
Tutoriel Tanagra

22/02/2015 1/15

1 Topic

MapReduce with R using the « rmr2 » package.

Big Data1 is a very popular topic these last years2. The big data analytics refers to the process
to discovering useful information or knowledge from big data. That is an important issue for
organizations3. In concrete terms, the aim is to extend, adapt or even create novel exploratory
data analysis or data mining approaches to new data sources of which the main characteristics
are “volume”, “variety” and “velocity”.

Distributed computing is essential in the big data context. It is illusory to want infinitely increase
the power of servers for following the exponential growth of information to process. The solution
depends on the efficient cooperation of a myriad of networked computers, ensuring both the
volume management and computing power. Hadoop is a solution commonly cited for this
requirement. This is a set of algorithms (an open-source software framework written in Java) for
distributed storage and distributed processing of very large data sets (Big Data) on computer
clusters built from commodity hardware4. For the implementation of distributed programs, the
MapReduce programming model plays an important role5. The processing of large dataset can
be implemented with parallel algorithms on a cluster of connected computers (nodes).

In this tutorial, we are interested in MapReduce programming in R. We use the technology
RHadoop6 of the Revolution Analytics Company. The "rmr2" package in particular allows to
learn the MapReduce programming without having to install the Hadoop environment which is
already sufficiently complicated. There are some tutorials about this subject on the web. The one
of Hugh Devlin (January 2014) is undoubtedly one of the most interesting7. But, it is perhaps
more sophisticated for the students which are not very familiar with the programming in R. So I

1 http://en.wikipedia.org/wiki/Big_data
2 http://www.google.fr/trends/explore#q=big%20data
3 http://www.sas.com/en_us/insights/analytics/big-data-analytics.html
4 http://en.wikipedia.org/wiki/Apache_Hadoop
5 http://en.wikipedia.org/wiki/MapReduce
6 http://blog.revolutionanalytics.com/2011/09/mapreduce-hadoop-r.html
7 https://github.com/RevolutionAnalytics/rmr2/blob/master/docs/tutorial.md

http://en.wikipedia.org/wiki/Big_data
http://www.google.fr/trends/explore#q=big%20data
http://www.sas.com/en_us/insights/analytics/big-data-analytics.html
http://en.wikipedia.org/wiki/Apache_Hadoop
http://en.wikipedia.org/wiki/MapReduce
http://blog.revolutionanalytics.com/2011/09/mapreduce-hadoop-r.html
https://github.com/RevolutionAnalytics/rmr2/blob/master/docs/tutorial.md

Tutoriel Tanagra

22/02/2015 2/15

decided to start afresh with very simple examples in a first time. Then, in a second time, we
progress by programming a simple data mining algorithm such as the multiple linear regression.

2 Installing the package « rmr2 »

A tutorial described the steps for Windows8. It seems that the package works only under 64 bit
system. I have installed first the package "functional". Then, I download the "rmr2" file from
GitHub (rmr2_3.3.1.zip). I installed manually the package by using the command "Install
package from ZIP file" of R. I use 64 bit - Windows 7 and R 3.1.2.

We then execute the following commands to prepare the ground.

#load the package rmr2

library(rmr2)

#in order to work without the Hadoop environment

rmr.options(backend="local")

The second command gives us the opportunity to practice the MapReduce programming without
having to install the Hadoop environment.

8 http://tuxette.nathalievilla.org/?p=1455&lang=en#win

http://tuxette.nathalievilla.org/?p=1455&lang=en#win

Tutoriel Tanagra

22/02/2015 3/15

3 MapReduce – Processing a vector

MapReduce libraries perform a lot of tasks to insure the security and the performance of the
system. But, in the programmer point of view, it is fairly straightforward. The MapReduce
programming consists in decomposing a task in two sub-tasks: map and reduce. In the MAP
step, the node analyzes the problem. It slices it into subproblems and delegates them to other
nodes (which can also make the same recursively). Each subproblem is associated to a key that
allows to identify the part of the treated problem. These subproblems are processed with the
REDUCE procedure. It returns the result that we can identify with a key. The <key, value> pairs
play a very important role in this framework. "Value" can refer to data or to results.

3.1 First program – Counting values

In this section, we handle a vector of integer numbers. We want to distinguish between odd and
even values, send them on 2 different nodes, and perform processing on each of the sub sets.
#vector of integer values

x <- c(2,6,67,85,7,9,4,21,78,45)

We have 4 even values and 6 odd values.

MAP. We written the following map() function. It uses the modulo (%%) operator to check if there
is a remainder when dividing by 2. If the remainder is zero, the number is even, the value 1 is
generated as key. The used key is 2 when the number is odd.
#map function

map_valeurs <- function(., v){

 #calculate the key

 cle <- ifelse (v %% 2 == 0, 1, 2)

 #return the key and the value

 return(keyval(cle,v))

}

The MAP function usually takes two inputs: the key and the value to process. In our case, we
use the value to generate the key. The first parameter is therefore ignored.

The input "v" in our case represents a vector to analyze. The variable "cle" (key) generated by
ifelse() is a vector.

The function keyval() returns the key-value pairs i.e. it associates a key to each value of the
input vector v. We obtain the following pair of vectors for our dataset.

Tutoriel Tanagra

22/02/2015 4/15

Cle (key) v

1 2

1 6

2 67

2 85

2 7

2 9

1 4

2 21

1 78

2 45

MAPREDUCE uses these two vectors in order to partition the initial vector in two subsets of
numbers: (2, 6, 4, 78) for the even value, with the key = 1; (67, 85, 7, 9, 21, 45) for the odd
values, with the key = 2.

REDUCE. In the reduce step, the subset are processed on the nodes in the cluster. The
reduce() function is therefore called as many times as there are different values of key.
#reduce function

reduce_valeurs <- function(k, v){

 #length of the vector

 nb <- length(v)

 #return the key and the corresponding value (result)

 return(keyval(k, nb))

}

The key is needed to know what subset is processed. We calculate its length with length(). We
send the result with return() by combining the key and the result of the calculations with the
keyval() function.

MAPREDUCE. Now let us see how to organize all of this using the rmr2 mapreduce() function.
#transform the data in a type recognized by rmr2

x.dfs <- to.dfs(x)

Tutoriel Tanagra

22/02/2015 5/15

#call the mapreduce function of rmr2

calcul <- mapreduce(input = x.dfs, map = map_valeurs, reduce = reduce_valeurs)

#transform the result in a type recognized by R

resultat <- from.dfs(calcul)

#printing

print(resultat)

#class of the result

print(class(resultat))

to.dfs() transforms the dataset in a format recognized by rmr2; from.dfs() performs the inverse
operation i.e. it transforms the rmr2 object in a format recognized by R (a list as we see below).

The mapreduce() function is essential. It takes three parameters here:

 “input” is the dataset to process;
 “map” is the function called to map the data in key-value pairs;
 “reduce” processes the subset of data and returns the result with its key.

At the end of processing, we obtain under R:

“resultat” is a “list” object. It contains two vectors: the key values ($key) {1, 2} and the result for
each key ($val) {4 even numbers, 6 odd numbers}.

We can obtain the keys and the values by using the functions keys() and values():
#keys

print(keys(resultat))

#values: results

print(values(resultat))

Tutoriel Tanagra

22/02/2015 6/15

We have the following output:

3.2 Tracing the execution of MAPREDUCE

In order to track and understand the nature of each step, we add several print() procedure in
the map and the reduce functions.

#map

map_valeurs <- function(., v){

 #print the input vector v

 print("map") ; print(v)

 #key

 cle <- ifelse (v %% 2 == 0, 1, 2)

 #return key and v

 return(keyval(cle,v))

}

#reduce

reduce_valeurs <- function(k, v){

 #print the vector v (subset of the initial vector)

 print("reduce") ; print(k) ; print(v)

 #length of v

 nb <- length(v)

 #return key and result

 return(keyval(k, nb))

}

R displays the following output:

The map() function is called only once. The entire vector is processed. The reduce() function is
called twice : for each key item, we observe the corresponding data subset.

Tutoriel Tanagra

22/02/2015 7/15

4 Processing a data frame

We want to calculate the sum of the squared residuals (SSR) for a one-way analysis of variance
(ANOVA) in this section. The originality here lies in the manipulation and the transmission of a
data frame to nodes. The above procedure is altogether transposable to this new configuration.
This is the data frame now which will be subdivided into several parts.

Data preparation. We create the dataset as follows:
#group membership of the individuals

y <- factor(c(1,1,2,1,2,3,1,2,3,2,1,1,2,3,3))

#values of the response variable

x <- c(0.2,0.65,0.8,0.7,0.85,0.78,1.6,0.7,1.2,1.1,0.4,0.7,0.6,1.7,0.15)

#create a data frame from y and x

don <- data.frame(cbind(y,x))

Here is the “don” data table (data.frame object):

y 1 1 2 1 2 3 1 2 3 2 1 1 2 3 3

x 0.2 0.65 0.8 0.7 0.85 0.78 1.6 0.7 1.2 1.1 0.4 0.7 0.6 1.7 0.15
Again, we must define the map() and the reduce() procedures.

MAP. Y is a categorical variable, it indicates the group membership. We use it directly for
defining the key items.
#map

map_ssq <- function(., v){

 #the column y is the key

 cle <- v$y

 #return key and the entire data frame

 return(keyval(cle,v))

}

This is the data frame object that the function returns with the key using the keyval() function.

REDUCE. The initial data frame is subdivided is subsets defined by Y. We calculate the sum of
squares within each group. “v” is a part the "don" data frame here. We have all the variables
but only a part of the rows.
#reduce - calcul

reduce_ssq <- function(k,v){

 #counting the number of row of the data frame

 n <- nrow(v)

 #calculate the sum of squares using the column ‘x’ of data.frame

 ssq <- (n-1) * var(v$x)

 #return key and result of calculation

Tutoriel Tanagra

22/02/2015 8/15

 return(keyval(k,ssq))

}

“v” is a data frame object, we use nrow() and not length() to obtain the number of rows. We use
the “$” operator to read the column “x”. The function returns the key and a scalar value.

Calculation. We call the mapreduce() procedure of “rmr2”.
#rmr2 format

don.dfs <- to.dfs(don)

#mapreduce

calcul <- mapreduce(input=don.dfs,map=map_ssq,reduce=reduce_ssq)

#retrieve the result

resultat <- from.dfs(calcul)

print(resultat)

We obtain the sum of squares within each group which are identified by the key item.

We calculate the sum to obtain the residual sum of squares.
#SSR

ssr <- sum(resultat$val)

print(ssr)

Nous have SSR = 2.587758.

We get the same result with the AOV procedure of R.

Tracing the execution. We add print() command in the reduce() function, we can see the part
of the dataset used in each node…

Tutoriel Tanagra

22/02/2015 9/15

#reduce

reduce_ssq <- function(k,v){

 #print the subset of the data frame used

 print("reduce") ; print(v)

 #number of row of the data frame

 n <- nrow(v)

 # calculate the sum of squares

 ssq <- (n-1) * var(v$x)

 #return the key and the result (value)

 return(keyval(k,ssq))

}

We note that the function is called three times for the three subsets of the data frame.

5 Linear Least Squares

The linear least squares of Hugh Develin uses only one key value because the dataset is
passed to the mapper in chunks of complete rows9. The map function is called several times.

In this section, we use the map() function to create subsets of dataset. Thus, the map function
is called once, and this is the reduce function which is called several times.

We use K = 2 subsets, but the extension to any number of distinct keys is straightforward.
Starting from the program proposed in this section, we must modify only the map() procedure.
The reduce() function and the consolidation of the results do not need to be modified.

9 https://github.com/RevolutionAnalytics/rmr2/blob/master/docs/tutorial.md

https://github.com/RevolutionAnalytics/rmr2/blob/master/docs/tutorial.md

Tutoriel Tanagra

22/02/2015 10/15

We will also use this example to go further in handling the results from the reduce() function.
Instead of returning a scalar value in the output of the reduce() function, we will output a more
sophisticated structure. We can evaluate the flexibility of the tool in this context.

Dataset. We use the mtcars dataset.
#data(mtcars)

data(mtcars)

print(mtcars)

We want to model the relationship between mpg (dependant variable) and the other variables.

MAP. The map() function randomly subdivides the data frame into two subsets of approximately
equal size (number of rows).
#map

map_lm <- function(., D){

 #generate random values

 alea <- runif(nrow(D))

 #generate the key by comparing the random value with 0.5

 #we can easily modify here in order

 #to subdivide the dataset into K subsets (K >= 2)

 cle <- ifelse(alea < 0.5, 1, 2)

 #return key and values (data frame)

 return(keyval(cle,D))

}

Tutoriel Tanagra

22/02/2015 11/15

Comment 1: The randomness of the subdivision is not required in the context of the regression.
We can select the first n1 instances for the first subset, and the remaining for the second subset
(n2). Whatever the partition strategy used, we must obtain the same estimated model coefficients
at the end of the calculations.

Comment 2: The generalization into K subsets is easy. Thus, the code for reduce() and the
consolidation below work regardless of the number of requested nodes. Only the map()
procedure must be modified.

REDUCE. Let us look a little on the ordinary least squares (OLS) estimation before describing
the reduce() function. The linear model is written as follows:

Y is the target variable. X is the matrix corresponding to the explanatory variables (regressors),
a first column of 1 is combined to the matrix to account for the regression constant; a is the
vector of parameters that we want to estimate;  is the error term which captures all the other
factors, other than the regressors, which influence the target variable.

The OLS (ordinary least squares) estimate [â] of the vector of parameters is obtained with the
following formula:

Where Xt is the transpose of X.

We analyze the entries of the matrices in order to understand the strategy used for the
subdivision of the calculations. For (XtX), at the intersection of Xj and Xm, we have:

Since the terms are additive, we can split the calculations in 2 parts:

We have the same phenomenon for (Xty), at the intersection of Xj and y:

Tutoriel Tanagra

22/02/2015 12/15

We can easily subdivide the calculations into K parts in view of these properties. We write the
reduce() function as follows:

#reduce

reduce_lm <- function(k,D){

 #number of rows of the data frame

 n <- nrow(D)

 #target variable

 y <- D$mpg

 #regressors

 X <- as.matrix(D[,-1])

 #add the constant column 1 to the first column

 X <- cbind(rep(1,n),X)

 #calculate X
t
X

 XtX <- t(X) %*% X

 #calculate X
t
y

 Xty <- t(X) %*% y

 #set the results into a list

 res <- list(XtX = XtX, Xty = Xty)

 #return key and the list

 return(keyval(k,res))

}

The new subtlety is that we use a list to return the two matrices (XtX) and (Xty). We must be
very attentive when we should consolidate the results to form the corresponding global matrices.

Calculations. We use the mapreduce() function to launch the analysis…

#format rmr2

don.dfs <- to.dfs(mtcars)

#mapreduce

calcul <- mapreduce(input=don.dfs,map=map_lm,reduce=reduce_lm)

#récupération

resultat <- from.dfs(calcul)

print(resultat)

Let us see the details of the "resultat" object:

Tutoriel Tanagra

22/02/2015 13/15

Into $key, we have a vector with the following values (1, 1, 2, 2). We note that each key item is
repeated twice because our reduce() function returns two objects in a list [(XtX) and (Xty)].

Into $val, we have a list structure where the matrices (XtX) and (Xty) are followed one another
for each key value.

Thus, to form the global matrix (XtX) [respectively (Xty)], we must sum the objects (the matrices)
at the position (1, 3) [respectively (2, 4)].

Consolidation of the results. The following consolidation program is operational whatever the
number of nodes used (i.e. the number of distinct keys K  1).

Tutoriel Tanagra

22/02/2015 14/15

#consolidation

#X
t
X

MXtX <- matrix(0,nrow=ncol(mtcars),ncol=ncol(mtcars))

for (i in seq(1,length(resultat$val)-1,2)){

 MXtX <- MXtX + resultat$val[[i]]

}

print(MXtX)

#X
t
y

MXty <- matrix(0,nrow=ncol(mtcars),ncol=1)

for (i in seq(2,length(resultat$val),2)){

 MXty <- MXty + resultat$val[[i]]

}

print(MXty)

We obtain the global matrices (XtX) and (Xty) :

Estimation of the parameters of the model. We get the estimated parameters by using the
solve() procedure.
#coefficients de la régression

a.chapeau <- solve(MXtX,MXty)

print(a.chapeau)

The regression coefficients for the “mtcars” dataset are:

Check - The lm() procedure of R. We perform the same regression using the lm() procedure:

Tutoriel Tanagra

22/02/2015 15/15

The results are consistent. This is comforting.

6 Conclusion

Simple examples are used in this tutorial to illustrate the MapReduce programming using the
package "rmr2" under R. The idea is to subdivide the calculations on a group (cluster) of
machines (nodes). Of course, other solutions exist. I had explored the parallelization strategy
using other packages10. Some of these libraries allow to program an algorithm on a networked
computers. We can distribute the calculations on remote machines.

In the treated examples, the map function is used to subdivide the dataset in subsets of data
(vector or data frame). The reduce function performs the calculations on these parts of data. We
consolidate the results subsequently in order to obtain de global result.

10 Tanagra tutorial, « Parallel programming in R », october 2013

http://data-mining-tutorials.blogspot.fr/2013/10/parallel-programming-in-r.html

	1 Topic
	2 Installing the package « rmr2 »
	3 MapReduce – Processing a vector
	3.1 First program – Counting values
	3.2 Tracing the execution of MAPREDUCE

	4 Processing a data frame
	5 Linear Least Squares
	6 Conclusion

