
Didacticiel - Études de cas R.R.

29 octobre 2012 Page 1

1 Topic

Handling missing values during the classification process (when applying the classifier).

The treatment of missing values during the learning process has been received a lot of attention of

researchers. We have published a tutorial about this in the context of logistic regression induction1.

By contrast, the handling of the missing values during the classification process, i.e. when we apply

the classifier on an unlabeled instance, is less studied. However, the problem is important. Indeed,

the model is designed to work only when the instance to label is fully described. If some values are

not available, we cannot directly apply the model. We need a strategy to overcome this difficulty2.

In this tutorial, we are in the supervised learning context. The classifier is a logistic regression model.

All the descriptors are continuous. We want to evaluate on various datasets from the UCI repository

the behavior of two imputations methods: the univariate approach and the multivariate approach.

The constraint is that the imputation models must rely on information from the learning sample. We

consider that this last one does not contain missing values.

We note that the occurrence of the missing value on the instance to classify is "missing completely at

random" in our experiments i.e. each descriptor has the same probability to be missing.

2 Two imputation approaches for the classification process

Let us take a small example to describe our problem. We use the following learning sample for the

induction of the classifier.

age pression cholester maladie

56 134 409 presence

52 152 298 absence

55 160 289 presence

56 132 184 presence

64 140 335 presence

42 130 180 absence

61 130 330 presence

59 140 221 absence

52 128 255 presence

44 120 263 absence

Ec
ha

nt
ill

on
 d

'a
pp

re
nt

is
sa

ge

Logistic regression model. We want to predict the occurrence of disease ("maladie" in French) of

individuals from their various characteristics (age, blood pressure, cholesterol). We obtain the

following classification model using the BINARY LOGISTIC REGRESSION component of Tanagra:

1 http://data-mining-tutorials.blogspot.fr/2012/10/handling-missing-values-in-logistic.html

2 We find a description of the various possible approaches in this paper: Saar-Tsechansky, Provost, “Handling

Missing Values when Applying Classification Models”, JMLR, 8, pp. 1625-1657, 2007.

http://data-mining-tutorials.blogspot.fr/2012/10/handling-missing-values-in-logistic.html
http://jmlr.csail.mit.edu/papers/volume8/saar-tsechansky07a/saar-tsechansky07a.pdf
http://jmlr.csail.mit.edu/papers/volume8/saar-tsechansky07a/saar-tsechansky07a.pdf

Didacticiel - Études de cas R.R.

29 octobre 2012 Page 2

Adjustement quality

Predicted attribute

Positive value

Number of examples

Criterion Intercept Model

AIC 15.46 16.29

SC 15.763 17.5

-2LL 13.46 8.29

Chi-2

d.f.

P(>Chi-2)

McFadden's R²

Cox and Snell's R²

Nagelkerke's R²

Attributes in the equation

Attribute Coef. Std-dev Wald Signif

constant -11.8494 12.1207 0.9557 0.3283

age 0.2933 0.224 1.715 0.1903

pression -0.0542 0.0815 0.4428 0.5058

cholester 0.0152 0.0215 0.5004 0.4793

3

maladie

presence

10

Model Fit Statistics

Model Chi² test (LR)

5.1703

0.1597

R²-like

0.3841

0.4037

0.5458

The overall model is not significant at the 5% level. No variable is statistically significant. This is not

really surprising because we have a very small dataset (10 instances). Nevertheless we keep this

model for the rest of our paper.

Classifying an unlabeled instance. The classifier is the following:

C = -11.8494 + 0.2933 x âge – 0.0542 x pression + 0.0152 x cholestérol

For an instance  that we want to classify, if C() > 0, we predict the presence of the disease,

otherwise we conclude to its absence.

Let us consider an instance with the following characteristics:

age pression cholester maladie

à classer 51 130 305 ???

We apply the classification model and we obtain

C() = -11.8494 + 0.2933 x 51 – 0.0542 x 130 + 0.0152 x 305 = 0.7086

We consider that this is the true value of the logit for this instance since we have all the values of the

predictive variables. We predict the “presence” of the disease (maladie) for this new instance.

The individual is not completely described. Now, we suppose that we have not the age of the

individual. We dispose of the following description.

Didacticiel - Études de cas R.R.

29 octobre 2012 Page 3

age pression cholester maladie

à classer ??? 130 305 ???

How to calculate the value of C() in this context?

2.1 Some bad ideas

One strategy is simply to refuse the classification of the instance. If this attitude is understandable

for a statistician - the conditions of application of the model are not fulfilled - it is less tenable in a

professional context. We must try to assign a label to the individual even if the conditions are not

perfect.

Another approach is simply to ignore the variables with missing value and apply the model only for

the available description. This is a bad strategy. In our case, it means that we assign 0 to the age of

the individual to classify. We get the following result:

C() = -11.8494 – 0.0542 x 130 + 0.0152 x 305 = -14.2521

The classification is bad.

In this tutorial, we evaluate the behavior of two solutions for imputation that are more or less

sophisticated. We do not discuss the statistical characteristics (bias and variance) but rather the

predictive performance. For that, we use an experiment scheme that we detail below (section 3).

2.2 Univariate approach (U1)

This approach is very simplistic. For a variable, we replace the missing value with its average

computed on the learning sample. Thus, we neutralize the variable in the prediction. For our dataset,

we obtain easily the mean for each descriptor.

age pression cholester maladie

56 134 409 presence

52 152 298 absence

55 160 289 presence

56 132 184 presence

64 140 335 presence

42 130 180 absence

61 130 330 presence

59 140 221 absence

52 128 255 presence

44 120 263 absence

Moyennes 54.1 136.6 276.4

Ec
ha

nt
ill

on
 d

'a
pp

re
nt

is
sa

ge

Then we replace the age with 54.1 for the instance that we want to classify:

age pression cholester maladie

à classer 54.1 130 305 ???

When we apply the classifier, we obtain:

C() = -11.8494 + 0.2933 x 54.1 – 0.0542 x 130 + 0.0152 x 305 = 1.6180

We are getting closer to the true value of C (for this example). And the conclusion is consistent with

the one calculated on the full description of the individual.

Didacticiel - Études de cas R.R.

29 octobre 2012 Page 4

When there are several missing values. This solution is operational even when several variables are

missing. We simply replace each missing value by its average calculated on the learning sample.

2.3 Multivariate approach (U2): only one value is missing

The predictive variables are rarely independent from each other. We can use the existing relations to

produce a better imputation value. We use a multiple linear regression as imputation model in this

tutorial. But in fact, we can use any other predictive method (e.g. regression tree, etc.).

Of course, this strategy will be all the more performing that the variables are strongly related i.e.

they are redundant in the model. But this is not really a good new. Indeed, we want to build

parsimonious models. The predictive variables must not be collinear. The goal of the feature

selection process is to remove related variables. This requirement makes the multivariate imputation

of missing values less effective as we will see in the experimentation. I have not really an answer to

this dilemma. This remains an open question.

We take again the individual that we want to classify above:

age pression cholester maladie

à classer ??? 130 305 ???

To get a value for age, we have previously built a regression model which explains the age from the

other predictive variables using the learning sample. Here are the parameters of the model:

Age = 0.0404 x cholestérol + 0.1482 x pression + 22.6974

Thus, the imputed value for age is:

Age() = 0.0404 x 305 + 0.1482 x 130 + 22.6974 = 54.3

Thereafter, we use this value for the calculation of the logit of the logistic regression model:

C() = -11.8494 + 0.2933 x 54.3 – 0.0542 x 130 + 0.0152 x 305 = 1.6697

Like for the univariate imputation, the logit is different to the true value. But we predict also the

presence of the disease.

Measuring the redundancy of the descriptors in a dataset. We are a little bit disappointed in our

example. The multivariate imputation proposes a value (54.3) which is very similar to the simple

average (54.1). It is far to the observed value of age (51). The other variables cannot be used to

predict the value of age in the imputation process.

To measure the relation between the descriptors, we use the correlation matrix. Indeed, the

correlations are not strong between the pairs of variables.

age pression cholesterol

age 1 0.3299 0.4620

pression 0.3299 1 0.1839

cholesterol 0.4620 0.1839 1

déterminant 0.7000

Didacticiel - Études de cas R.R.

29 octobre 2012 Page 5

To measure the overall relation between the variable, we calculate the determinant D of the

correlation matrix. If the variables are highly redundant: D  0; if they are uncorrelated: D  1.

In our dataset, we have D = 0.7. The variables are weakly related. We use this indicator D to measure

the degree of redundancy of the variables in our experiments.

2.4 Multivariate imputation (U2): several values are missing

When several values are missing e.g. age and cholesterol are missing, we cannot use directly the

regression model to impute the value of a variable from the other descriptors of the database.

In this tutorial, we use a very simplistic approach. When we want to impute the value of a variable

from a regression model, if some values are missing, we replace them by their average computed on

the learning set.

Let us consider the following individual, only the value of pressure is available.

age pression cholester maladie

à classer ??? 130 ??? ???

When we want to impute “age”, we use the linear regression model:

Age = 0.0404 x cholesterol + 0.1482 x pression + 22.6974

But the value of cholesterol is not available. We replace it by the mean calculated on the learning set

i.e. 276.4. Thus, the imputed value for age is:

Age () = 0.0404 x 276.4 + 0.1482 x 130 + 22.6974 = 53.1

For “cholesterol”, we have the regression model:

Cholesterol = 0.2125 x pression + 4.6343 x age - 3.3389

Here, we replace the age by its mean (54.1). Thus, the imputed value for cholesterol is:

Cholestérol () = 0.2125 x 130 + 4.6343 x 54.1 - 3.3389= 275.0

The description used for the classification process is then:

age pression cholester maladie

à classer 53.1 130 275.0 ???

We obtain the computed logit for the instance that we want to classify,

C () = -11.8494 + 0.2933 x 53.1 – 0.0542 x 130 + 0.0152 x 275.0 = 0.8740

We predict the presence of disease.

Note. We note that the univariate imputation by mean is a special case of the imputation by

regression. Indeed, the best prediction of the variable with a constant is the mean of the variable.

Didacticiel - Études de cas R.R.

29 octobre 2012 Page 6

3 Experimental comparison

3.1 Organization of the experiment

To evaluate the efficiency of the two approaches, we use several datasets from the UCI repository:

Pima Indian Diabetes3, Breast Cancer Wisconsin4, and a binary version of Waveform5. The missing

values have been imputed arbitrarily in order to not interfere with our experiment.

We perform the following sequence of treatments under the R software:

1. We load the database.

2. We subdivide the dataset into train and test samples according to a certain proportion

(PROPORTION_TRAIN).

3. We learn the classifier parameters on the learning sample. We obtain the model (LOG.REG) that

we use to classify unlabeled instances.

4. We apply LOG.REG on the test sample. We obtain the reference (base) test error rate (ERR.REF).

We should not obtain a lower error rate than this value because we use a test sample without

missing values at this step.

5. For each instance of the test sample, we insert “k” missing values. The concerned variables are

randomly chosen for each instance.

6. We apply the classifier on this new test sample using the univariate imputation strategy (U1). We

obtain a new value of test error rate (ERR.U1).

7. We apply the classifier on this test sample using the multivariate imputation strategy (U2). We

obtain ERR.U2.

The steps 5 to 7 are repeated N = 200 times. We compute the mean to obtain a reliable estimation of

the error rate for each value of k.

We have tried different value of “k” (k = 1, ..., M = 7) to detect the threshold from which we cannot

apply the classifier to predict the class of an instance with missing values. As we see below, we

observe in our experiments that ERR.U1 and ERR.U2 are more and more increased (the classification

process is less efficient) when "k" increases. This is not surprising. But the evolution of ERR.U1 and

ERR.U2 are not the same according to the redundancy of the predictive variables.

3.2 The main results of the experiments

Breast Cancer Wisconsin. The dataset contains 699 instances and 9 predictors. We subdivide it in

equal parts (PROPORTION_TRAIN = 0.5). We learn the following model on the learning sample:

3 http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes

4 http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Original%29

5 http://archive.ics.uci.edu/ml/datasets/Waveform+Database+Generator+%28Version+2%29

http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Original%29
http://archive.ics.uci.edu/ml/datasets/Waveform+Database+Generator+%28Version+2%29

Didacticiel - Études de cas R.R.

29 octobre 2012 Page 7

The base error rate obtained on the test sample without missing values is ERR.REF = 0.042857.

It seems that the predictors are highly redundant. Indeed, the determinant of the correlation matrix

is very low D = 0.000699.

Figure 1 - BREAST: Error rate vs. number of missing features for each instance to classify

Obviously, the imputation enables to overcome the presence of missing values in classification

process. But it is less and less effective as their number “k” increases (Figure 1). This is not surprising.

We observe also that the multivariate approach (U2 – in blue) is far better than the univariate one

(U1 – in black) for the high value of "k". Because the predictors are redundant, the imputation which

relies on the information provided by the other variables is better.

Pima Indian Diabete. It contains 768 instances and 8 predictors. We set PROPORTION_TRAIN to 0.5.

The learned model is:

0 1 2 3 4 5 6 7

0
.0

4
0

.0
8

0
.1

2
0

.1
6

#Missing values

E
rr

o
r

ra
te

Didacticiel - Études de cas R.R.

29 octobre 2012 Page 8

The base test error rate is ERR.REF = 0.2421875. We observe that the predictors are weakly

redundant (less than Breast Cancer anyway) with D = 0.257740.

 Figure 2 - PIMA: Test error rate vs. the number of missing features for each instance to classify

Here also the classification error increases when the number of missing features increases for the

instance to classify. But, unlike the Breast dataset, because the redundancy between the predictors is

weak, the two approaches U2 (multivariate approach, in blue) and U1 (black) have similar behavior.

We cannot use the other variables for an efficient imputation of the value of the predictors.

Waveform (2 classes). This is a binary variant of the WAVEFORM dataset. There are 33367 instances

and 21 predictors. We use a small part of the dataset for the learning process (PROPORTION_TRAIN =

0.01). Because the size of the test sample is high, we obtain a really reliable estimation of the error

rate here. We decrease the number of repetition of the experiment (N = 20).

0 1 2 3 4 5 6 7

0
.2

4
0

.2
6

0
.2

8
0

.3
0

0
.3

2
0

.3
4

#Missing values

E
rr

o
r

ra
te

Didacticiel - Études de cas R.R.

29 octobre 2012 Page 9

The base error rate is ERR.REF = 0.08797. The predictors are highly redundant (D = 0.000038755).

Because of this redundancy, the results are similar to those of the Breast dataset. The behavior of the

two approaches becomes very different when we increase the number of missing features for each

instance (Figure 3).

Figure 3 - WAVEFORM: Test error rate vs. the number of missing features for each instance to classify

We observe some interesting facts in the results of our experiment:

 These imputation techniques (U2 and U1) enable to overcome the missing feature problem when

we apply the classification model on an unlabeled instance.

0 1 2 3 4 5 6 7

0
.0

9
0

.1
0

0
.1

1
0

.1
2

0
.1

3
0

.1
4

#Missing values

E
rr

o
r

ra
te

Didacticiel - Études de cas R.R.

29 octobre 2012 Page 10

 But their efficiency decreases when the number of missing features increases.

 The multivariate approach, which uses the other variables, is better than the univariate one

when the predictors are redundant. By contrast, the two methods have similar performances

when the predictors are weakly correlated.

Anyway, these methods U1 and U2 at least have the merit to propose a practical solution for the

missing feature problem during the prediction process.

4 Details of the program for the experiment

4.1 Conditions of use

The program that we describe in this section can be used if we fulfill the following requirements:

1. We have a binary class attribute.

2. The class attribute name must be “classe”.

3. All the predictors are continuous.

4. There are no missing values.

Then, the program enables to conduct the experiment described in this tutorial.

4.2 Settings

NOM_FICHIER enables to set the data file name. PROPORTION_TRAIN is the proportion of the

dataset which is dedicated to the learning phase. M is the maximal number of missing features for

each instance to classify. N is the number of repetition of each experiment to obtain a reliable value

of the test error rate of each value “k” of missing features.

For instance, we set the following characteristics for the BREAST.TXT data file.

#data file name

NOM_FICHIER <- "breast.txt"

#proportion of the instances used for the learning phase

PROPORTION_TRAIN <- 0.50

#maximum number of missing features

M <- 7

#number of repetition for each experiment

N <- 200

4.3 Main steps of the program

4.3.1 Data partition, model learning phase, base error rate

We load the dataset. We subdivide it in train and test samples. We learn the model on the first one.

Then we apply it on the second one (test sample without missing values) to obtain the base test error

rate.

#set the working directory

setwd("...")

#load the data file

donnees.all <- read.table(file=NOM_FICHIER,sep="\t",header=T,dec=".")

#set the random number seed

Didacticiel - Études de cas R.R.

29 octobre 2012 Page 11

set.seed(100)

#partitioning the data into train (donnees$train) and test (donnees$test) samples

donnees <- partition(donnees.all,prc=PROPORTION_TRAIN)

#construction of the model on the learning sample (donnees$train)

modele.glm <- glm(classe ~ ., data = donnees$train,family=binomial)

#calculation of the error rate on the test sample(donnees$test)

err.ref <- pred_and_confusion_matrix(donnees$test,modele.glm)

print(paste("Erreur sur observations completes =",as.character(err.ref)))

Two functions are written for this process: « partition » is used for the subdivision of the dataset.

#partitioning the dataset into train and test samples

#default proportion (train = 70%, test = 30 %)

partition <- function(donnees,prc=0.7){

 #samples size

 n <- nrow(donnees)

 n.train <- trunc(n*prc)

 n.test <- n - n.train

 #index

 alea <- runif(n)

 index <- rank(alea,ties.method="random")

 #subdivision

 donnees.train <- subset(donnees,subset=(index <= n.train))

 donnees.test <- subset(donnees,subset=(index > n.train))

 #return

 return(list(train=donnees.train,test=donnees.test))

}

« pred_and_confusion_matrix » enables to apply the model on the test set to obtain the prediction

column. We derive the confusion matrix and the test error rate.

#calculation of the confusion matrix from a model

#new.dataset is the test set

#model.glm is the prediction model

pred_and_confusion_matrix <- function(new.dataset,model.glm){

 #predicted probabilities for each new instance

 data.pred.prob <- predict(model.glm,newdata = new.dataset)

 #class assignment

 data.pred.class <- ifelse(data.pred.prob > 0.5,"B","A")

 data.pred.class <- as.factor(data.pred.class)

 #confusion matrix (observed values vs. predicted values)

 mc <- table(new.dataset$classe,data.pred.class)

 #error rate

 err.rate <- 1.0 - (mc[1,1]+mc[2,2])/sum(mc)

 return(err.rate)

}

Note: This function fails if the model assigns the same value for all the instances. The dimension of

the confusion matrix is different. The calculation of the error rate is not possible with our program.

Didacticiel - Études de cas R.R.

29 octobre 2012 Page 12

4.3.2 Correlation matrix and the D criterion

All the predictors are numeric. We can compute the correlation matrix and its determinant D.

#predictive columns

donnees.train.numeric <- subset(donnees$train,select = -classe)

#correlation matrix and its determinant

d <- det(cor(donnees.train.numeric))

print(paste("Determinant matrice de correlation =",as.character(d)))

4.3.3 Imputation model

The U1 strategy is really simplistic: the imputation model is the mean of the variables computed on

the learning sample. For the U2 approach, we must implement the multiple linear regression of each

variable on the others.

#calculation of the mean of each variable

donnees.numeric.mean <- sapply(donnees.train.numeric,mean)

#multiple linear regression for each predictor

modeles.replace.by.reg <- lapply(donnees.train.numeric,modele.replace.by.reg.for.lapply,donnees.train.numeric)

I have tried two solutions for the U2 strategy. The first one is based on a loop which adds each

imputation model in a list.

#construction of the list of imputation model

#based on a multiple linear regression

modele.replace.by.regression <- function(donnees){

 modele.replace <- list()

 for (j in 1:ncol(donnees)){

 formule <- paste(names(donnees)[j]," ~ .",sep="")

 modele.replace[[j]] <- lm(as.formula(formule),data=donnees)

 }

 names(modele.replace) <- names(donnees)

 return(modele.replace)

}

The second one uses the useful lapply() R function6 with is more efficient if we deal with a large

database (large number of predictors). It calls a call back function which implements the regression.

The main (only) difficulty here is to obtain the variable number of the target into the regression7.

#call back function for lapply()

#regression of x on the other variables

modele.replace.by.reg.for.lapply <- function(x,donnees){

 #obtaining the number of x into donnees

 numero <- as.numeric(gsub("\\D","", deparse(substitute(x)), perl=T))

 #regression of x on the other variables

 modele <- lm(x ~ ., data = subset(donnees,select = -numero))

 return(modele)

}

6 http://www.ats.ucla.edu/STAT/r/library/advanced_function_r.htm

7 http://forums.cirad.fr/logiciel-R/viewtopic.php?p=15851&sid=60c7e747fa7c9778c915ed91443a6615

http://www.ats.ucla.edu/STAT/r/library/advanced_function_r.htm
http://forums.cirad.fr/logiciel-R/viewtopic.php?p=15851&sid=60c7e747fa7c9778c915ed91443a6615

Didacticiel - Études de cas R.R.

29 octobre 2012 Page 13

The solution is more elegant and we will use it intensely in the imputation procedures developed

subsequently.

4.3.4 The main loop of the experiment

We can start the experiments by varying the number of missing values for each individual to classify.

For each value of "k", we repeat N times the experiment. The results are stacked into the 2-columns

matrix "resultats".

#**

#launch the experiment

#k is the number of missing features for each instance to classify

#k = 1,..., M

#Repeat N times each experiment

#**

#the results are stored into resultats

resultats <- c()

#experiments (>> k << missing features for each instance)

for (k in 1:M){

 erreurs <- replicate(N,experiments(donnees$test,modele.glm,k))

 moyennes <- apply(erreurs,1,mean)

 resultats <- rbind(resultats,moyennes)

}

#add the result for the test set without missing values

resultats <- rbind(c(err.ref,err.ref),resultats)

rownames(resultats) <- 0:M

print(resultats)

#plotting

plot(0:M,resultats[,1],type="b",col="black",xlim=c(0,M),ylim=c(min(resultat

s),max(resultats)),xlab="#Missing values",ylab="Error rate")

points(0:M,resultats[,2],type="b",col="blue")

For each experiment session, we make the following steps: insert the missing values in each row of

the test set; make the imputation with the first strategy U1; calculate the test error rate e1 on the

test set with imputed values; make the imputation with the second strategy U2; calculate the test

error rate e2.

#one experiment

experiments <- function(donnees.test, modele.glm, k){

 #retrieve all the columns unless the class attribute

 donnees.numeric <- subset(donnees.test,select= -classe)

 #insert the missing values

 donnees.na <- insert.na.data.frame(donnees.numeric,k)

 #replace NA by means

 donnees.test.mean <- as.data.frame(lapply(donnees.na,replace.by.mean.one,donnees.numeric.mean))

 donnees.for.test <- cbind(donnees.test.mean,donnees.test$classe)

 names(donnees.for.test) <- names(donnees.test)

Didacticiel - Études de cas R.R.

29 octobre 2012 Page 14

 e1 <- pred_and_confusion_matrix(donnees.for.test,modele.glm)

 #replace NA by regression models

donnees.test.reg <- as.data.frame(lapply(donnees.na,replace.by.reg.one,modeles.replace.by.reg,donnees.test.mean))

 donnees.for.test <- cbind(donnees.test.reg,donnees.test$classe)

 names(donnees.for.test) <- names(donnees.test)

 e2 <- pred_and_confusion_matrix(donnees.for.test,modele.glm)

 #return the error rates

 return(c(e1,e2))

}

4.3.5 Inserting the missing values into each row of the test set

The treatment is done row by row. We transform the data.frame in a matrix then we call the apply()

function.

#insert randomly k NA in each row of the data.frame

#we consider that all the columns are numeric

insert.na.data.frame <- function(donnees,k){

 #transform the data.frame in a matrix

 #all the columns must be numeric!!!

 matrice <- as.matrix(donnees)

 #apply the modification for each row

 new.matrice <- apply(matrice,1,insert.na.row,k)

 #transposition of the matrix

 new.matrice <- t(new.matrice)

 #transformation in a data.frame

 new.donnees <- as.data.frame(new.matrice)

 return(new.donnees)

}

We use insert.na.row(.) to insert k missing values in each row. The insertion is made randomly for

each row. Thus, different columns are concerned for the various rows of the dataset.

#inserting k NA randomly in a row

insert.na.row <- function(ligne,k){

 #number of column in the row

 J <- length(ligne)

 #number of the columns to modify

 index <- rank(runif(J))[1:k]

 #inserting the value NA

 y <- ligne

 y[index] <- NA

 return(y)

}

Didacticiel - Études de cas R.R.

29 octobre 2012 Page 15

4.3.6 Univariate imputation

The function searches the number of the variable and then retrieves the corresponding mean into

the “means” parameter (vector of the means for all the variables) of the function.

#replace the NA by the mean of the variable

replace.by.mean.one <- function(x, means){

 numero <- as.numeric(gsub("\\D","", deparse(substitute(x)), perl=T))

 y <- ifelse(is.na(x)==T, means[numero],x)

 return(y)

}

4.3.7 Multivariate imputation by regression

For the multivariate imputation, we need to the list of the imputation models and the means of all

the variables (required if we have more than one missing values - see section 2.4).

#replace NA using a regression model

replace.by.reg.one <- function(x, modeles, donnees.mean){

numero <- as.numeric(gsub("\\D","", deparse(substitute(x)), perl=T))

pred <-predict(modeles[[numero]],newdata=subset(donnees.mean,select=-numero))

 y <- ifelse(is.na(x) == T,pred,x)

 return(y)

}

Here also we need the number of the variable to obtain the right model for the imputation.

5 Conclusion

In this tutorial, we studied the behavior of two imputation techniques when deploying a classification

model on partially described individuals (some variables are missing). Their first merit is they are

operational solutions. We note that the multivariate strategy, based on the regression, is more

efficient than the univariate one when variables are correlated. Otherwise, when the predictors are

weakly correlated, the two approaches give similar results.

However, experiments show that these solutions are reliable only if, for each individual to classify,

the number of missing values remains relatively low compared with the overall number of variables.

