1 Theme

Regression model deployment using Tanagra.

Model deployment is one of the main objectives of the data mining process. We want to apply a model learned on a training set on unseen cases i.e. any people coming from the population. In the classification framework, the aim is to assign to the instance its class value from their description (e.g. <u>http://data-mining-tutorials.blogspot.com/2008/11/apply-classifier-on-new-dataset.html</u>). In the clustering framework, we try to detect the group which is as similar as possible to the instance according their characteristics (e.g. <u>http://data-mining-tutorials.blogspot.com/2008/12/k-means-classification-of-new-instance.html</u>).

We are concerned about the regression framework here¹. The aim is to predict the values of the dependent variable for unseen instances (or unlabeled instances) from the observed values on the independent variables. The process is rather basic if we handle a linear regression model. We apply the computed parameters on the unseen instances. But, it becomes difficult when we want to treat more complex models such as support vector regression with nonlinear kernels, or the models elaborated from a combination of techniques (e.g. regression from the factors of a principal component analysis). In this context, it is essential that the deployment process is directly ensured by the data mining tool.

With Tanagra, it is possible to easily deploy the regression models, even when they are the result of a combination of technique. Simply, we must prepare the data file in a particular way. In this tutorial, we describe below how to organize the data file in order to deploy various models in an unified framework: a linear regression model, a PLS regression model, a support vector regression model with a RBF (radial basis function) kernel, a regression tree model , a regression model from the factors of a principal component analysis. Then, we export the results (the predicted values for the dependent variable) in a new data file. Last, we check if the predicted values are similar according to the various models.

2 Organizing the data file

We use the HOUSING dataset (<u>http://archive.ics.uci.edu/ml/datasets/Housing</u>). We want to predict the values of PRICE from the house characteristics (criminality, pollution, etc.). We have 400 instances (the training sample) for the construction of the models. Then, we want to apply them to 160 unseen instances i.e. the instances for which we have only the values of the independent variables.

A natural way to organize the dataset is to put the training sample in the first rows of the data file. Then, we set the 106 unlabeled cases in the following rows. But, because Tanagra does not handle missing values, this data file will be truncated during the importation process. These unseen instances are not imported. Therefore, we cannot apply the models to these instances. And yet, this is our main goal.

¹ <u>http://data-mining-tutorials.blogspot.com/search/label/Regression%20analysis</u>

0		(" -) = ha	ousing.xls [Mo	de de compatib	ilité] - Microso	ft Excel		
	Accueil Ir	nsertio Mise en	Formule Do	nnée Révisior	Affichac Déve	lop Compléi	Acrobat 🙆	_ 🗆 X
	Sipina *							
	Tanagra *							
Com	nmandes de me	nu						
	N401	• ()	<i>f</i> _x 17	.2				×
	1	J	К	L	М	N	0	-
1	RAD	TAX	PTRATIO	В	LSTAT	PRICE		
394	4	305	19.2	383.73	6.72	24.2	2	
395	24	666	20.2	396.9	21.08	10.9	9	
396	24	666	20.2	396.9	13.44	15	5	
397	8	307	17.4	378.95	3.95	48.3	3	
398	8	284	19.7	395.58	9.5	25	5	
399	8	307	17.4	391.7	9.71	26.7	7	
400	3	247	18.5	395.15	8.44	22.2	2	
401	24	666	20.2	314.64	26.4	17.2	2	
402	4	277	18.6	393.25	17.27			
403	24	666	20.2	391.98	17.12			
404	8	307	17.4	387.38	3.13		•	
405	24	666	20.2	127.36	26.64			
406	3	352	18.8	385.64	10.53			
407	4	334	22	376.04	5.57			-
14 4	hou hou	ising prediction	-preparation	housing pr	redic 4			
Pret						100 % (-)	V	

So that Tanagra can handle the data correctly, we need to change the organization of the data file. First, we add the SAMPLE column. It specifies the status of observations: "learning" corresponds to the learning set; "prediction" corresponds to the unseen instants. Second, we set a default value for the dependent variable. The value o (zero) is entirely appropriate for that. The aim is to circumvent the missing value problem.

C	1 - 1 -	(°" -) =	housing.xls [M	ode de compa	tibilité] - Micro	osoft Ex		x
	Accueil In	sertic Mise er	Formul Donne	é Révisio Aff	icha Déveloj	Complé Acroba	0	X
	Sipina *							
	Tanagra *							
Con	nmandes de mer	nu						
	0401	- ()	<i>f</i> _x lea	irning		<i>[</i> 2] \		×
	J	К	L	М	N		Р	-
1	ТАХ	PTRATIO	В	LSTAT	PRICE	SAMPLE		
396	666	20.2	396.9	13.44	15	learning		
397	307	17.4	378.95	3.95	48.3	learning		
398	284	19.7	395.58	9.5	25	learning		
399	307	17.4	391.7	9.71	26.7	learning		
400	247	18.5	395.15	8.44	22.2	learning		
401	666	20.2	314.64	26.4	17.2	learning		
402	277	18.6	393.25	17.27	0	prediction		
403	666	20.2	391.98	17.12	0	prediction		
404	307	17.4	387.38	3.13	(2) 0	prediction		
405	666	20.2	127.36	26.64	<u> </u>	prediction		
406	352	18.8	385.64	10.53	0	prediction		
407	22 <u>4</u>	22 na prediction	376 04	5 57	n el 4	prediction		•
Prêt	: 2	ing production	proparation		100	% 🕞	0 (÷:

Thus, we can import the dataset into Tanagra.

3 Regression model deployment

3.1 Importing the data file

We load it into the Excel spreadsheet (we can also use OpenOffice or LibreOffice²). Then, using the Tanagra.xla add-in, we send the dataset to Tanagra (*see <u>http://data-mining-</u>tutorials.blogspot.com/2010/08/tanagra-add-in-for-office-2007-and.html for Excel 2007 and 2010; <u>http://data-mining-tutorials.blogspot.com/2008/10/excel-file-handling-using-add-in.html</u> for up to Excel 2003 version).*

All the instances (400 + 106 = 506) are now available into Tanagra.

TANAGRA 1.4.38 - [Datase	et (tan1F72.txt)]		
Tile Diagram Compo	nent Window Help		_ & ×
D 📽 🖬 🎎			
Analysi	2	Computation time 0 ms	*
Dataset (tan1F72.txt	t)	Allocated memory 57 KB	
		Dataset description	E
		506 example(s)	
		CRIM Continue -	
		ZN Continue -	-
		Components	
Data visualization	Statistics	Nonparametric statistics	Instance selection
Feature construction	Feature selection	Regression	Factorial analysis
PLS	Clustering	Spv learning	Meta-spv learning
Spv learning assessment	Scoring	Association	
Correlation scatterplot	🛃 Scatterplot	👯 View dataset	
Export dataset	🖉 Scatterplot with I	abel 🤃 View multiple scatterpl	ot
	-		

² http://data-mining-tutorials.blogspot.com/2011/07/tanagra-add-on-for-openoffice-calc-33.html

We insert the DISCRETE SELECT EXAMPLES component (INSTANCE SELECTION tab) component into the diagram. It allows to specify the training sample i.e. the instances used for the construction of the regression model. The selection attribute is the SAMPLE column. LEARNING allows to specify the training sample.

Now, 400 instances are used for the learning phase.

The remaining rows are not used during learning. However, and this is the secret of the process, when the component applies the model on the data, it does on all the rows, including the unselected observations. We take advantage to this property to get predictions on the unlabeled instances.

3.3 Construction of the models

3.3.1 Linear regression

We insert the DEFINE STATUS into the diagram in order to define the role of the variables into the learning process: PRICE is the TARGET attribute; the others are the INPUT ones. The SAMPLE column is no longer used at this step.

Then, we add the MULTIPLE LINEAR REGRESSION component (REGRESSION tab). We click on the VIEW menu to obtain the regression results.

TANAGRA 1.4.38 - [Multip	le linear regression 1]				X
Tile Diagram Compo	nent Window Help			-	5 X
D 📽 🖬 🗱					
Analysi	\$	Report	(X'X)^(-1) m	atrix	
⊡∰ Dataset (tan1F72.tx ⊡⊉ Discrete select	t) examples 1	Global re	sults		^
🖶 🚼 Define statu:	i 1	Endogenous att	ribute	PRICE	
Multiple	linear regression 1	Examples		400	
Р	arameters	R ²		0.744661	
E	xecute	Adjusted-R ²		0.736061	
v	iew	Sigma error		4.599566	
		F-Test (13,386)		86.5934 (0.000000)	-
][(•
	C	omponents			
Data visualization	Statistics	Nonparame	etric statistics	Instance selection	
Feature construction	Feature selection	Reg	ression	Factorial analysis	
PLS	Clustering	Spv	learning	Meta-spv learning	
Spv learning assessment	Scoring	Asso	ociation		
Kackward Elimination Re	g 🖾 DfBetas	K. Forv	vard Entry Reg	gression 🛛 🖉 Nu SVR	
🖧 C-RT Regression tree	🛃 Espilon SVR	🛃 Mult	tiple linear reg	gression 🖄 Outlier Detectio	n
•	m				- F
			-		

The coefficient of determination is R₂ = 0.744. Some independent variables are not significant at 5% significance level. We will not detail the analysis of the results in this tutorial. Our goal is to describe the deployment of learned models on unlabeled instances.

We can visualize the dataset using the VIEW DATASET (DATA VISUALIZATION tab) component. Two columns are added. PRED_LMREG_1 is the prediction of the model. Only the prediction for the learning set is displayed for the moment. But the same calculations are performed on the unselected instances. ERR_PRED_LMREG_1 corresponds to the residuals.

3.3.2 PLS (Partial Least Squares) Regression

We add the PLS REGRESSION component (PLS tab) behind the linear regression. We click on the VIEW menu to obtain the results according to the default settings.

TANAGRA 1.4.38 - [PLS R	egression 1]			X		
Tile Diagram Compo	onent Window Help		-	5 ×		
D 📽 🔚 🗱						
Analys	is	PLS parameters		*		
□- □ Dataset (tan1F72.tx	t)	Number of axis 5		-		
🖃 💉 Discrete select	examples 1	Standardize 1				
🖻 🏠 Define statu	s 1					
B- Multiple	linear regression 1	Result	S			
- 🔛 View	dataset 1		- 4-			
PLS R	ents					
		X/Y PRICE				
		CRIM -0.100712				
		7N 0.033640		-		
	Co	omponents				
Data visualization	Statistics	Nonparametric statistics	Instance selection			
Feature construction	Feature selection	Regression	Factorial analysis			
PLS	Clustering	Spv learning	Meta-spv learning			
Spv learning assessment	Scoring	Association				
PLS Conf. Interval PLS Regression PLS PLSR						
PLS Factorial PLS F	LS Selection					

By default, 5 factors are computed. This choice is not necessarily appropriated. We can ask to Tanagra to detect the right number of factors using a cross-validation resampling approach. We use the PLS SELECTION component for that.

TANAGRA 1.4.38 - [PLS Se	election 1] nent Window Help						ALC: N		. 8 ×
Analys	\$	С	omp	onen	t sel	ectio	n resul	ts	*
🖃 🥅 Dataset (tan1F72.tx	t)	-							
🖻 🖉 Discrete select	examples 1	N	umber	of com	ponen	ts = 2			
⊟- <mark>≵</mark> Define statu: ⊟-∐ Multiple	inear regression 1	De	atailed	results					
- 🔣 View	dataset 1		-			PRIC	E		
PLS Regression 1			Q2	Q2cum	Q2	PRESS	D(PRESS)		E
PLS Selection 1			0.496	0.496	0.496	16126.6	08 49.6 %		
	I	2	0.351	0.673	0.351	10199.9	99 36.8 %		
		3	-0.117	0.634	-0.117	10171.1	02 0.3 %		-
		Con	nponen	ts					
Data visualization	Statistics		Nonp	arametr	ic stati	istics	Instance	e selection	
Feature construction	Feature selection			Regres	ssion		Factor	ial analysis	
PLS Clustering Spv learning Meta-spv learning									
Spv learning assessment Scoring Association									
빛 PLS Conf. Interva 및 우 PLS P 맛 PLS Factorial	LS Regression PLS PL LS Selection	SR							

2 axes seem to be a good compromise. When we click on the VIEW menu of the PLS REGRESSION component, we obtain the definitive model coefficients.

TANAGRA 1.4.38 - [PLS Re	gression 1]		
Tile Diagram Compo	nent Window Help		- 8
D 📽 🖬 🔛			
Analysis	3	PI S parameters	
⊡ ⊡ Dataset (tan1F72.txt)	Number of axis 2	
🖃 煮 Discrete select e	examples 1	Standardize 1	
🖻 🚺 Define status	1		
- ∠ Multiple t	inear regression 1	Results	s
	egression 1	Degranden en effisis	
PLS	Parameters	Regression coefficie	ents
	Execute	X/Y PRICE	
	View	CRIM -0.071799	
	C	omponents	
Data visualization	Statistics	Nonparametric statistics	Instance selection
Feature construction	Feature selection	Regression	Factorial analysis
PLS	Clustering	Spv learning	Meta-spv learning
Spv learning assessment	Scoring	Association	
면을 PLS Conf. Interval 입을 PL	S Regression PLS PLSR		
PLS Factorial PLS Pl	S Selection		

Here also, when we visualize the dataset, we observe that the prediction column **PLS_1_REG_1** is added.

🏆 TANAGRA 1.4.38 - [View dataset 2 [All] (400 examples, 18 attributes)]						
💇 File Diagram Component Window Help 📃 🗗 🗙						
🗅 🚅 📕						
Analys	Err_Pred_I	PLS_1_Reg_1	^			
🖃 🥅 Dataset (tan1F72.tx	t)	learning	24.5464	0.453609	23.492	
🗄 💉 Discrete select	examples 1	learning	23.1367	-0.236705	23.677	
🗄 🔛 Define statu	s 1	learning	43.8102	6.18976	44.7879	
🗄 🛃 Multiple	linear regression 1	learning	31.6337	18.3663	31.0042	
- 🔣 View	dataset 1	learning	16.3549		13.8244	
PLS Regression 1		learning	-4.35572	11.3557		
		learning	31.9824	-0.882448	31.3365	
👯 Vi	ew dataset 2	learning	32.5398	-2.23985	33.2585	
		learning	30.8024	4.59/65	31.1/99	-
		Components				
Data visualization	Statistics	Nonpara	metric statisti	cs Instar	nce selection	
Feature construction	Feature selection	R	egression	Facto	orial analysis	
PLS	Clustering	Spv learning Meta-spv learning				
Spv learning assessment Scoring Association						
🕀 Correlation scatterplot 🖉 Scatterplot 🕺 View dataset						
Export dataset 🔀 Scatterplot with label						
L						
					_	

We can compare the predictions of the two models (Linear Regression and PLS Regression) on the learning set using the SCATTERPLOT (DATA VISUALIZATION tab) component.

We observe that they are consistent. This is not really surprising. These are both linear models. Their behavior is quite similar on the majority of problems. The PLS1 regression seems especially valuable when we have correlated independent variables (e.g. <u>http://data-mining-tutorials.blogspot.com/2010/05/solutions-for-multicollinearity-in.html</u>).

3.3.3 Regression tree

Now, we add the regression tree component (CART approach) into the diagram. We use the C-RT Regression Tree (REGRESSION tab).

The tree consists of 12 leaves. Like the linear models, the deployment of a regression tree is very easy. We can transform the tree in a set of rules without loss of information.

3.3.4 Support vector regression

We use the EPSILON SVR component (REGRESSION tab). We have described the behavior of this component elsewhere (this component is based on the LIBSVM library - <u>http://data-mining-tutorials.blogspot.com/2009/04/support-vector-regression-svr.html</u>). We set a RBF (Radial Basis Function) kernel.

We click on the VIEW menu to obtain the results.

Here, the difficulties really begin. Indeed, we do not have an explicit model. We need the support vectors (263 instances for our problem according the output of the tool) to make predictions on unlabeled instances. It is not really easy to make this outside the data mining tool used for the learning of the model. This is the reason for which Tanagra provides functionality for the prediction on unlabeled instances. Almost all the well known data mining tools perform this kind of operation.

With the VIEW DATASET component, we observe that EPSILON SVR adds also new columns for the predictions and the residuals.

TANAGRA 1.4.38 - [View dataset 3 [All] (400 examples, 22 attributes)]						
💇 File Diagram Compo	onent Window Help				-	_ & ×
D 📽 🖬 🎇						
Analys	is PI	.S_1_Reg_	Pred_CRTR	Err_Pred_C	Pred_e_svr	1 Err Pre 🔺
□	t) 23	. 492	21.3717	3.62826	23.3054	1.69457
🖻 💉 Discrete select	examples 1	. 677	21.3717	1.52826	20.6825	2.21748
🖶 🚼 Define statu	s 1	.7879	46.5	3.5	39.7109	10.2891
- K Multiple	linear regression 1	.0042	43.0667	6.93333	30.514	19,486
- View	dataset 1					-1.9960
	egression 1		12.522		11.0462	-4.0462
PLS PL	S Selection 1	.3365	29.35	1.75	31.1905	-0.0905
	ew dataset 2		29.35	0.949999	30.9422	-0.6422
1.8 50	1 % Costtorplot 1		34.3214	1.07857	34.5028	0.89715
e é c	RT Regression tree 1		21.3717	-0.871738	19.6039	0.89612
	Ecolog SVP 1		12.522	5.37805	16.3738	1.52619
	25 View dataset 2	.2518	25.53	-3.93	22.4489	-0.8489 -
	View dataset 5					- F
		Compo	nents			
Data visualization	Statistics	Nonpara	metric statisti	cs Instan	nce selection	
Feature construction	Feature selection	R	egression	Facto	orial analysis	1
PLS	Clustering	5	w learning	Meta	-sov learning	
	Castoring			meta	spr tourning	
Spv learning assessment	Spv learning assessment Scoring Association					
🕀 Correlation scatterplot 🛛 🖉 Scatterplot 🖉 View dataset						
Export dataset	📴 Export dataset 🛛 🖉 Scatterplot with label 🛛 🗓 View multiple scatterplot					
					_	and it it its and

3.3.5 Regression on the factors of PCA

Until now, we use the learning algorithms individually. The deployment involves a single model. In this section, we want to implement a combination of methods. In a first step, we perform a principal component analysis from the independent variables. In a second step, we use the 5 first factors scores provided by the PCA as input variable in a linear regression approach. The dependent variable is still PRICE of course. For the deployment phase, we must sequentially use the two models. First, we compute the factor scores of unlabeled instances. Then, we obtain the prediction by applying the regression parameters of these factor scores.

We add the PRINCIPAL COMPONENT ANALYSIS component (FACTORIAL ANALYSIS tab) into the diagram. We obtain the following results.

For the regression step, with the DEFINE STATUS component, we set the 5 first factors as INPUT variables, PRICE is the TARGET one.

File Diagram Compo	nent Window Help				- 6
	Analusis		Report (X'X)^(-1) m	atrix	
÷ NC pro p	Anagyoto	1		NESUILS	
	egression 1	^			
	S Selection 1		Global results		
Vi	ew dataset 2		Endoacoour attribute	DDICE	
- 🛃 So	atterplot 1		chuogenous attribute	PRICE	
⊡ -€ <mark>,</mark> C-	RT Regression tree 1		Examples	400	
Espilon SVR 1			R ²	0.705527	
	View dataset 3		ysis 1 Adjusted-R ² Sigma error		
Ė	Principal Component	Analysis 1			
	🖃 🙀 Define status 2		F-Test (5,394)	188.7967 (0.000000)	
	🖳 🛃 Multiple linear	regression 2			
		•	•		+
/		Compone	nts		
Data visualization	Statistics	Nonparametric statistics	Instance selection	Feature construction	
Feature selection	Regression	Factorial analysis	PLS	Clustering	
Cauloscalas	Moto seu loorning	Cou los roles seconost	Candina	Association	
Spv tearning	meta-spy tearning	spy tearning assessment	scoring	Association	
Backward Elimination Re	g 🖸 DfBetas	Forward Entry Regre	ession 🛛 🕹 Nu SVR	Regression Assessm	lent
C-RT Regression tree	K Espilon SVR	Multiple linear regre	ession 🖄 Outlier Detection	Ar Regression tree	

Then, we insert the linear regression component. We click on the VIEW menu.

3.4 Retrieving the predictions for the unlabeled instances

For each regression component, TANAGRA performs the predictions on the unselected instances i.e. on the unlabeled instances according our data file organization. To visualize them, we must reverse the instances selection.

We insert the RECOVER EXAMPLES (INSTANCES SELECTION tab) into the diagram. We set the following settings.

We click on the VIEW menu, 106 instances are now selected i.e. the unlabeled instances.

TANAGRA 1.4.38 - [Reco	ver examples 1]		-	And And And	63.399	
	onent window help					
	Analysis			R	ecover examples 1	
	'iew dataset 2		^		Parameters	
i s	catterplot 1			Examples to recover : unselec	ted	
i	-RT Regression tree 1					
ė-12	Espilon SVR 1				Results	-
E	View dataset 3 View	Analysis 1 regression 2 amptes 1 Parameters		Sample Size Input 400 Output 106 Computation time : 0 ms.	.n	
		Execute	mpon	ents		
Data visualization	Statistics	View	tistics	Instance selection	Feature construction	
Feature selection	Regression	Factorial analy	sis	PLS	Clustering	
Spv learning	Spv learning Meta-spv learning Spv learning assessment Scoring Association					
Continuous select examples						

We can visualize them using the VIEW DATASET component. On the last columns, we observe the predictions provided by the various models.

Last, we can export these values in an output file, in an Excel file format for instance. We add the DEFINE STATUS component into the diagram in order to set the predictions as INPUT.

File Diagram Component Window Help Image: Second	TANAGRA 1.4.38	
Analysis Analysis Image: CRT Regression tree 1 Image: CRT Regression SVR 1 Image: CRT Regression Statistics Nonparametrin Regression Factorial analysis PLS Spv learning assessment Scoring Associa Image: Creat Im	File Diagram Component Window Help	
Analysis • Analysis • CPCA 1_Axis_5 • CPCA 1_Axis_6 • CPCA 1_Axis_6 • CPCA 1_Axis_10 • CPCA 1_Axis_10	D 📽 🖶 🎎	Define attribute statuses
Data visualization Statistics Nonparametri Regression Factorial analysis PLS Spv learning assessment Scoring Associa Correlation scatterplot Scatterplot Scatterplot	Analysis Analys	Parameters Attributes : Target Input Illustrative C PCA_1_Axis_1 C PCA_1_Axis_2 C PCA_1_Axis_3 C PCA_1_Axis_5 C PCA_1_Axis_5 C PCA_1_Axis_5 C PCA_1_Axis_7 C PCA_1_Axis_8 C
Export dataset Scatterplot with label : View me OK Cancel Help	Data visualization Statistics Nonparametr Regression Factorial analysis PL Spv learning assessment Scoring Associ Correlation scatterplot Scatterplot Survey diagonalization Export dataset Scatterplot with label Scatterplot with label	C PCA_1_Axis_9 C PCA_1_Axis_10 C Pred Imreg_2 C Err_Pred_Imreg_2 B C Lear all Clear selected

We add the EXPORT DATASET. We export only the selected instances and the columns defined as INPUT above. The data file name is "output.xls".

TANAGRA 1.4.38	Window Help							
			DigOpPrmExportDataset					
Analysis View dataset 3 Analysis Analysis			Parameters Examples selection all examples e selected examples Attributes selection all attributes target attributes input attributes target and input attributes Filename : pr_soft_dev_and_comparison/regression/deploiero_infloutput.xls OK					
			ha ha haha					

We click on the VIEW menu. The data file is rightly generated. We can use a spreadsheet application (Excel or OpenOffice/LibreOffice) to visualize them.

3.5 Comparing the predictions

Last step of our study, we want to compare the predictions of the various models. The easiest way is to calculate the correlations between them. We insert the LINEAR CORRELATION component (STATISTICS tab) into the diagram. We set the following settings. We especially want to highlight the most highly correlated predictions.

TANAGRA 1.4.38 - [Export dataset 1	1						
File Diagram Component Wir	ndow Help	_ <u>6</u> ×					
Ana	lysis	Export dataset 1					
i → ♣, C-RT Regression i → ૠ Espilon SVF i → ૠ Princip i → ૠ Defi i → ૠ Defi i → ૠ	on tree 1 R 1 ataset 3 Ial Component Analysis 1 line status 2 Multiple linear regression 2 Recover examples 1 Strengt dataset 4 Strengt format for the status 3 Strengt format for the status 3	Export parar Attributes st Examples st Exportation : Soft by Soft by Exportation : Fitename : D:Data/Shing					
Data visualization Regression Fact	Statistics PLS	Connutation t tters nem no					
Spv learning assessment	Scoring Associat Brown - Forsythe's test Fisher's test Group characterization	Ition Group exploratio Hotelling's T2 Hotelling's T2 He OK Cancel Help					
		• به اند اندانی					

We observe that the predictions of linear models are very similar (1 - Linear regression, PLS Regression, Regression on PCA factors). The SVR with a RBF kernel, a nonlinear model, provides different predictions (2). And then, the tree which is also a nonlinear model but with different characteristics, it partitions the representation space in many regions where it makes a local prediction, it provides predictions which are not really correlated to the other ones (3).

TANAGRA 1.4.38 - [Linear correlation 1]		and a state	Carlosser.	41	1.9			X
💇 File Diagram Component Window Help							-	Б×
Analysis				Results				^
Scatterplot 1	A	×	×	r	r ²	•	Pr(>ItI)	
E 🚓 C-RT Regression tree 1	PLS 1 Reg 1	Pred Imreg 2	0.9960	0.9920	113 4365	0.0000		
Espilon SVR 1	Prod Imreg 1	PIEd_dilleg_2	1 20704	0.0502	40 4257	0.0000		
View dataset 3	Pred_unreg_1	PLS_I_Reg_I	0770	0.9392	49.4337	0.0000		
□ X Principal Component A	nalysis 1	Pred_unreg_1	Pred_unreg_2	0.9739	0.9400	43.7928	0.0000	
Define status 2		Pred_imreg_1	Pred_e_svr_1	0.9068	0.8224	21.9426	0.0000	
⊡ Multiple linear	Pred_e_svr_1	Pred_Imreg_2	0.9052	° (2)	21.7184	0.0000	-	
Recover exa	mples 1	PLS_1_Reg_1	Pred_e_svr_1	0.8992	0.3085	20.9630	0.0000	=
	Pred_CRTRegTree_1	Pred_e_svr_1	0.8577	0.7357	17.0153	0.0000		
	roort dataset 1	Pred_CRTRegTree_1	Pred_lmreg_2	0.8399	0.7054	15.77919	0.0000	
	pear correlation 1	PLS_1_Reg_1	Pred_CRTRegTree_1	0.8322	0.6926	15.3070	0.0000	
4 III	Parameters	red_tmreg_1	Pred_CRTRegTree_1	0.8115	0.6586	14.1641	0.0000	
	T unumeters							
	Execute	Components	T					
Data visualization Statistics	View	es Instance	e selection	Feature construction		Feature selection		
Regression Factorial analysis	PLS	Clus	Clustering		Spv learning		Meta-spv learning	
Spv learning assessment Scoring	Associatio							
ANOVA Randomized Blocks 🛛 🔆 Brown - Forsy	the's test 🛛 👪 🛛	Group exploration	Levene	's test	2	A Normality	y Test	
🛱 Bartlett's test 🛛 🛱 Fisher's test	telling's 🗈 🖉 Linear correlation 📶 One-way ANOVA							
🔀 Box's M Test 🚺 Group characterization 🛃 Hotelling's T2 Hetelwoodando 🖾 More Univariate cont stat 🔤 One-way MAI							MANOVA	
<								۴
							d d	

4 Conclusion

Of course, other strategies exist for the regression model deployment. Especially into a professional context, when we wish to industrialize the model into a business decision-making process. A simple solution is to export the model in a standard format. The PMML format is a good example for that

(<u>http://www.dmg.org/v4-o-1/Regression.html</u> for the linear regression; <u>http://www.dmg.org/v4-o-1/TreeModel.html</u>, for the trees; <u>http://www.dmg.org/v4-o-1/SupportVectorMachine.html</u> for the support vector regression, we note that the model description becomes more complex; etc.). Then we use specialized tools that can handle this kind of format for the deployment (Pentaho Data Integration for instance - <u>http://www.pentaho.com/products/data_integration/</u>).