1 Subject

Multivariate parametric hypothesis testing for comparing populations.

A multivariate test for comparison of population try to determine if K (K \ge 2) samples come from the same underlying population according to a set of variables of interest (X1,...,Xp).

We talk parametric test when we assume that the data come from a type of probability distribution. Thus, the inference relies on the parameters of the distribution. For instance, if we assume that the data is drawn from a multivariate Gaussian distribution, the hypothesis testing relies on mean vector or on covariance matrix.

The test that we describe in this tutorial can be used to compare process (e.g. is that two machines produce bolts with the same diameter and thickness?), but it enables also to test the connection that can exist between a categorical variable and a quantitative variable (e.g. is that women drive slower and less fuel consumption on average than men on the roads).

2 Dataset

The CREDIT_APPROVAL.XLS¹ data file describes 50 households consisting of married couples, both actives, which asked for a credit to a bank. The available variables are:

Variable	Description
Sal.Homme	Logarithm of the male salary
Sal.Femme	Logarithm of the female salary
Rev.Tete	Logarithm of the income per head in the household
Age	Logarithm of the male age
Acceptation	Acceptation of the credit
Garantie.Supp	Additional guarantee is required
Emploi	Type of job held by the reference person of the household

All the continuous variables are potentially variables of interest; the categorical variables are used to define the sub-populations.

3 Comparison of 2 means – Hotelling's T²

It is the multivariate analog of the t-test for two independent samples. The size of the mean vector is $(p \times 1)$, where p is the number of dependent variables (or variables of interest). The jth component of the vector corresponds to the mean of the variable Xj. We have p = 4 for our dataset.

¹ <u>http://eric.univ-lyon2.fr/~ricco/tanagra/fichiers/credit_approval.xls</u>

3.1 Importing the dataset

We open the data file into the Excel spreadsheet. We select the data range, and then we click on the Tanagra menu which is installed with the Tanagra.xla add-in². A dialog box appears, we check the coordinate of the cells and we validate by clicking on OK.

Tanagra is automatically launched. A new diagram is created. We check that the data set has 50 observations and 7 variables.

² See <u>http://data-mining-tutorials.blogspot.com/2008/10/excel-file-handling-using-add-in.html</u>

Tanagra can also directly read a XLS file format, see <u>http://data-mining-tutorials.blogspot.com/2008/10/excel-file-format-</u> <u>direct-importation.html</u>

💇 TANAGRA 1.4.26 - [Da	itaset (tan7F.txt)]						
🏆 File Diagram Component	t Window Help						- 🖻 🗙
D 📽 🔲 🗱							
Ar	nalysis						^
Dataset (tan7F.txt)		7 attribute(s) 50 example(s)	descrip	otion			
		Attribute	Category	Informations			
		Sal.Homme	Continue	-			_
		Sal.Femme	Continue	-			
		Rev.Tete	Continue	-			
		Age	Continue	-			=
		Acceptation	Discrete	2 values			
		Garantie.Supp	Discrete	3 values			
		Emploi	Discrete	2 values	J		
		Computation ti	ma i O ma				~
		Comp	onento				
Data visualization	Statistics	Nonparametric s	tatistics	Instance	selection	Feature construction	
Feature selection	Regression	Factorial ana	lysis	P	LS	Clustering	
Spv learning	Meta-spv learning	Spv learning asse	essment	Sec	oring	Association	
Correlation scatterplot	🧖 Scatterplot with label						
Export dataset	🔣 View dataset						
🥻 Scatterplot	👫 View multiple scatterp	olot					
[L							

3.2 Descriptive statistics

First, we want to describe the dependent variables. We insert the DEFINE STATUS component in the diagram using the shortcut into the toolbar. We set all the continuous variables as INPUT.

💯 TANAGRA 1.4.26 - [Dat	taset (credit approval.xls)]		
🏆 File Diagram Component	Window Help		. 8 ×
D 📽 🖪 🔛			
Default tit	tle		
🖃 🚃 Dataset (credit appr	roval.xls)	efine attribute statuses	
Define status 1	Data	Parameters	
		p_Pop_Tests_Parametriques\credit	=
	app	Attributes : Target Input Allustrative	
		C Sal.Homme	
		C Sal.Femme Sal.Femme	
	Do	C Age	
	W	D Garantie.Supp	
	Nun		
	Sele		
	She		
	Dat		~
		B. B. W. Clear selection	
Data visualization	Chatistics		
Perrossion	Exctorial applyric	OK Cancel Help Wets could arrive	
Regression		A tot	
Spv learning assessment	scoring	Association	
ANOVA Randomized Bloc	ks 🛛 🕂 Brown - Forsythe's te	st 🔚 Group exploration 🗛 Levene's test 🔬 Normality Test	봐
Bartlett's test	🚑 Fisher's test	💽 Hotelling's T2 🖉 Linear correlation 🚮 One-way ANOVA	<u>11</u> 13
Box's M Test	🚹 Group characterizati	on 🖉 Hotelling's T2 Heteroscedastic 🖾 More Univariate cont stat 🛛 🔄 One-way MANOVA	ž
<			>
		, ,	

Then we add the UNIVARIATE CONTINUOUS STAT component (STATISTICS tab). We click on the VIEW menu in order to obtain the results.

TANAGRA 1.4.26 - [Un	ivariate continuous stat	1]							
rie Diagram Component	window Help							,	
Default title Univariate continuous stat 1									
🖃 🏢 Dataset (credit appi	roval.xls)			Parame	eters				
Define status 1		Attributes	: 4						
	Parameters	Examples :	50		\sim				
<i>,</i> ,,	Execute			Resu					
	View	Attribute	Min	Max	Average	Std-dev	Std-dev/avg		
i i		Sal.Homme	6.01999998092651	8.7 79 9997329714	7.4640	0.5619	0.0753		
		Sal.Femme	6.03000020980835	8.57999992370605	7.3094	0.5099	0.0698		
N N		Rev.Tete	5.1100001335144	8.6899995803833	6.9726	0.7110	0.1020		
		Age	3.08999991416931	4.15999984741211	3.6912	0.2638	0.0715		
		Computatio Created at	n time : 0 ms. 18/07/2008 14:23:1	1					
			Components						
Data visualization	Statistics	Nonpa	rametric statistics	Instance s	election		Feature construction		
Feature selection	Regression	Fa	ctorial analysis	PLS	5		Clustering		
Spv learning	Meta-spv learning	Spv le	arning assessment	Scori	ng		Association		
A Normality Test	<u>‡</u> ⊒ Paired T-Test	-Test 🦉 Semi-partial Correlation 👘 🗷 🖾 Univariate continuous stat							
📶 One-way ANOVA	<u>∿</u> † Paired V-Test	əst 📶 Univariate discrete stat							
🔄 One-way MANOVA	🕍 Partial Correlat	🖓 Partial Correlation 🛛 🗽 T-Test Unequal Variance 👥 👥 Univariate Outlier Detection							
<								>	

The AVERAGE column is particularly interesting in this step. We read the mean vector computed on the available observations $\overline{X}' = (7.4640; 7.3094; 6.9726; 3.6912)$. The aim of the Hotelling's T₂ is to verify that this vector takes values significantly different in the subpopulations that we wish to compare.

3.3 Hotelling's T² under the homoscedasticity context

We want to compare two mean vectors. We make the assumption that the covariance matrices are identical into the two subpopulations³. We thus used the pooled covariance matrix⁴ into the formula.

On our dataset, we want to compare the characteristics of the clients according the acceptation of the reject of the credit.

We insert the DEFINE STATUS component into the diagram. We set the dependent variables as TARGET, credit ACCEPTATION as INPUT.

³ http://en.wikipedia.org/wiki/Homoscedasticity

⁴ <u>http://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/poolcov.htm</u>

We add the HOTELLING'S T₂ component into the diagram. We click on the VIEW menu.

🌋 TANAGRA 1.4.26 - [Hotelling's T2 1]											
Tile Diagram Component Window Help									- 8		
Default title Hotelling's T2 1											
🖃 🎹 Dataset (credit approval.xls)	Parameters										
😑 🏠 Define status 1											
🔤 🕂 Univariate continuous stat 1					Results			<u> </u>			
Define status 2			Descriptive	stat. (Mean)	3			Tests results			
7 Parameters	Group	oui	non	95% Simu	ttaneous Conf	Intervals.	Stat	∀alue	p-value		
Execute	Group Size	34	16	Difference	Lower.Bound	Upper.Bound	T2	11.3023			
View	Sal.Homme	7.5750	7.2281	0.3469	-0.1993	0.8931	F(4, 45)	2.6490	0.0454		
	Sal.Femme	7,4394	7.0331	0.4063	-0.0739	0.8865					
	Rev.Tete	7.0603	6.7862	0.2740	-0.4363	0.9844					
	Age	3.6671	3.7425	-0.0754	-0.3411	0.1902					
	Computation tim	e : 16 ms.									
			Compone	ents							
Data visualization Statistics	Nonparame	etric statistics	Instan	ce selection	Featu	re constructio	n Feat	ure selection			
Regression Factorial analysis		PLS	C	ustering	9	pv learning	Met	a-spv learning			
Spv learning assessment Scoring	Asso	ociation									
🗄 ANOVA Randomized Blocks 🛛 🔆 Brown - Forsy	the's test	🔚 Group ex	ploration		Levene's test		🕂 Normali	ty Test	<u>‡</u> ⊒ Paire		
쯡 Bartlett's test 💦 Fisher's test 💦 🛃 Hotelling's T2 🖉 Linear correlation 🙀 One-way ANOVA 👾 Pr								<u>∿</u> t Paire			
🛃 Box's M Test 🛛 🚺 Group characterization 🔄 Hotelling's T2 Heteroscedastic 🖾 More Univariate cont stat 🔩 One-way MANOVA 🖾 Partia											
)							

Several results draw our attention:

- (1) Into the descriptive statistics table, we observe the mean vector for each group (acceptation = OUI and acceptation = NON).
- (2) In the right, we have the T₂ statistic, and its transformation which is distributed as a Fisher distribution with (4; 45) degrees of freedom. The p-value of the test is 0.0454, we reject the homogeneity of the mean vectors at the 5% significance level.

(3) Let's we consider again the descriptive statistics table. Into the 3 last columns, we have the vector of differences between means and their simultaneous confidence intervals at 95% confidence level. These intervals allow us to know if the difference is significant at 5% on one of the dependent variables that we want to analyze in particular. The difference is significant if the interval does not contain the value o. In our example, it seems that the overall significant difference detected by the T² is not specifically associated with one of the dependent variables.

3.4 Hotelling's T² under the heteroscedasticity context

If the covariance matrices are different, especially when the size of groups is unequal, we must compute separately the conditional covariance matrices. The test statistic is thus different.

Under the DEFINE STATUS into the diagram, we add the HOTELLING'S T₂ HETEROSCEDASTIC (STATISTICS tab).

The T² statistic is equal to T² = 14.6700, it is distributed as the CHI-square distribution with p degrees of freedom. The deviation between the mean vectors is significant at the 5% level (p-value = 0.0054). It seems now that this deviation relies mainly on the differences between the wages of the wife into the household. The confidence interval does not contain the value o at 95% confidence level.

4 Comparing mean vector for K populations (MANOVA)

We want to compare the mean vectors for K (K \ge 2) populations. It is the multivariate analog of the one-way analysis of variance (ANOVA). It is often called MANOVA (multivariate analysis of variance). On our dataset, we want to compare the mean vectors according to the kind of guarantee (K = 3 values) requested by the debtors.

We add the DEFINE STATUS component into the diagram. We set as TARGET our dependent variables, and we set GARANTIE.SUPP as INPUT.

We add the ONE-WAY MANOVA component (STATISTICS tab).

Into the DESCRIPTIVE STAT part, we observe the conditional mean vectors for the 3 groups, and the overall mean. The Wilks' lambda statistic is 0.8111. The more it is close to 1, the less significant are the differences. Two transformations are available. The Bartlett's transformation follows as a chi-square distribution, it is sufficient for large samples. The Rao's transformation is preferable on small

samples. We have the same conclusion on our dataset. The null hypothesis cannot be rejected from the available dataset.

5 Comparing K variances – The Box's M statistic

The first Hotelling's test and the Manova test make the assumption that the conditional covariance matrices are identical. We can check this assumption by using the multivariate analog of the Bartlett's test for the equality of variances. It is called Box's M test. We implement this test on our dataset.

5.1 Checking for the Hotelling's test

We insert the BOX'S M TEST (STATISTICS tab) into the diagram, at the same level as the Hotelling's test component. We click on the VIEW menu in order to obtain the results.

The overall and the conditional standard deviation are supplied into the descriptive statistics table. These values are purely indicative. They give an idea of differences, in univariate way, for each dependent variable. We cannot draw conclusions from these descriptive statistics because they do not take into account of the covariance between the variables.

The test statistic is T = 16.2924. It follows a chi-square distribution with 10 degree of freedom. We conclude that the conditional covariance matrices are not significantly different at 5% level (p-value = 0.0916), but they are at 10% level.

In this context, the homoscedaticity assumption is not obvious, and we have small groups with different size, it is more suitable to use the heteroscedastic version of the Hotelling's test.

5.2 Checking for the Wilks' test

We make the same verification for the MANOVA. We add again the BOX'S M TEST component.

TANAGRA 1.4.26 - [Box	's M Test 2]										
Tile Diagram Component	Window Help								- 8		
🗅 📽 🔚 👫											
Default title Box's M Test 2											
🖃 🏢 Dataset (credit appr	oval.xls)				Param	eters					
😑 🛟 Define status 1											
🔤 🕂 Univariate co	ntinuous stat 1				Res	utts					
😑 🚰 Define status 2			Descrip	ntive stat (Std.)	Dev)			Tests results			
Hotelling's T2	1			prine stati (stati							
Hotelling's T2	Heteroscedastic 1	Group	hypotheque	caution	non	ALL ~	Stat	¥alue	p-value		
Box's M Test	1 <u></u>	Group Size	29	5	16	50	T [CHI-2 (20)]	24.0571	0.2399		
Define status 3	1014 10	Sal.Homme	0.5339	0.5204	0.6023	0.5619					
ter Doe-way ///An	NOVA I	Sal.Femme	0.4615	0.4684	0.5524	0.5099					
Box s // Test .	2	Rev.Tete	0.7228	0.7033	0.6921	0.7110					
1		Age	0.2908	0.2384	0.2307	0.2638					
		Computation tin	ne : 0 ms.						•		
			Co	mponents							
Data visualization 🛛	Statistics	Nonparame	tric statistics	Instance	e selection	Feature	e construction	Featur	e selection		
Regression	Factorial analysis		PLS	Clus	tering	Sp	v learning	Meta-s	pv learning		
Spv learning assessment	Scoring	Asso	ciation								
ANOVA Randomized Block	🗄 ANOVA Randomized Blocks 🛛 Brown - Forsythe's test 🛛 🚺 Group exploration 🛛 🎇 Levene's test 🔿 Normality Test										
🛱 Bartlett's test	🚠 Fisher's test	st 🛃 Hotelling's T2 🔣 Linear correlation 📊 One-way ANOVA									
🗠 Box's M Test 🕈	🚺 Group characte	characterization 🔄 Hotelling's T2 Heteroscedastic 🖾 More Univariate cont stat 🔄 One-way MANOVA									
<									3		

Here, the homoscedasticity assumption is really believable. We have T = 24.0571, with a p-value = 0.2399. It seems that the results associated with Wilks' Lambda when comparing the mean vectors of the K groups (according to the guarantee) are confirmed.