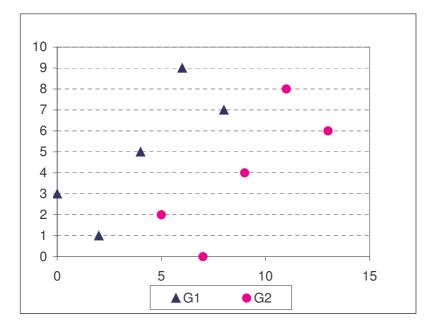
Subject

In this tutorial, we show how to use the ONE WAY MANOVA component (Multivariate Analysis of Variance). We will see that a multivariate test and a combination of univariate tests give a different conclusion.

Dataset


The dataset TOMASSONE_P_29.XLS¹ contains 10 examples with 2 dependent variables (X1, X2) divided into two groups (G1, G2). We want to test

$$\begin{cases} H0: \mu_{g1} = \mu_{g2} \\ H1: \mu_{g1} \neq \mu_{g2} \end{cases}$$

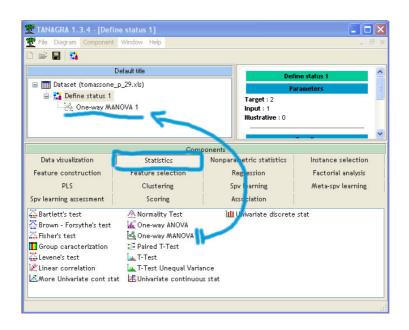
 $\mu_{gk} = \begin{pmatrix} \mu_{gk,x1} \\ \mu_{gk,x2} \end{pmatrix}$ is the vector of means of the group Gk.

This is a multivariate generalization of the one-way analysis of variance; we treat two or more dependent variables.

We see below a graphical representation of the dataset.

¹ R. Tomassone, M. Danzart, J. Daudin, J. Masson, « Discrimination et Classement », Masson, 1988, page 29.

MANOVA


Download the dataset

We build a new diagram and import the dataset.

TANAGRA 1.3.4						_ 🗆 🛛
File Diagram Window Help						
Choose your dataset and start down	load					
Diagram title :						
Default title						
Data mining diagram file name :						
D:\DataMining\Databases_for_mi	ning\dataset_for_s	oft_dev_and_compa				
Dataset (*.txt,*.arff,*.xls) :		^				
D:\DataMining\Databases_for_mi	ning\dataset_for_s	oft_dev_and_compaj	2)			
	6					
	Tanagra					? 🗙
	Regarder dans :	🚞 manova		3 Ø	• 🖽 🥙	
	Mes documents récents	Tomassone_p_29.x	s			
	Direau Bureau					
Data visualization St						
Feature construction Featur PLS Clu						
Spy learning assessment Si	mos documenta					
중 Bartlett's test 중 Leve 중 Brown - Forsythe's test 经Line						
Fisher's test		2				
🚻 Group caracterization 🛛 🖄 Norr	S	Nom du fichier :	tomassone_p_29.xls		~	Ouvrir
<u></u>	Favoris réseau	Fichiers de type :	Excel File (97 & 2000)		~	Annuler

MANOVA

First of all, we insert a DEFINE STATUS component in the diagram and set (X1, X2) as TARGET, GROUP as INPUT. Next, we insert the ONE WAY MANOVA component.

WILKS' Lambda is the traditional test, the smaller the lambda, the greater the difference between vectors of means. We use two transformation of lambda in order to check the

MANOVA

significance of the difference: BARTLETT transformation uses a CHI-2 distribution; RAO transformation follows a FISHER distribution, it is more accurate.

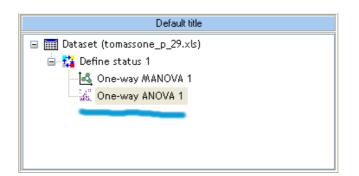
In our dataset, with a significance level of 0.01, the measured difference on the sample does not seem due to chance².

One-way MANOVA 1							
Parameters							
Resutts							
Descriptive stat. (Mean)				Tests results			
Group	G1	G2	ALL	Stat	Value	p-value	
Group Size	5	5	10	Wilks' Lambda	0.25308	-	
X1	4.0000	9.0000	6.5000	Bartlett C(2)	9.61847	0.00815	
X2	5.0000	4.0000	4.5000	Rao F(2, 7)	10.32986	0.00815	

This test assumes that the variances in the different groups are identical. But, it is often not necessary to test this hypothesis because (1) the MANOVA is quite robust and (2) the usual BOX-M test used for testing the homogeneity of variances is not at all robust when the dataset is not normally distributed³.

Combination of univariate ANOVA

The transformation of the MANOVA test in a combination of univariate test seems attractive, especially because it enables to simplify the computation.


$$\begin{cases} H0: \mu_{g1,xj} = \mu_{g2,xj} \\ H1: \mu_{g1,xj} \neq \mu_{g2,xj} \end{cases}, \ j = 1, \dots, J$$

We reject the whole null hypothesis if one the test, at least, rejects their null hypothesis. We see below that this approach can lead to a misleading result because we do not take into account the covariance between the dependant variables.

We insert the ONE-WAY ANOVA in the diagram. TANAGRA performs a univariate ANOVA on each dependant variables.

² The two tests have the same p-value; it is an artifact here.

³ The BOX-M test is a multivariate generalization of the Bartlett's test for equality of variance.

For a significance level of 0.01, we see that the difference between means is not significance on each dependant variable, with this approach we will conclude wrongly that the vectors of means are not significantly different.

			R	esults						
Attribute_Y	Attribute_X	Description				Statistical test				
X1 0	Group	Value	Examples	Average	Std-dev	Variance decomposition				
		G1	5	4.0000	3,1623	Source	Sum of square	d.f.		
		G2	5	9.0000	3,1623	BSS	62,5000	1		
		AU	10	6,5000	3,9791	WSS	80.0000	8		
						TSS	142,5000	9		
						Significance level				
						Statistics	Value	Proba		
						Fisher's F	6.250000	0.036942		
X2	Group	Value	Examples	Average	Std-dev	Variance decomposition				
		G1	5	5.0000	3,1623	Source	Sum of square	d.f.		
		G2	5	4.0000	3,1623	BSS	2,5000	1		
		AU	10	4,5000	3.0277	WSS	80.0000	8		
						TSS	82,5000	9		
							Significance level			
						Statistics	Value	Proba		
						Fisher's F	0.250000	0.630536		