Subject

In this tutorial, we show how to implement a multinomial logistic regression with TANAGRA.

Logistic regression is a technique for making predictions when the dependent variable is a dichotomy, and the independent variables are continuous and/or discrete. The technique can be modified to handle dependent variable with several (K > 2) levels.

When the responses categories are unordered, we have the multinomial logistic regression. Roughly speaking, we compute the logit function for each (K-1) categories related to a reference group [http://www.stat.psu.edu/~jglenn/stat504/08_multilog/01_multilog_intro.htm].

Dataset

We want to explain the brand, for some commodity, chosen by consumers starting from their age and their sex. The dataset is available on line¹. We can see the results obtained with other software such as R on the same dataset [http://www.ats.ucla.edu/STAT/R/dae/mlogit.htm].

Multinomial logistic regression with TANAGRA

Accessing the data and creating a new diagram

After starting TANAGRA, we create a new diagram by activating the FILE/NEW menu. In the dialog box, we choose the data file BRAND_MULTINOMIAL_DATASET.XLS and then we specify the name of the diagram. For XLS files, the importation functions properly if the folder is not being edited further, and that the data are located in the first sheet.

¹ <u>http://eric.univ-lyon2.fr/~ricco/tanagra/fichiers/brand_multinomial_dataset.xls</u>

The data is loaded. We check that 3 variables and 735 records have been imported.

🖗 🖪 👫 🔪							
	Default title			TOTROOF	mornation		
🛄 Dataset (brand_mult	tinomial_logit_dataset.xls)		Number o	f sheets	1		
			Selected	sheet b	rand_multinomial_logit		
			Sheet size	ð	736 × 3		
			Dataset s	ize	736 × 3		
			I)atasourc	e processing		
			Computat	ion time:	78 ms		
			Allocated	memory	10 KB		
			Datas	at dos	cription		
			Datas	et des			
			3 attribute	e(s)			
			735 exam	pte(s)	6		
			Attribute	Category	/ Informations		
			brand	Discrete	3 values		
			female	Continue	-		
			age	Continue	-		
			Cr	omponent	\$		
Data visualization	Statistics	Nonparame	tric statis	stics	Instance selection	Feature construction	
Feature selection	Regression	Factorial analysis		; (i	PLS	Clustering	
Spv learning	Meta-spv learning	Spv learnin	pv learning assessment		Scoring	Association	
Correlation scatterplot	🦉 Scatterplot with lab	el					
woort datacot	💹 View dataset						
cxpore dataset							

Defining the role of the variables

In the next step, we define the role of the variables. BRAND is the TARGET attribute; FEMALE and AGE are the INPUT ones.

Multinomial logistic regression

We add the MULTINOMIAL LOGISTIC REGRESSION component (SPV LEARNING tab) into the diagram.

By default, TANAGRA uses the last encountered value of the dependent variable as the reference group. If you want to modify the choice, the simplest way is to sort adequately the dataset.

We obtain the following results (VIEW menu).

Confusion matrix (classification matrix)

The confusion matrix compares the observed value and the predicted value of the dependent variable.

Classifier performances							
	Error	rate			0.4476	5	
٧a	lues pre	ediction	Confusion matrix				
∀alue	Recall	1-Precision		_1	_2	_3	Sum
_1	0.2802	0.3256	_1	58	136	13	207
_2	0.7752	0.4989	_2	18	238	51	307
_3	0.4977	0.3678	_3	10	101	110	221
			Sum	86	475	174	735

Some ratio can be computed e.g. error rate or accuracy rate. An interesting ratio is the adjusted count pseudo r-square which corrects the accuracy rate with the most frequent value of the dependent variable (cf. <u>http://www.ats.ucla.edu/stat/mult_pkg/faq/general/Psuedo_RSquareds.htm</u>).

For our example, we obtain the following "adjusted count r-square"

$$R_{AC}^{2} = \frac{\#correct - \max_{k}(n_{k})}{n - \max_{k}(n_{k})}$$
$$= \frac{(58 + 238 + 110) - 307}{735 - 307} = \frac{99}{428} = 0.231$$

If our classifier is no more competitive as the default classifier (predict with the most frequent value of the dependent variable), we obtain 0; for a perfect prediction, we obtain 1.

Adjustment quality

The next section compares the initial model, predict with the constant only, and our model, using the likelihood ratio principle. Other pseudo R-square indicators are available. Other indicators such as AIC or SC (BIC) statistics make a trade-off between the deviance and the complexity (number of parameters) of the model. SC is the most rigorous indicator. It shows that our model seems really relevant (SC of the initial model = 1604.991; SC of the model = 1445.541).

The likelihood ratio test (LR) reaches to the same conclusion. The whole model is significant.

Adjustement quality						
Predicted attribute		brand				
Ref. value		_3				
Number of examples		735				
Mode	Model Fit Statistics					
Criterion	Intercept	Model				
AIC	1595.792	1417.941				
sc	1604.991	1445.541				
-2LL	1591.792	1405.941				
Model	I Chi² test (LR)					
Chi-2		185.8502				
d.f.		4				
P(>Chi-2)		0.0000				
R²-like						
McFadden's R ²		0.1168				
Cox and Snell's R ²		0.2234				
Nagelkerke's R²		0.2524				

Logit coefficients

Attributes in the equation								
Class.Value		_1				_2		
Pred.Att.	Coef.	Std.Err	Wald	p-value	Coef.	Std.Err	Wald	p-value
constant	22.721397	-	-	-	10.946741	-	-	-
female	-0.465941	0.2261	4.247	0.0393	0.057873	0.1964	0.08681	0.7683
age	-0.685908	0.06263	120	0.0000	-0.317702	0.04401	52.12	0.0000

The « $_3$ » value is the reference group. We have 2 (i.e. K – 1) equations:

•
$$\ln\left[\frac{P(Y=_1/X)}{P(Y=_3/X)}\right] = 22.721 - 0.466 \times female - 0.686 \times age$$

•
$$\ln\left[\frac{P(Y=2/X)}{P(Y=3/X)}\right] = 10.947 + 0.058 \times female - 0.318 \times age$$

The Wald test is used to test the significance of each coefficient, for each equation. The Wald statistic is the square of the ratio between the coefficient and its standard error. It follows a CHI-SQUARE distribution with 1 degree of freedom.

We show below the results obtained with the VGAM package for the R software.

```
library(VGAM)
mlogit<- vglm(brand~female+age, family=multinomial(), na.action=na.pass)</pre>
summary (mlogit)
Call:
vglm(formula = brand ~ female + age, family = multinomial(),
   na.action = na.pass)
Pearson Residuals:
                      Min
                                1Q Median
                                                 3Q
                                                       Max
log(mu[,1]/mu[,3]) -5.5632 -0.44331 -0.32370 0.55468 7.7720
log(mu[,2]/mu[,3]) -4.7219 -0.68004 -0.44685 0.97285 1.7861
Coefficients:
                 Value Std. Error
                                   t value
(Intercept):1 22.721396 2.058016 11.04043
                        1.493160
(Intercept):2 10.946741
                                    7.33126
female:1
             -0.465941
                         0.226089 -2.06087
                        0.196427
female:2
              0.057873
                                    0.29463
             -0.685908 0.062626 -10.95243
age:1
age:2
             -0.317702 0.044007 -7.21939
Number of linear predictors: 2
Names of linear predictors: log(mu[,1]/mu[,3]), log(mu[,2]/mu[,3])
Dispersion Parameter for multinomial family: 1
Residual Deviance: 1405.941 on 1464 degrees of freedom
Log-likelihood: -702.9707 on 1464 degrees of freedom
Number of Iterations: 5
```

Global evaluation of variables

In the previous step, we can evaluate the relevance of each variable into each equation. Now, we try to evaluate the global relevance of each variable i.e. the coefficient of the variable is it equal to 0 into all the equations?

Overall Effect						
Attribute	d.f.	Chi-2 Wald	p-value			
female	2	7.670	0.0216			
age	2	123.388	0.0000			

This test relies also on a Wald statistic. We see here that all variables are relevant for a 5% significance level.

Conclusion

In this tutorial, we show how to implement and read the results of the multinomial logistic regression with TANAGRA.

For more details about the method and the underlying computations, we recommend the following reference http://www.stat.psu.edu/~jglenn/stat504/08_multilog/01_multilog_intro.htm