 ao(t 2017 Page 28

Tanagra Tutorial R.R.

At a first glance, if we use the mean as summary indicator (Figure 22):

1. Clearly, the methods based on too restrictive assumptions are not relevant (naive bayes, linear
discriminant analysis and, in a lesser extent, the logistic regression).

2. SVM and Perceptron are therefore the best on our data, quite similarly.

Median for K = 100 replicates &= logistic.reg
0.11 —8—|da]
svm.linear
0.105 -
==>é=naive.bayes
0.1 A single.layer.perceptron

=)
=]
=1
g 0.095 1
-
I
5
= 0.09 7
£
-]
c ¢ N
= 0.085 1 \ g
2
; {
k]
2 0.08 1

0.075 T T T T

0 1000 2000 3000 4000 5000
Training set size

Figure 23 - Median of the error rate according to the learning sample size

But some additional conclusions are also of interest:

3. Linear SVM seems to have a catastrophic behavior on small learning samples (n.train < 500)
(Figure 22). In fact, the computational library has failed on a large proportion of these samples.
The curve is quite different — for SYM — when we use the median as summary measure (Figure
23). This kind of problems sometimes happens in experiments. It is necessary to check, re-check,
and still check the results before thinking about publishing them.

4. The test error rate decreases when the learning sample size increases. Fortunately. The contrary
would have been counterintuitive. But, from “n.train = 2000”, the improvement is insignificant. |
think, it is due to the simplicity of the concept to learn (linear frontier with only two descriptors).

5. However, none of the methods converge on optimal performance (5%), even with a large
learning sample. This is the consequence of the noise added to the labels. When we generate
data without noise, all methods, except naive bayes and linear discriminant analysis which are

constrained by their restrictive assumptions, find the theoretical frontier.

7 Experiment 2 — Number of descriptors “p”

In this section, we set “n.train = 500”, and we check the influence of the number of descriptors on
the quality of the inferred classifiers. We know that only (X1, X2) are relevant. The additional

descriptors are thus irrelevant. They may be considered as another kind of noise added to the data.

25 ao(t 2017 Page 29

Tanagra Tutorial R.R.

7.1 Program of the experiment

We combine the values of “p” [p = (2, 5, 10, 25, 50, 70) — knowing that (p-2) are irrelevant] and the 5
learning algorithms. We repeat each combination K = 100 times. We detail below the program for R.

It has strong similarities to the source code in the previous section.

#Experiment: influence of the number of descriptors p
#learning sample size = 500

experiments.dimension <- function (p,test.set) {

#learning set

learning <- generate.data (500,p,noise)

#vector containing the results

result <- numeric (5)

#naive bayes classifier
model .nb <- naiveBayes(y ~ ., data = learning)

result[l] <- error.rate(test.set,prediction.nb (model.nb,test.set))

#linear discriminant analysis
model.lda <- lda(y ~ ., data = learning)

result[2] <- error.rate(test.set,prediction.lda (model.lda,test.set))

#logistic regression
model.glm <- glm("y ~ .", data = learning, family = binomial)

result[3] <- error.rate(test.set,prediction.glm(model.glm,test.set))

#single layer perceptron
model.nn <- nnet(y ~ ., data = learning,skip=TRUE, size=0)

result[4] <- error.rate(test.set,prediction.nn (model.nn,test.set))

#linear support vector machine
model.svm <- svm(y ~ ., data = learning,kernel="linear")

result[5] <- error.rate(test.set,prediction.svm(model.svm, test.set))

print (result)

return (result)

#generate the test samples with

#n.test = 100000 instances and p = 100 descriptors
set.seed (25032003)

second.data.test <- generate.data(100000,100,noise)

25 ao(t 2017 Page 30

Tanagra Tutorial R.R.

#print
print (colnames (second.data.test))

print (table (second.data.testSy))

#various dimension size
size.p <- ¢(2,5,10,25,50,70)

#one experiment for various dimensionality
one.expe.dimension <- function(size.dimension) {
results <- mapply(experiments.dimension,size.dimension,MoreArgs=list(test.set=second.data.test))

return (results)

#repeat K times the experiments
K <- 100
set.seed(21102011)

all.results <- replicate(K,one.expe.dimension(size.dimension=size.p),simplify="matrix")

fsummary measure: mean
mean.results <- matrix(0,nrow=5,ncol=length(size.p))
colnames (mean.results) <- size.p

rownames(mean.results) <- c("naive.bayes","lda","log.reg","perceptron","svm.linear")
for (i in 1:5){

for (j in 1l:length(size.p)) {

mean.results[i,J] <- mean(all.results[i+(j-1)*5,1)

}

print (mean.results)

#summary measure: median
med.results <- mean.results
for (i in 1:5){

for (j in l:length(size.p)) {

med.results[i,j] <- median(all.results[i+(J-1)*5,])

}

print (med.results)

The test sample “second.data.test” is generated with 100,000 instances and 100 descriptors. It is

operable for the various values of descriptors we try p = (2, 5, 10, 25, 50, 70).

= print{table(second. data.testiy))

neg pos
16247 B3753

25 ao(t 2017 Page 31

Tanagra Tutorial R.R.

The test sample has 16.25% of negative instances, and 83.75% of positive ones. That is an important
information. It means that the error rate of the default classifier (predicting systematically the most
frequent class) is 16.25%. We will see that some classifiers do not fare better when we increase the

number of irrelevant descriptors.

7.2 Discussion of the results

Median for K = 100 replicates
0.175
0.155
g
< 0.135
o
=]
-
I
i
3
£ 0.115 - == |ogistic.reg
[
g —8—|da
8
E 0.095 - svm.linear
173
2 == naive.bayes
=== single.layer.perceptron
0.075 T T
0 10 20 30 40 50 60 70
p : number of descriptors, 2 only are relevant

Figure 24 - Median of the error rate according to the number of descriptors
We present the median of error rates for K = 100 trials (Figure 24). We can make several comments:

1. The curse of dimensionality is not a myth. All the approaches fails when we add in a high
proportion the irrelevant variables.

2. But not in the same way however. For instance, the Perceptron and SVM, which are the best
when we use only the two relevant descriptors, evolve differently. Clearly, SVM resists better to
the addition of noisy variables than the perceptron. This last one is close to the default classifier
in the worst case.

3. The good surprise is that the discriminant analysis and the naive bayes, previously dominated,
are rather robust towards the dimensionality (knowing that we are far from the optimal error
anyway). But is this really a surprise? A restrictive search bias becomes beneficial when we
present erratic datasets to the learning process.

4. The Naive Bayes stands out because the number of parameters to be estimated is very low
(conditional mean and standard deviations of descriptors simply). It even surpasses the SVM
when the representation space is extremely noisy (for our dataset).

5. The logistic regression is really disturbed when the dimension increases. It is not better than the

default classifier when “p = 70” (68 descriptors are irrelevant).

All this shows above all that the variable selection is an essential aspect of supervised learning,

both for the interpretation of models and for their predictive qualities, including on an easy to

25 ao(t 2017 Page 32

Tanagra Tutorial R.R.

learn concept that we used to generate the data in this tutorial (linear separator in a two-

dimensional representation space).

8 Conclusion

Our initial goal was to show and compare the behavior of the most popular linear classifiers. We
have first detailed the working of the methods by describing the boundaries induced on an artificial
data set (sections 3 et 4). There is no doubt that linear methods subdivide the area of representation
into regions by using straight lines (or hyperplane if we are in higher than 2-dimensions
representation spaces). We have also seen that some techniques, because of their underlying
assumptions, are struggling to infer the right solutions when they are placed in situations that

disadvantage them.

In a second step, to give better viability to the results, we expand experiments, by trying to analyze
the impacts of the learning sample size and dimensionality on the quality of the results. The value of
using artificial data is that we fully control the evaluation process. We know the characteristics of the
data generated which can explain the nature of the obtained results. Among our main results, we
observe that some methods are more robust than the others when they are placed in a difficult

context.

Finally, as a prospective, we could explore the influence of the level and the kind of noise on the
behavior of the learning algorithms. To achieve this, only few changes are needed to adapt the

program accompanying this tutorial.

9 References

Bardos M., « Analyse Discriminante — Application au risque et scoring financier », Dunod, 2001;
chapter 2, « Fisher Discriminant Analysis », pp. 29 a 59; chapter 3, « Logistic Discrimination », pp. 61
a 79 [in French].

Bishop C., « Pattern Recognition and Machine Learning », Springer, 2006; Chapter 4, « Liner Models
for Classification », pp. 179 a 224.

Duda R., Hart P., Stork D., « Pattern Classification », John Wiley and Sons, 2001; chapter 5, « Linear

Discriminant Functions », pp. 215 a 281.

Hastie T., Tibshirani R., Friedman J., « Elements of Statistical Learning », 10th printing, Janvier 2013,

http://www-stat.stanford.edu/~tibs/ElemStatLearn/; chapter 4, «Linear Methods for

Classification », pp. 101 a 137.

Theodoridis S., Koutroumbas K., « Pattern Recognition », Elsevier Inc., 2009; chapter 3, « Linear

Classifiers », pp. 91 a 150.

25 ao(t 2017 Page 33

http://www-stat.stanford.edu/~tibs/ElemStatLearn/

	1 Introduction
	2 Dataset
	3 Comparison of linear classifiers
	3.1 Theoretical model
	3.2 Naive bayes classifier
	3.3 Linear discriminant analysis
	3.4 Logistic regression
	3.5 Perceptron (single-layer perceptron)
	3.6 Support vector machine
	3.7 Behavior of some nonlinear approaches
	3.7.1 Decision tree – CART
	3.7.2 Random Forest
	3.7.3 K-Nearest Neighbors

	3.8 Summary of the results

	4 Processing with Tanagra
	4.1 Data importation
	4.2 Naive bayes
	4.3 The other approaches
	4.4 Overview – Comparing the coefficients of the separation line

	5 Processing with other data mining tools
	6 Experiment 1 – Size of the learning sample “n”
	6.1 Program for the experiment
	6.2 Discussion of the results

	7 Experiment 2 – Number of descriptors “p”
	7.1 Program of the experiment
	7.2 Discussion of the results

	8 Conclusion
	9 References

