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1 Introduction 

Comparison of various linear classifiers on artificial datasets.  

The aim of supervised learning is inferring a function f(.) between target attribute Y that we want to 

explain/predict, and one or more input attributes (descriptors) (X1, X2, …, Xp). The function may have 

parameters i.e. Y = f(X1, X2, …, Xp ; ), where α is a vector of parameters related to f(.). 

We are faced with two issues in this process. 

The first issue is the choice of the function f (.). We are talking about “representation bias”. There 

are a multitude of possible forms of relationship between the target and the input variables. Linear 

models are generally distinguished from nonlinear models. A priori, we always have an interest in 

choosing the most complex formulation, i.e. a nonlinear model: "which can do more, can do less". In 

fact, the situation is more subtle. The relationship between the descriptors and the target variable is 

a conjecture. Trying to express a hypothetical causality with a mathematical function is always risky. 

Thus, some authors advocate, at first when we have no idea about the nature of the relationship 

between the target and the descriptors, to check the behavior of linear models on the data that we 

deal with (Duda and al., 2001; page 215).  

The second problem is the calculating the parameters of the function f(.). We want to build the most 

effective function possible on the population. But we only have one sample, called training sample, 

for the learning process. The “search bias” describes how to explore the solutions. It allows you to 

choose between various competing solutions. It also helps to restrict the search. Often, but this is not 

always the case, the search bias is expressed by the criterion to be optimized during the learning 

process (maximum likelihood, least squares, margin maximization, etc.). A priori, we have an interest 

in choosing a method that explores all possible hypothesis so as to choose the best one. But this is 

not as simple as that. We run the risk of learning the noise of the data instead of the underlying 

relationships between the variables. This phenomenon is called “overfitting” i.e. the algorithm 

incorporates in the predictive model informations specific to the learning sample which are irrelevant 

in the population. The situation is even more difficult as it is likely that some descriptors are not 

relevant for the prediction. They can disturb the learning process. 

In this tutorial, we study the behavior of 5 linear classifiers on artificial data. Linear models are often 

the baseline approaches in supervised learning. Indeed, based on a simple linear combination of 

predictive variables, they have the advantage of simplicity: the reading of the influence of each 

descriptor is relatively easy (signs and values of the coefficients); learning techniques are often (not 

always) fast, even on very large databases. We are interested in: (1) the naive bayes classifier; (2) the 

linear discriminant analysis; (3) the logistic regression; (4) the perceptron (single-layer perceptron); 

(5) the support vector machine (linear SVM). 

We are in a particular context for the data. We generate an artificial dataset for a binary problem i.e. 

target attribute Y has 2 possible values {positive, negative}. The number of predictive variables can 

https://en.wikipedia.org/wiki/Supervised_learning
https://en.wikipedia.org/wiki/Overfitting
https://en.wikipedia.org/wiki/Naive_Bayes_classifier
https://en.wikipedia.org/wiki/Linear_discriminant_analysis
https://en.wikipedia.org/wiki/Logistic_regression
https://en.wikipedia.org/wiki/Perceptron
https://en.wikipedia.org/wiki/Support_vector_machine
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be parameterised (p ≥ 2), but only the first two ones (X1, X2) are relevant. The boundary which 

enables to distinguish the positives from the negatives instances is represented by a straight line in a 

two-dimensional representation space (X1, X2). To increase the difficulty, we can randomly add noise 

to the labels. We will then see which methods are the best ones, according to the size of the learning 

sample and the number of descriptors. 

The experiment was conducted under R. The source code accompanies this document. My idea, 

besides the theme of the linear classifiers that concerns us, is also to describe the different stages of 

the elaboration of an experiment for the comparison of learning techniques. In addition, we show 

also the results provided by the linear approaches implemented in various tools such as Tanagra, 

Knime, Orange, Weka and RapidMiner. 

2 Dataset 

We use the following R source code to generate the dataset with n instances and p descriptors (+ the 

target attribute). The level of noise is also a parameter. 

#function for generating dataset 

generate.data <- function(n=100, p=2, noise=0.05){ 

  #generating the descriptors 

  X <- data.frame(lapply(1:p,function(x){runif(n)})) 

  colnames(X) <- paste("x",1:p,sep="") 

  #create the labels 

  y.clean <- ifelse(X$x2 > 4*X$x1,1,2) 

  #possible adding noise (if noise > 0) 

  y <- factor(ifelse(runif(n)>(1.0-noise),3-y.clean,y.clean)) 

  levels(y) <- c("neg","pos") 

  all.data <- cbind(y,X) 

  return(all.data) 

} 

The descriptors follows a uniform distribution U(0, 1). The label is assigned according to the 

following classification rule: 

IF (X2 > 4 * X1) THEN Y = Negative ELSE Y = Positive 

We have imbalanced data with approximately: negative = 12.5%, positive = 87. 5%. 

The noise is added on the class attribute by turning the label around in of (100*noise)% cases i.e. 

each individual, whatever is class value, has (100*noise)% of chance to have a modified label (Note: 

this mode of modification may change the proportions of the positive and negative instances in the 

dataset). By construction, it is impossible with a linear classifier to obtain an error rate lower than 

“noise” (occasionally on some test samples, but not in average). 

We can observe the theoretical separating boundary for a sample with n = 20,000 instances, p = 2 

descriptors and noise = 5% (Figure 1). We use the following source code to generate the dataset. 
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#number of descriptors 

p <- 2 

#noise on the class attribute - theoretical error rate 

noise <- 0.05 

#generating test set 

n.test <- 20000 

test.data <- generate.data(n.test,p,noise) 

#plotting test set 

plot(test.data$x1,test.data$x2,pch=21,bg=c("red","blue")[unclass(test.data$y)]) 

We can see also the data points (5% of the instances) which are in the bad side of the boundary. 

 

Figure 1 – Theoretical boundary on n = 20,000 instances 

Unfortunately, and this is the crucial problem of the supervised learning process, the labeled data are 

rare, difficult to obtain in some contexts. Here, we generate a learning set with n = 300 instances 

with the same characteristics (underlying concept, number of descriptors, level of noise). 

#training set size 

n.train <- 300  

#training set 

train.data <- generate.data(n.train,p,noise) 

#plotting training set 

plot(train.data$x1,train.data$x2,pch=21,bg=c("red","blue")[unclass(train.data$y)]) 

The boundary is less obvious on a sample with n = 300 instances (Figure 2). If we try to draw it 

freehand, we do not really find the right solution. And moreover, if we have another learning sample 

of the same size, the boundary line induced will be (a little) different. 

And yet, the learning algorithms only has this information (n.train = 300) to try to detect the “true” 

boundary line. This is the main issue of the supervised learning process. 

Separating line : X2 - 4*X1 = 0

n=20000
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Figure 2 -  Sample of 300 observations submitted to the supervised learning algorithms 

Note: The value of using artificial data is that we control the conditions of the experiment fully. For 

instance, we know very well that our dataset goes against the assumptions underlying the 

discriminant analysis or naive Bayesian (conditional normality). The nature of the results should not 

surprise us, these methods will be disavantaged. On the other hand, the magnitude of the 

differences will be interesting to study, especially in terms of the number of instances and the 

number of irrelevant descriptors. In addition, we can modify the level of noise. Because we know the 

underlying concept to learn, we know in advance the best error rate that we can get. 

3 Comparison of linear classifiers 

We evaluate various learning algorithms in this section. The outline is always the same: we learn the 

model on the training set (n.train = 300 instances) (Figure 2); we measure the error rate on a second 

sample (which serves as test set, n.test = 20,000 instances) (Figure 1); we compare the inferred 

boundary with the theoretical separation line. 

We use the following R source code to measure the error rate and visualize the boundary: 

#function for computing error rate  

#plotting the data points and the separation line 

#data.test is the test set, data.test$y the target attribute 

#pred is the prediction of the classifier to evaluate 

#the function displays the confusion matrix and returns the error rate 

error.rate.plot <- function(data.test,pred){ 

   #displaying the data points according to their class membership 

   plot(data.test$x1,data.test$x2,pch=21,bg=c("red","blue")[unclass(pred)]) 

 #the boundary is a straight line 

 abline(0,4,col="green",lwd=5) 

   #confusion matrix and error rate 

n=300
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   mc <- table(data.test$y,pred) 

   print(mc) 

   err.rate <- 1-sum(diag(mc))/sum(mc) 

   return(err.rate) 

} 

3.1 Theoretical model 

First, to evaluate the baseline configuration, we calculated the error rate of the theoretical model 

using the following instructions: 

#theoretical prediction 

pred.thq <- factor(ifelse(test.data$x2-4*test.data$x1>0,1,2)) 

print(error.rate.plot(test.data,pred.thq)) 

The test error rate is 5.19%, close to the theoretical error (5%). The measured test error rate will be 

all the more accurate as we increase the size of the test sample. 

 

The theoretical boundary (green) is perfectly reproduced. In red, we have the prediction of the 

negative instances, in blue the positive instances (Figure 3). 

 

Figure 3 - Prediction of the theoretical model on the test set 

3.2 Naive bayes classifier 

The naïve bayes classifier is based on two assumptions about the conditional distribution of the 

descriptors over the class attribute Y: the conditional independence of the descriptors i.e. the 
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descriptors are independents conditionally to the values of Y; each descriptor follows a Gaussian 

distribution for a given value of Y.   

These two assumptions are not really observed on our dataset. The conditional densities show that 

the Gaussian nature of the distributions is not really credible (Figure 4)1. 

 

Figure 4 - Distributions of X1 and X2 conditionally to Y 

Let us see what happens when we learn and test the naive bayes algorithm on our dataset. 

#load the e1071 package that we must install before 

library(e1071) 

#learning process – training set 

model.nb <- naiveBayes(y ~ ., data = train.data) 

print(model.nb) 

#function for prediction on the test set 

prediction.nb <- function(model,test.data){ 

  return(predict(model,newdata=test.data)) 

} 

#plotting the boundary, measuring the test error rate 

print(error.rate.plot(test.data,prediction.nb(model.nb,test.data))) 

R displays the conditional average and standard deviation for X1 and X2. 

The test error rate is 10.23%. We are far from the theoretical error rate (5%). 

                                                           
1 We use the following R code to obtain these graphs: 

library(lattice) 

densityplot(test.data$x1,groups=test.data$y) 

densityplot(test.data$x2,groups=test.data$y) 

x1

x2
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Indeed, the inferred boundary is shifted compared with the optimal separating line (Figure 5). 

 

Figure 5 – Boundary inferred by naïve bayes classifier (in green the right separating line) 

We can infer from the information provided by R the coefficients of the equation defining the 

separation line. We will see below that Tanagra can provide them directly (it will the same for linear 

discriminant analysis and linear SVM) (section 4). 

3.3 Linear discriminant analysis 

Linear discriminant analysis is also a parametric machine learning algorithm. It is based on two 

assumptions: the descriptors follow a multivariate gaussian distribution conditionally to the values of 

the target attribute Y; the conditional covariances matrices are the same i.e. the shapes of the class-

conditional point clouds are identical. 

Naive Bayes prediction



Tanagra Tutorial  R.R. 

25 août 2017  Page 8 

A quick glance to the scatter graph above (Figure 1) shows that these assumptions are not satisfied 

on our dataset. We know however that linear discriminant analysis is rather robust. We check if this 

is true on our dataset. 

#load the MASS package 

library(MASS) 

#learning process 

model.lda <- lda(y ~ ., data = train.data) 

print(model.lda) 

#function for prediction on the test set 

prediction.lda <- function(model,test.data){ 

  return(predict(model,newdata=test.data)$class) 

} 

#graph and test error rate 

print(error.rate.plot(test.data,prediction.lda(model.lda,test.data))) 

This is not much better compared to naive bayes classifier. The test error rate is equal to 10.35%,  

 

Alike naive bayes, the boundary is shifted (Figure 6). Essentially because the conditional point clouds 

have not identical size and shape. We find the same characteristic when we display the conditional 

covariance matrices below. They are very different. 

 

Y = neg

Y = pos
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Figure 6 - Boundary inferred by linear discriminant analysis (in green the right separating line) 

3.4 Logistic regression 

Logistic regression is a statistical approach. Its main assumption is the linearity of the logit (log-odds). 

The second characteristic is that the output is considered to have an underlying probability 

distribution belonging to the family of exponential distributions. These include the normal 

distribution underlying the discriminant analysis which can be considered as one particular case 

(Bardos, 2001; page 64). Thus, the logistic regression is based on less restrictive assumptions. 

#logistic regression 

model.glm <- glm(y ~ ., data = train.data, family = binomial) 

print(summary(model.glm)) 

 

#function for logistic regression prediction 

prediction.glm <- function(model,test.data){ 

  return(factor(ifelse(predict(model,newdata=test.data)>0.5,2,1))) 

} 

 

#error rate 

print(error.rate.plot(test.data,prediction.glm(model.glm,test.data))) 

The obtained test error rate is 7.45%, much better than those of naive bayes classifier or discriminant 

analysis. 

LDA prediction
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We are approaching the theoretical separation line (Figure 7). 

 

Figure 7 - Boundary inferred by logistic regression (in green the right separating line) 

3.5 Perceptron (single-layer perceptron) 

The Perceptron is a nonparametric approach. It minimizes a least squares criterion. In the case of a 

single-layer perceptron, we have a linear classifier. 

We install and load the nnet package first under R. 

#single layer perceptron (neural network) 

library(nnet) 

model.nn <- nnet(y ~ ., data = train.data,skip=TRUE,size=0) 

print(summary(model.nn)) 

#function for the prediction 

prediction.nn <- function(model,test.data){ 

https://en.wikipedia.org/wiki/Perceptron
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  return(factor(predict(model,newdata=test.data,type="class"))) 

} 

#graph and error rate 

print(error.rate.plot(test.data,prediction.nn(model.nn,test.data))) 

The test error rate is 8.715%. 

 

We have the same shift than the other previous approaches compared with the optimal separation 

line (Figure 8).  

 

Figure 8 - Boundary inferred by perceptron (in green the right separating line) 

3.6 Support vector machine 

With a linear kernel, the model coming from the support vector machine (SVM) algorithm is a linear 

classifier. Yet, few software provides the explicit equation of the separation line (or the hyperplane in 

higher dimension, p > 2). The procedure svm() from the e1071 package for instance simply provides 

the list of support points. We have no information about the influence of the descriptors, even if we 

can deploy the model on unseen instance with this information. 

https://en.wikipedia.org/wiki/Support_vector_machine
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#linear support vector machine 

library(e1071) 

model.svm <- svm(y ~ ., data = train.data,kernel="linear") 

print(model.svm) 

#function for svm prediction 

prediction.svm <- function(model,test.data){ 

  return(predict(model,newdata=test.data)) 

} 

#graph and error rate 

print(error.rate.plot(test.data,prediction.svm(model.svm,test.data))) 

The test error rate is 7.465%. This is the best model among all the linear methods presented in this 

section. 

 

We are getting closer to the theoretical separation line (Figure 9). 

 

Figure 9 - Boundary inferred by linear SVM (in green the right separating line) 

The e1071 package offers an excellent tool for visualizing the regions associated to the classes, and 

therefore the separation line. It also identifies the support points related to the classifier. 
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#plotting data points “o” and support points “x” 

plot(model.svm,data=train.data,svSymbol="x",dataSymbol="o") 

The scatter graph is transposed in relation to ours (X2 in abscissa, X1 in ordinate). But the nature of 

the results is quite the same: the regions associated to the classes are linearly delimited. Due to noise 

(noise = 5%), the support points are relatively numerous despite the simplicity of the underlying 

concept (Figure 10). They would be less numerous and located along the separation line if the data 

were not noisy. 

 

Figure 10 - SVM: regions associated to classes, data points (“o”) and support points (“x”) 

3.7 Behavior of some nonlinear approaches 

We know that the frontier separating the classes is linear because it has been intentionally 

generated. In real studies, we do not have that information. We would therefore have to test 

different learning algorithms before choosing the model adapted to the problem to be handled. A 

priori, we said in introduction, nonlinear models with a more efficient representation system would 

be better. But, in addition to the difficulties of interpreting the results, we are faced with the greater 

variability of these techniques because they are often more complex. We need more observations to 

combat overfitting. This is often not possible in practice. We cannot define the learning set size. 

In this section, we study the behavior of some nonlinear approaches. We analyze their performance 

and the shape of the inferred boundary. 

3.7.1 Decision tree – CART 

A decision tree is a nonlinear classifier. It divides the feature space into axis-parallel rectangles. When 

we split a node using a descriptor during the learning process, we define an axis-parallel separation 

line. The combination of these separations provides a nonlinear classifier.  We use the rpart() 

https://en.wikipedia.org/wiki/Decision_tree_learning
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procedure coming from the rpart package which implements an approach very similar to the famous 

CART algorithm (Breiman and al., 1984). 

#decision tree learning 

library(rpart) 

model.tree <- rpart(y ~ ., data = train.data) 

print(model.tree) 

pred.tree <- predict(model.tree,newdata=test.data,type="class") 

print(error.rate.plot(test.data,pred.tree)) 

The decision tree uses successively and repeatedly the variables x1 and x2 for the splitting processes. 

 

The test error rate is 8.475%. Although the estimated decision boundary appears visually rather 

rough (Figure 11), it is aligned to the separation line. Ultimately, the performances are quite 

comparable to those of the linear methods. 

 

Figure 11 - Boundary inferred by decision tree (in green the right separating line) 

The approximation depends on the number of the leaves of trees, which itself is dependent on the 

size of the learning sample. If it (the learning sample) is infinite size (impossible in practice), the 

separation is perfectly reproduced. In fact, the performance of trees, more than any other method, 

depends heavily on the availability of observations. 

X1 < 0.1527

X2 < 0.404

X2 < 0.6219

X1 < 0.2079
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3.7.2 Random Forest  

The Random Forest (Breiman & Cutler, 2000) is an ensemble learning method. The idea is to make 

cooperate an ensemble of decision trees learned from various version of the learning set. The 

decision tree learning algorithm is also modified to improve the diversity of the trees. One of the 

main consequences of the approach is that it transcends the constraint of tree representation, to the 

point of being able to approach the linear boundary directly (because each individual tree is very 

deep, with a low representation bias), with the same learning sample of 300 observations. 

We install and load the rf package before using the randomForest() procedure. 

#random forest 

library(randomForest) 

model.rf <- randomForest(y ~ ., data = train.data) 

print(model.rf) 

pred.rf <- factor(predict(model.rf,newdata=test.data,type="response")) 

print(error.rate.plot(test.data,pred.rf)) 

The test error rate is 6.96%. This is the best classifier of our comparative study. 

 

The classifier is not linear by nature. It is nevertheless able to produce a good approximation of the 

theoretical decision boundary (Figure 12). 

 

Figure 12 - Boundary inferred by random forest (in green the right separation line) 

This is impressive. Especially since, in relation to the characteristics of random forest, we are placed 

in extreme conditions: the number of instances is low, producing sufficiently dissimilar bootstrap 

https://en.wikipedia.org/wiki/Random_forest
http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm
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samples is difficult; we only have the two relevant variables in the dataset (no other descriptors), 

producing sufficiently diversified trees in these conditions is not obvious. 

3.7.3 K-Nearest Neighbors 

K-Nearest Neighbors is not constrained by a representation system. The parameter “k” (the number 

of neighbors to account in the prediction of the labels of unseen instance) influence the behavior of 

the classifier. If we increase “k”, we reduce the variance of the approach but increase the bias. On 

the other hand, if we decrease “k”, we can represent complex concept, but overdependence to the 

learning sample may occur (overfitting). In our experiment, we try “k = 1” and “k = 5”. 

The knn() procedure is available into the class package. There is not a learning process strictly 

speaking. We deploy directly the “model” on the test set. First, we evaluate the approach with k = 1 

neighbors used for the classification of the instances. 

#nearest neighbor 

library(class) 

#k = 1 

print(error.rate.plot(test.data,knn(train.data[,2:3],test.data[,2:3],train.data$y,k=1))) 

The test error rate is 10.84%. Performances seem acceptable compared to some linear techniques. 

 

Indeed, the separation line seems to be more or less accurately reproduced (Figure 13). 

 

Figure 13 – Regions of assignment inferred by the 1-NN (in green the right separation line) 

But we also note that some mislabelled observations have defined areas of erroneous influence on 

both sides of the theoretical separation line (Figure 13). Of course, these areas would not have 

existed if we have data without noise on labels. 

These areas disappear when we set k = 5, improving the error rate (7.55%). 

https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
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But there are still areas of bad decision along the border line (Figure 14). 

 

Figure 14 - Regions of assignment inferred by the 5-NN (in green the right separation line) 

3.8 Summary of the results 

In this section, we make a recap of the results. Of course, we must be cautious about the following 

table, it comes from the result of an experiment on only one dataset. But maybe we can draw some 

tendencies however. 

Approach Test error rate (%) 

Theoretical model 5.19 

Linear methods 

Naïve bayes 10.23 

Discriminant analysis 10.35 

Logistic regression 7.45 

Perceptron 8.71 

Linear SVM 7.46 

Nonlinear methods 

Decision tree 8.48 

Random Forest 6.96 

1-NN 10.84 

5-NN 7.55 

Finally, apart from the 3 wrong approaches, because based on assumptions that are not adapted to 

our dataset (naïve bayes, linear discriminant analysis) or because based on bad values of the 

parameters (1-NN), the methods seem have similar behavior. Except that, and this is a very 

important element, linear classifiers offer explicit models that can be easily interpreted (the 
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coefficients of the linear combination) and deployed. Aside from the decision trees, these tasks are 

not easy for the random forest or the nearest neighbors. 

4 Processing with Tanagra 

While linear classifiers are produced, R (about the packages used) does not provide the coefficient of 

the separation line for certain methods, notably concerning naive bayes (section Erreur ! Source du 

renvoi introuvable.) and linear SVM (section 3.6). In this section, we use Tanagra to reproduce the 

calculations on the same learning sample. The interest is that Tanagra provides the explicit equation 

when it produces a linear model. We will be able to compare the obtained coefficients. 

4.1 Data importation 

From R, we export the learning set with the write.table() command (text file with tabulation-

separated values). 

write.table(train.data,file="training_set.txt",sep="\t",dec=".",quote=F,row.names=F) 

After launching Tanagra, we create a new diagram (File/New menu) and we import the data file. 

 

4.2 Naive bayes 

We specify the role of the variables with the DEFINE STATUS component that we add into the 

diagram. Y is the target attribute, (X1, X2) are the input ones. 
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Then, we add the NAIVE BAYES CONTINUOUS tool (SPV LEARNING tab). We click on the VIEW 

contextual menu. 

 

From the two classification functions, we can deduce the equation which defines the separation line. 
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Separating

Descriptors pos neg pos-neg Line

Intercept -3.6958 -4.5534 0.8575 -0.4448

x1 7.7570 2.7226 5.0344 -2.6115

x2 6.1027 8.0305 -1.9278 1.0000

Classification functions

 

Here is the corresponding equation: 

Naïve bayes: X2 – 2.6115 * X1 = 0.4448 

Knowing that the true (theoretical) equation of the boundary is: 

Theoretical boundary: X2 – 4.0 * X1 = 0 

4.3 The other approaches 

We have done the same for the other linear approaches. Here is the processing diagram under 

Tanagra (Figure 15) : 

 

Figure 15 – Processing diagram under Tanagra – Results of Linear Discriminant Analysis 

All methods, which can detect the influence of the variables, have highlighted the relevance of X1 

and X2 (naive bayes, linear discriminant analysis, logistic regression). 
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Figure 16 – Tanagra - Results of the SVM component (Linear kernel) 

About SVM (Figure 16), we used our implementation (SVM) because it provides the coefficients of 

the linear model. The C-SVC component from the librairy LIBSVM does not do it. We have 

standardized the variables for SVM. 

4.4 Overview – Comparing the coefficients of the separation line 

In this section, we analyze the equations provided by the various approaches by comparing them 

with the theoretical frontier. 

Approach Equation of the frontier 

Theoretical frontier X2 - 4.0000 * X1 = 0.0000 

1 – Naïve Bayes X2 - 2.6115 * X1 = 0.4448 

2 – Linear Discriminant Analysis X2 - 2.4083 * X1 = 0.4384 

3 – Logistic Regression X2 - 2.9525 * X1 = 0.2901 

4 – Perceptron X2 - 2.9468 * X1 = 0.2024 

5 – Linear SVM (SVM component – Tanagra) X2 - 2.9231 * X1 = 0.2294 

All boundaries are shifted to the left of the theoretical frontier. This positioning is the consequence 

of the approach we used to add noise to the labels. But the differences are not the same. We can 

draw the inferred separation line by the various approaches into a graph. In this way, we can analyze 

the divergences and the resemblances between the approaches (Figure 17).  

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Figure 17 – Separation lines inferred by the various approaches (in green the right separation line) 

5 Processing with other data mining tools 

Various data mining tools provide linear classifiers. Some of them incorporate variants (e.g. kernel 

estimation for naive bayes, original display of the results with the “nomograms” for Orange, etc.). In 

this section, we create a processing diagram for these tools, diagram which is like the one defined 

under Tanagra. We use Knime, Orange, RapidMiner  and Weka. 

We summarize below the characteristics of the methods implemented in these data mining tools2.

                                                           
2 The French version of this tutorial was written in May 2013. The versions of the softwares used correspond to that 

available at this period. 

https://www.knime.com/
https://orange.biolab.si/
https://rapidminer.com/products/studio/
http://www.cs.waikato.ac.nz/ml/weka/
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Approach Knime 2.6.4 (Figure 18) Orange 2.6.1 (Figure 19)3 RapidMiner 5.2.008 (Figure 20) Weka 3.7.4 (Figure 21) 

Naive bayes Gaussian assumption. Outputs: 
conditional average and standard 
deviation of the descriptors. 

Kernel estimation of the conditional 
probabilities. Description of the 
influence of the variables using the 
“nomogram”. 

Gaussian assumption. Outputs: 
conditional average and standard 
deviation of the descriptors. 

Kernel estimation of the conditional 

probabilities or discretization of the 

variables on-the-fly. Outputs: 

conditional average and standard of 

the descriptors. 

Linear 
discriminant 
analysis 

- - 

Display only the distribution of the 
classes (???). 

- 

Logistic 
regression 

Display the coefficients of the regression 
equation, including the tests for 
significance. 

X2 – 2.9524 * X1 = 0.2901 

Possibility of variable selection 
(stepwise approaches). Description of 
the influence of the variables with the 
“nomogram”. 

Based on the myKLR4 implementation 
and not on the usual “Fisher scoring”. 
Display the coefficients of the 
equation. 

X2 – 2.9606 * X1 = 0.2319 

Based on the BFGS implementation. 

Provide the coefficients but not the 

tests for significance. 

X2 – 2.9524 * X1 = 0.2901 

Perceptron  For a single-layer perceptron, we must 
set only one neuron into the hidden 
layer. The standard display includes only 
the decreasing of the error. The weights 
are available into the PMML output. 

X2 – 4.0106 * X1 = 0.0617 

- 

The single layer is available. The 
output includes the weights of the 
linear equation.  

X2 – 13 * X1 = 0 (???) 

0 neuron into the hidden layer to 

obtain the single-layer perceptron. 

X2 – 3.9886 * X1 = 0.0219 

Linear SVM Set a polynom with a degree 1 to obtain 
a linear SVM. Display the supports points 
for each class. 

Based on the LIBSVM library. The 
supports points are visualized into a 
table or a graph (limited to a two-
dimensional representation space). 

Based on LIBSVM. It provides both 
the support points and the 
coefficients of the hyperplane for the 
linear kernel. 

X2 – 2.5144 * X1 = 0.1315 

It provides the coefficients of the 
hyperplane when we set a linear 
kernel. 

X2 – 2.8646 * X1 = 1.3680 

Most of the results are consistent. There are still some disparities for some software/methods. The failure of the calculations can be the result of a poorly controlled setup. I 
tried to set the same parameters from one software to another, when the comparison was possible. I have systematically disabled the normalization/standardization of 
variables since X1 and X2 are defined on the same scale (0, 1).

                                                           
3 Online documentation: http://orange.biolab.si/docs/latest/widgets/rst/ 

4 http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYKLR/index.html.en 

http://orange.biolab.si/docs/latest/widgets/rst/
http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYKLR/index.html.en
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Figure 18 – Linear classifiers under Knime 

 

Figure 19 - Linear classifiers under Orange 
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Figure 20 - Linear classifiers under RapidMiner 

 

Figure 21 - Linear classifiers under Weka 
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6 Experiment 1 – Size of the learning sample “n” 

In this section, we study the influence of the training set size of the behavior of the various linear 

approaches. To do this, we increase gradually the training set size and we measure the error rate on 

the test set. 

It is not reasonable to draw definitive conclusions from the experiment conducted on only one 

dataset. To control results-related variability, we repeat 100 times the experiment for a given 

learning set size “n.train”. On the other hand, we use a large dataset as test set with “n.test” = 

100,000 instances. By using the same test sample throughout the experiments, the performances of 

the models are directly comparable, it is a form of pairing. 

6.1 Program for the experiment 

We combine various values of n.train = (250, 500, 1000, 2000, 3000, 5000) and the 5 linear machine 

learning methods (naive bayes, linear discriminant analysis, logistic regression, perceptron, linear 

svm). We repeat K = 100 times the experiment for each combination. We detail the R program 

below. 

#function for the calculation of the error rate 

#pred is the prediction of a classifier 

error.rate <- function(data.test,pred){ 

  mc <- table(data.test$y,pred) 

  err.rate <- 1-sum(diag(mc))/sum(mc) 

  return(err.rate) 

} 

 

#one experiment for a learning sample of size “n” 

#the function returns the test error rate for each classifier 

experiments <- function(n,test.set){ 

  

  #generation of a learning sample (size n) 

  learning <- generate.data(n,p,noise) 

  print(nrow(learning)) 

   

  #preparation of the vector gathering the results 

  #5 learning algorithms to evaluate 

  result <- numeric(5) 

   

  #naive bayes classifier 

  model.nb <- naiveBayes(y ~ ., data = learning) 

  result[1] <- error.rate(test.set,prediction.nb(model.nb,test.set))   

   

  #linear discriminant analysis 

  model.lda <- lda(y ~ ., data = learning) 
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  result[2] <- error.rate(test.set,prediction.lda(model.lda,test.set)) 

   

  #logistic regression 

  model.glm <- glm("y ~ .", data = learning, family = binomial) 

  result[3] <- error.rate(test.set,prediction.glm(model.glm,test.set)) 

   

  #single layer perceptron 

  model.nn <- nnet(y ~ ., data = learning,skip=TRUE,size=0) 

  result[4] <- error.rate(test.set,prediction.nn(model.nn,test.set)) 

   

  #linear support vector machine 

  model.svm <- svm(y ~ ., data = learning,kernel="linear") 

  result[5] <- error.rate(test.set,prediction.svm(model.svm,test.set)) 

   

  print(result) 

  return(result)   

} 

 

#various learning set size to evaluate 

size.training <- c(250,500,1000,2000,3000,5000) 

 

#generation of the unique test set 

#used during the whole experiment 

set.seed(25032003) 

other.data.test <- generate.data(100000,p,noise) 

 

#load the package needed for the learning algorithms 

library(MASS) 

library(e1071) 

library(nnet) 

 

#experiment for a given learning set size: “size.learning”  

one.expe.session <- function(size.learning){ 

  results <- mapply(experiments,size.learning,MoreArgs=list(test.set=other.data.test)) 

  return(results) 

} 

 

#K: number of repetition for each experiment 

K <- 100 

set.seed(05092008) 

all.results <- replicate(K,one.expe.session(size.learning=size.training),simplify="matrix") 

 

#all.results is a table with K = 100 columns 

#and 30 rows (5 learning methods x 6 learning set sizes) 

 

#preparing the results for a new table: 
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#in rows, 5 methods; in columns, 6 learning set sizes 

#the summary measure is the mean of the K = 100 trials 

mean.results <- matrix(0,nrow=5,ncol=length(size.training)) 

colnames(mean.results) <- size.training 

rownames(mean.results) <- c("naive.bayes","lda","log.reg","perceptron","svm.linear") 

for (i in 1:5){ 

  for (j in 1:length(size.training)){ 

    mean.results[i,j] <- mean(all.results[i+(j-1)*5,]) 

  } 

} 

print(mean.results) 

 

 

#the same calculations but using the median as summary measure 

med.results <- mean.results 

for (i in 1:5){ 

  for (j in 1:length(size.training)){ 

    med.results[i,j] <- median(all.results[i+(j-1)*5,]) 

  } 

} 

print(med.results) 

The calculations are slow. We really need to do several tests to calibrate the experiment, to make 

sure that the results are generated correctly, and that they are collected adequately. 

6.2 Discussion of the results 

Here are the curves of the error according to the learning sample size. 
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Figure 22 – Mean of the error rate according to learning sample size 
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At a first glance, if we use the mean as summary indicator (Figure 22): 

1. Clearly, the methods based on too restrictive assumptions are not relevant (naive bayes, linear 

discriminant analysis and, in a lesser extent, the logistic regression). 

2. SVM and Perceptron are therefore the best on our data, quite similarly. 
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Figure 23 - Median of the error rate according to the learning sample size 

But some additional conclusions are also of interest: 

3. Linear SVM seems to have a catastrophic behavior on small learning samples (n.train  ≤ 500) 

(Figure 22). In fact, the computational library has failed on a large proportion of these samples. 

The curve is quite different – for SVM – when we use the median as summary measure (Figure 

23). This kind of problems sometimes happens in experiments. It is necessary to check, re-check, 

and still check the results before thinking about publishing them.  

4. The test error rate decreases when the learning sample size increases. Fortunately. The contrary 

would have been counterintuitive. But, from “n.train = 2000”, the improvement is insignificant. I 

think, it is due to the simplicity of the concept to learn (linear frontier with only two descriptors). 

5. However, none of the methods converge on optimal performance (5%), even with a large 

learning sample. This is the consequence of the noise added to the labels. When we generate 

data without noise, all methods, except naive bayes and linear discriminant analysis which are 

constrained by their restrictive assumptions, find the theoretical frontier. 

7 Experiment 2 – Number of descriptors “p” 

In this section, we set “n.train = 500”, and we check the influence of the number of descriptors on 

the quality of the inferred classifiers. We know that only (X1, X2) are relevant. The additional 

descriptors are thus irrelevant. They may be considered as another kind of noise added to the data. 
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7.1 Program of the experiment 

We combine the values of “p” [p = (2, 5, 10, 25, 50, 70) – knowing that (p-2) are irrelevant] and the 5 

learning algorithms. We repeat each combination K = 100 times. We detail below the program for R. 

It has strong similarities to the source code in the previous section. 

#Experiment: influence of the number of descriptors p 

#learning sample size = 500 

experiments.dimension <- function(p,test.set){ 

   

  #learning set 

  learning <- generate.data(500,p,noise) 

   

  #vector containing the results 

  result <- numeric(5) 

   

  #naive bayes classifier 

  model.nb <- naiveBayes(y ~ ., data = learning) 

  result[1] <- error.rate(test.set,prediction.nb(model.nb,test.set))   

   

  #linear discriminant analysis 

  model.lda <- lda(y ~ ., data = learning) 

  result[2] <- error.rate(test.set,prediction.lda(model.lda,test.set)) 

   

  #logistic regression 

  model.glm <- glm("y ~ .", data = learning, family = binomial) 

  result[3] <- error.rate(test.set,prediction.glm(model.glm,test.set)) 

   

  #single layer perceptron 

  model.nn <- nnet(y ~ ., data = learning,skip=TRUE,size=0) 

  result[4] <- error.rate(test.set,prediction.nn(model.nn,test.set)) 

   

  #linear support vector machine 

  model.svm <- svm(y ~ ., data = learning,kernel="linear") 

  result[5] <- error.rate(test.set,prediction.svm(model.svm,test.set)) 

   

  print(result) 

  return(result)   

} 

 

#generate the test samples with 

#n.test = 100000 instances and p = 100 descriptors 

set.seed(25032003) 

second.data.test <- generate.data(100000,100,noise) 
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#print 

print(colnames(second.data.test)) 

print(table(second.data.test$y)) 

 

#various dimension size 

size.p <- c(2,5,10,25,50,70) 

 

#one experiment for various dimensionality 

one.expe.dimension <- function(size.dimension){ 

     results <- mapply(experiments.dimension,size.dimension,MoreArgs=list(test.set=second.data.test)) 

  return(results) 

} 

 

#repeat K times the experiments 

K <- 100 

set.seed(21102011) 

all.results <- replicate(K,one.expe.dimension(size.dimension=size.p),simplify="matrix") 

 

#summary measure: mean 

mean.results <- matrix(0,nrow=5,ncol=length(size.p)) 

colnames(mean.results) <- size.p 

rownames(mean.results) <- c("naive.bayes","lda","log.reg","perceptron","svm.linear") 

 

for (i in 1:5){ 

  for (j in 1:length(size.p)){ 

    mean.results[i,j] <- mean(all.results[i+(j-1)*5,]) 

  } 

} 

print(mean.results) 

 

#summary measure: median 

med.results <- mean.results 

for (i in 1:5){ 

  for (j in 1:length(size.p)){ 

    med.results[i,j] <- median(all.results[i+(j-1)*5,]) 

  } 

} 

print(med.results) 

The test sample “second.data.test” is generated with 100,000 instances and 100 descriptors. It is 

operable for the various values of descriptors we try p = (2, 5, 10, 25, 50, 70). 
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The test sample has 16.25% of negative instances, and 83.75% of positive ones. That is an important 

information. It means that the error rate of the default classifier (predicting systematically the most 

frequent class) is 16.25%. We will see that some classifiers do not fare better when we increase the 

number of irrelevant descriptors. 

7.2 Discussion of the results 
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Figure 24 - Median of the error rate according to the number of descriptors 

We present the median of error rates for K = 100 trials (Figure 24). We can make several comments: 

1. The curse of dimensionality is not a myth. All the approaches fails when we add in a high 

proportion the irrelevant variables. 

2. But not in the same way however. For instance, the Perceptron and SVM, which are the best 

when we use only the two relevant descriptors, evolve differently. Clearly, SVM resists better to 

the addition of noisy variables than the perceptron. This last one is close to the default classifier 

in the worst case. 

3. The good surprise is that the discriminant analysis and the naive bayes, previously dominated, 

are rather robust towards the dimensionality (knowing that we are far from the optimal error 

anyway). But is this really a surprise? A restrictive search bias becomes beneficial when we 

present erratic datasets to the learning process. 

4. The Naive Bayes stands out because the number of parameters to be estimated is very low 

(conditional mean and standard deviations of descriptors simply). It even surpasses the SVM 

when the representation space is extremely noisy (for our dataset). 

5. The logistic regression is really disturbed when the dimension increases. It is not better than the 

default classifier when “p = 70” (68 descriptors are irrelevant). 

All this shows above all that the variable selection is an essential aspect of supervised learning, 

both for the interpretation of models and for their predictive qualities, including on an easy to 
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learn concept that we used to generate the data in this tutorial (linear separator in a two-

dimensional representation space). 

8 Conclusion 

Our initial goal was to show and compare the behavior of the most popular linear classifiers. We 

have first detailed the working of the methods by describing the boundaries induced on an artificial 

data set (sections 3 et 4). There is no doubt that linear methods subdivide the area of representation 

into regions by using straight lines (or hyperplane if we are in higher than 2-dimensions 

representation spaces). We have also seen that some techniques, because of their underlying 

assumptions, are struggling to infer the right solutions when they are placed in situations that 

disadvantage them. 

In a second step, to give better viability to the results, we expand experiments, by trying to analyze 

the impacts of the learning sample size and dimensionality on the quality of the results. The value of 

using artificial data is that we fully control the evaluation process. We know the characteristics of the 

data generated which can explain the nature of the obtained results. Among our main results, we 

observe that some methods are more robust than the others when they are placed in a difficult 

context. 

Finally, as a prospective, we could explore the influence of the level and the kind of noise on the 

behavior of the learning algorithms. To achieve this, only few changes are needed to adapt the 

program accompanying this tutorial. 
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