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1 Topic
Determining the right number of components in PCA (Principal Component Analysis).

Principal Component Analysis (PCA)* is a dimension reduction technique. We obtain a set of factors
which summarize, as well as possible, the information available in the data. The factors (or

components) are linear combinations of the original variables.

Choosing the right number of factors is a crucial problem in PCA. If we select too much factors, we
include noise from the sampling fluctuations in the analysis. If we choose too few factors, we lose
relevant information, the analysis is incomplete. Unfortunately, there is not an indisputable approach
for the determination of the number of factors. As a rule of thumb, we must select only the
interpretable factors, knowing that the choice depends heavily on the domain expertise. And yet, this
last one is not always available. We intend precisely to build on the data analysis to get a better

knowledge on the studied domain.

In this tutorial, we present various approaches for the determination of the right number of factors
for PCA based on the correlation matrix. Some of them, such as the Kaiser-Gutman rule or the scree
plot method, are very popular even if they are not really statistically sound; others seems more
rigorous, but seldom if ever used because they are not available in the popular statistical software

suite.

In a first time, we use Tanagra and the Excel spreadsheet for the implementation of some methods;
in a second time, especially for the resampling based approaches, we write programs for R from the

results of the princomp() procedure.

2 Dataset — PCA using Tanagra

We use the “crime_dataset_pca.xls” data file. It contains p = 14 variables and n = 47 instances.

This data file comes from the DASL repository’. We had already processed it previously when we had
presented the VARIMAX rotation in the context of the PCA®. Thus, we describe shortly the
implementation and the reading of the output of the PCA in this tutorial. We are focusing on the

determination of the right number of components.
2.1 Importing the data file

After we load the dataset into the Excel spreadsheet, we send it to Tanagra using the add-in

“Tanagra.xla”*.

! http://en.wikipedia.org/wiki/Principal_component_analysis

2 http://lib.stat.cmu.edu/DASL/Datafiles/USCrime.html

3 http://data-mining-tutorials.blogspot.fr/2009/12/varimax-rotation-in-principal-component.html|

4 http://data-mining-tutorials.blogspot.fr/2010/08/tanagra-add-in-for-office-2007-and.html; see http://data-mining-

tutorials.blogspot.fr/2011/07/tanagra-add-on-for-openoffice-calc-33.html for OpenOffice and LibreOffice.
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Tanagra is automatically launched, and the dataset is loaded. We check the number of instances (n =

47) and attributes (p = 14).

"M TANAGRA 1445 (beta) - [Dataset (tanFASS.tet] (=[=] = |
E File Diagram Component Window Help |_ ||5'||x|
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We add the DEFINE STATUS component into the diagram in order to specify the variables used for
the principal component analysis (CRIMERATE...INCUNDERMED).
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2.2 Performing the PCA

We add the PRINCIPAL COMPONENT ANALYSIS component (FACTORIAL ANALYSIS tab). By default,
Tanagra performs a PCA based on the correlation matrix.

E File Diagram Component Window Help mmm
Cow B
Analysis l -
Eigen % " %
=-fEE Dataset (tanFA95. txt) & value  explained Histogram cumulated
o+
v
E-F Define status 1 1 5838210 41.70% 41.70%
E}_{ Principal Component Analysis 1
—-— e - o - 1 1.640156 18.86% 60.56%
3 1.953466 13.95% T4.51%
4 1.385635 9.90% 84.4% i
5 0.634600 4.53% 88.94%
6 0.353217 2.52% 9.47%
7 0.310052 2.21% 93.68%
8 0.252763 1.81% 95.49%
9 0.228203 1.63% 97.12%
10 0.189341 1.35% 98.47%
11 0.092301 0.66% 99.13%
12 0.069035 0.49% 99.62%
13 0.047970 0.34% 99.96%
14 0.005051 0.04% 100.00%
Tot. 14.000000 i
4 [ +
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Tanagra provides, among others’, the eigenvalues table. We know that the eigenvalue associated to
a factor corresponds to its variance. Thus, the eigenvalue indicates the importance of the factor. The

> See http://data-mining-tutorials.blogspot.fr/2009/04/principal-component-analysis-pca.ntml  for a detailed

presentation of the output of the PCA component.
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higher is the value, the higher is the importance of the factor. The challenge is determining the
number of relevant factors that we need to keep, on the basis of their eigenvalue. This is not really
easy. Several aspects should be considered (Jackson, 1993): the number of instances ‘n’; the number
of variables ‘p’; the ratio between the instances and the variables ‘n:p’; the correlation between the

variables; the possible existence of groups of correlated variables.

The ratio 'n:p' is an important thing. It determines the stability of the factors. Some references
indicate that 'n:p' must be higher 3 in order to obtain reliable results (Grossman et al., 1991). We
have 47/14 = 3.36 for our dataset.

3 Scree plot
3.1 Scree plot

Cattell (1966, 1977) proposes to study the plotting of the eigenvalues (A,) according to the number of
factors. The idea is to detect the "elbow" in the scree plot, highlighting a modification of the
structure of the data. This approach is interesting because it is nuanced. It enables to go beyond the
purely arbitrary numerical criterion. But it is complicated to implement because it can be subjective.
The detection is not always obvious. We must answer several questions: where is located the elbow?

Is it unique? Do we include the factor associated with the elbow in the selection?

Usually, the elbow is pronounced when we handle highly correlated variables. When the correlations
are low or when there are blocks of correlated variables, rather than a single "obvious" solution, we
face several possible solutions. Concerning the integration of the elbow in the selection, Cattel was
hesitant. Originally (1966), he advised to select only the factors which are before the elbow; then, in
a second time (1977), he advocates to integrate it. Actually, it depends on the value of the elbow. If
the corresponding eigenvalue is high, we must include it into the selection. If it is low, the factor can

be neglected.

About the CRIME dataset, we obtain:

Scree plot

Elbow n°1

Eigenvalue

w
I

Elbow n°2

14 16

k- Number of eigenvalues

It seems there are 2 elbows. Which one to choose?
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For the first one, we must include the elbow into the selection i.e. we select k = 2 factors. Indeed, the

eigenvalue (A, = 2.64) associated with the 2" factor is high. It corresponds to 18.86% of the variance.

If we prefer the second solution, we must neglect the 5" factor. Indeed, the corresponding

eigenvalue is too low (A5 = 0.6346, 4.53% of the total variance). We select k = 4 factors in this case.

As we note, the determination of the right solution is not obvious. To improve the reading of this
graph, we can use a second graph where we represent the evolution of the cumulative variance
explained by the first k factors. We can detect also another elbow. It indicates that the remaining

factors correspond to a too low proportion of variance and can be neglected.

For our dataset, we have the following graph:

% variance explained

120% -
100% -
80% -

60% -

% variance explained

40% | Elbow

20% -

0% t 1 1 T T t t {
0 2 4 6 8 10 12 14 16
k- Number of eigenvalues

It seems that the solution with k = 4 factors is the appropriate one. Clearly, the choice of k = 2
factors is not good. The proportion of variance after the 2nd factor cannot be neglected.

3.2 Proportion of total variance

Some references advise to explicitly use the proportion of total variance to determine the number of
factors. The rule would be: "we select enough factors in order to explain at least x % of the total
variance". This strategy is not really reliable because it does not take account for the correlations
between the variables. For our dataset, if we select the factors which reproduce 95% of the total
variance, we must select 8 (!) factors. This is clearly excessive. From the 5" factor, the eigenvalues

associated to the factors are too low. They correspond to the sampling fluctuations.

But, after the fact, when we have determined the right number of factors, it can be interesting to
analyze the proportion of variance that they reproduce. This is important in the graphical

representation when we want to evaluate the proximities between the instances.

4 Kaiser-Guttman rule and its variant
4.1 Kaiser — Guttman rule

The Kaiser-Guttman rule is based on a very simplistic idea. If the variables are independent, the

eigenvalues for all the factors is 1. Thus, we select the factors which have an eigenvalue higher to 1.
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For the CRIME dataset, we select k = 4 factors if we use the Kaiser-Guttman rule.

Kaiser critical
value
Axis Eigen value % explained % cumulated
1 5.838210 41.70% 41.70%]
2 2.640156 18.86% 60.56%
3 1.953466 13.95% 74.51%
4 1.385635 9.90% 84.41%
5 0.634600 4.53% 88.94%
6 0.353217 2.52% 91.47%
7 0.310052 2.21% 93.68%
8 0.252763 1.81% 95.49%
9 0.228203 1.63% 97.12%
10 0.189341 1.35% 98.47%
11 0.092301 0.66% 99.13%
12 0.069035 0.49% 99.62%
13 0.047970 0.34% 99.96%
14 0.005051 0.04% 100.00%
Tot. 14

A numerical threshold is always comforting, even if it sometimes appears as lacking nuance. We note
however that this rule confirms the reading of the scree plot above.

4.2 Karlis — Saporta - Spinaki rule (2003)

The threshold “1” is a too permissive criterion in the majority of cases, especially when the data are
weakly correlated. Above all, it does not take into consideration the characteristics of the dataset

(number of instances n, number of variables p, the ratio n:p).
A more restrictive rule overcomes this drawback. It is based on a statistical process. We select the

factors for which their eigenvalue is significantly higher than 1 (Saporta, 2006)°. At the 5% level

(approximately), the critical region is defined as follows:
-1
A>1+42 P
n-1

This rule has a good behavior. It is more restrictive when the number of variables p increases against

to the number of instances n. For the CRIME dataset, the critical value is:

102 P71 g o (221 5 063
n—1 V47-1

With this new threshold (2.063), we keep only the (k= 2) first components. We remind that this is
one of the possible solutions identified in the scree plot above. After all, this solution is perhaps not

so bad. We observe also that the third eigenvalue (A;=1.953466) is not far from the critical value.

6 See also http://cedric.cnam.fr/fichiers/RC489.pdf
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n 47

p 14

Karlis et al.

critical value 2.063

Axis Eigen value % explained % cumulated
1 5.838210 41.70% 41.70%
2 2.640156 18.86% 60.56%
3 1.953466 13.95% 74.51%
4 1.385635 9.90% 84.41%
5 0.634600 4.53% 88.94%
6 0.353217 2.52% 91.47%
7 0.310052 2.21% 93.68%
8 0.252763 1.81% 95.49%
9 0.228203 1.63% 97.12%
10 0.189341 1.35% 98.47%
11 0.092301 0.66% 99.13%
12 0.069035 0.49% 99.62%
13 0.047970 0.34% 99.96%
14 0.005051 0.04% 100.00%
Tot. 14

5 Bartlett’s test

5.1 Detecting the existence of relevant factors

The Bartlett's sphericity test enables to check if the correlation matrix is significantly different to the

identity matrix. In our context, we can use it to determine if one of the eigenvalues at least is

significantly different to 1. That means that there is at least one relevant factor. But we cannot

determine the number of relevant factors.

The test statistic is defined as follows:

C= —(n -1-

2p+5

jx|n|R|=_(n_%]xm|R|

Under the null hypothesis, it follows a 2 distribution with [p x (p-1) / 2] degree of freedom.

The determinant of the correlation matrix is equal to the product of the eigenvalues. We can use the

results from the PCA for the calculations:

C= —(n -1-

For the CRIME dataset, we obtain

2p+5

-

_2p+11
6

]xzplln(ﬂk)

k=1

IR =] ] A =(5.838210x---x0.005051) = 4.889x10°
k

Thus, the test statistic and the corresponding p-value are computed below:
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n 47
p 14
Axis Eigen value % explained % cumulated
1 5.838210 41.70% 41.70%
2 2.640156 18.86% 60.56% ||R| 4.889E-08
3 1.953466 13.95% 74.51%
4 1.385635 9.90% 84.41% C 681.76
5 0.634600 4.53% 88.94% d.f. 91
6 0.353217 2.52% 91.47% p-value 2.941E-91
7 0.310052 2.21% 93.68%
8 0.252763 1.81% 95.49%
9 0.228203 1.63% 97.12%
10 0.189341 1.35% 98.47%
11 0.092301 0.66% 99.13%
12 0.069035 0.49% 99.62%
13 0.047970 0.34% 99.96%
14 0.005051 0.04% 100.00%
Tot. 14

Clearly, there is at least one relevant factor for our analysis.

Note: There is however a restriction on the use of this test, it tends to be always significant when the

sample size increases.
5.2 Detection of the number of relevant factors

A variant of the Bartlett's test for the determination of the right number of factors exists. It was
originally developed for the PCA based on the covariance matrix (Saporta, 2006; Grossman and al.,
1991). But, we can use it in our context. It seems that the test becomes conservative in this case i.e.
it tends to select too few numbers of factors (Jackson, 1993; Neto et al., 2004). We will study its

behavior on our data file.

The process is based on the following idea: we select "k" factors because the (p-k) eigenvalues of the
remaining factors are equals. These eigenvalues correspond to the horizontal part of the scree plot,

after the "elbow". Here is the null hypothesis of the test:
Ho: dn==4,

Unfortunately, the references used vary about the formula of the test statistic. | decided to use the
one presented by Saporta (2006), because it is consistent to the Bartlett's test of sphericity when we

check the equality of all the factors.

Under the null hypothesis, the (p-k) last eigenvalues are equals. Their arithmetic mean (1) is equal to

their geometrical mean (1). We use the following test statistic to compare them:

2p+11 A
c, =|n—— —Kk)xIn| =
K ( 5 jx(p ) X 7

— 1 p
Where A =—— Zﬂ‘i

p-kK 5
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And In( ):f Zln

i=k+1

degree of freedom.

—-k+2f p-k-1
Under HO, it follows a 2 distribution with (p ;(p )

This test statistic is consistent to the Bartlett’s sphericity test. Indeed, for k = 0, we test the equality
of all the eigenvaluesi.e. A,=1, Vk and A=1.We verify that:

o] (1)

P
o858 g

i=1

:—(n—%szplln(/li)
=C

Unfortunately, the degrees of freedom are not consistent. When k = 0, we have d.f. = (p+2)(p-1)/2,
this is different to d.f. = p x (p - 1) / 2 of the Bartlett’s test of sphericity. However, all references are

agreed upon the formula above. It remains a mystery.

We elaborate a worksheet under Excel. We test from k = 0 (equality of all the eigenvalues) to k = 12
(equality of 13" and 14™ eigenvalues).

k i lambda lambda_barre lambda_tilde In(I_barre/I_tilde) c_k d.f. p-value

0 1 5.838210 1.0000 0.3005 1.2024| 681.7625| 104 9.99E-86
1 2 2.640156 0.6278 0.2392 0.9651| 508.1433 90| 1.36E-59
2 3 1.953466 0.4601 0.1958 0.8545| 415.2914 77| 7.57E-48
3 4 1.385635 0.3244 0.1588 0.7140] 318.0966 65| 5.05E-35
4 5 0.634600 0.2183 0.1279 0.5344| 216.4189 54 2.56E-21
5 6 0.353217 0.1720 0.1071 0.4741| 172.8204 44| 3.56E-17
6 7 0.310052 0.1493 0.0922 0.4821| 156.2073 35 3.00E-17
7 8 0.252763 0.1264 0.0775 0.4884| 138.4702 27| 6.13E-17
8 9 0.228203 0.1053 0.0637 0.5030| 122.2381 20| 1.10E-16
9 10 0.189341 0.0807 0.0493 0.4926 99.7420 14| 5.31E-15
10 11 0.092301 0.0536 0.0352 0.4189 67.8603 9 3.99E-11
11 12 0.069035 0.0407 0.0256 0.4643 56.4095 5| 6.69E-11
12 13 0.047970 0.0265 0.0156 0.5325 43.1292 2 4.31E-10
13 14 0.005051

Clearly, this test is not appropriate for our dataset. It claims that all the factors are relevant. This is
not consistent with the results of the other approaches. It seems that the Bartlett's test is usable only
for the determination of the existence of relevant factors, only if the number of instances is not too

high. We cannot use it for the determination of the right number of factors (Neto and al., 2004).

6 Broken-stick method

This approach is based on the following idea: under the null hypothesis where the total variance is
randomly allocated on the factors, the eigenvalues is distributed according to the "broken-stick"
distribution (Frontier, 1976; Legendre-Legendre, 1983).
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One of the main interests of the approach is that the critical values are very easily to calculate. For

the evaluation of a solution with "k" components, the critical value is:
b, = Z

p
=k

1
i

If we want to reason in terms of proportion of total variance, the critical value becomes:

, 11

b ==Y2

pix!

We can calculate the threshold for each value of k in a worksheet:
k Eigen value 1/i b_k

1 5.838210 1.000 3.252
2 2.640156 0.500 2.252
3 1.953466 0.333 1.752
4 1.385635 0.250 1.418
5 0.634600 0.200 1.168
6 0.353217 0.167 0.968
7 0.310052 0.143 0.802
8 0.252763 0.125 0.659
9 0.228203 0.111 0.534
10 0.189341 0.100 0.423
11 0.092301 0.091 0.323
12 0.069035 0.083 0.232
13 0.047970 0.077 0.148
14 0.005051 0.071 0.071

If we test the relevance of the first factor (k=1), we have the following critical value:

b, = 1+£+~~-+i =3.252
1 2 14

A,=5.83821, the first factor is accepted.

If we want to test the relevance of the two first factors (k = 2), we have:
1 1
b, =|=+--+-—|=2.252
2 14

A, =2.640156, the two first factors are accepted.

According to the broken-stick method, k = 3 components is the right solution. We note however that

the 4" factor is removed narrowly.

The broken-stick approach is often efficient (Jackson, 1993). Its advantage is that it use the number
of variables 'p' for the calculation of the critical value. Its drawback is that it does not take into

account the size of the sample 'n' and the ratio 'n:p' (Franklin and al., 1995).

7 Principal component analysis with R

We perform the same analysis with R to prepare the presentation of resampling techniques in the

next section. We used the following program:
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rm(list=1s())

#importing the data file

library(x1lsx)

crime.data <- read.xlsx(file="crime_dataset pca.xls",sheetIndex=1,header=T)
#performing the pca with princomp

crime.pca <- princomp(crime.data,cor=T)

eig.val <- crime.pca$sdev”2

print(eig.val)

biplot(crime.pca)

We obtain exactly the same results. We show here the biplot graph for the first two factors.
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8 Resampling approaches
8.1 Parallel Analysis Method

The parallel analysis enables to calculate the critical values for the eigenvalues without
determination of their distribution under the null hypothesis (HO: the variables are independent). For
that, it uses a Monte Carlo approach (Neto et al, 2004). The idea is to calculate the many versions of
eigenvalues on artificial datasets with the same characteristics (n and p) than the studied dataset,
but where the variables are independent. A factor is considered relevant if its observed eigenvalue is
higher than the mean or the quantile at 95% level of the simulated eigenvalues under the null

hypothesis. Here are the main steps of the process:

1. Generate randomly a dataset with n instances and p variables. Each variable is distributed as a
Gaussian distribution N(0, 1). The variables are generated in independent way.
Perform a PCA on this dataset. We obtain ‘p’ eigenvalues (4;, k =1, ...,p).
Repeat T times (e.g. T = 1000) the steps (1) and (2).
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4. Compute the mean (y;) of the eigenvalues for each factor as critical value.
5. We consider that a factor is relevant if its eigenvalue computed on the original dataset is higher

than the corresponding critical value (A, > uy).

A more restrictive rule is to use the quantile at 95% [q,2-95]. We accept the factor if (1, > q2'95) at
the step 5 of the process.

Here is the R source code for the calculation of the critical values (T = 1000).

n <- nrow(crime.data)

p <- ncol(crime.data)

gendata <- function(n,p){

df <- list()
for (k in 1:p){

X <- rnorm(n)

df[[K]] <- X
}
df <- data.frame(df)
colnames(df) <- 1:p
return(df)

pca.gendata <- function(n,p){
data.gen <- gendata(n,p)
pca <- princomp(data.gen,cor=T)
eig <- pca$sd~2
return(eig)

}

set.seed(1)

T <- 1000

res <- replicate(T, pca.gendata(n,p))

rnd.mean <- apply(res,1,mean)
print(rnd.mean)

rnd.95 <- apply(res,i,quantile,probs=(0.95))
print(rnd.95)

We show in the table below the mean and the quantile from the parallel analysis. We insert into the

graph the observed eigenvalue on the CRIME dataset and the quantile at 95% level.
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Axis Eigen value RND.Mean RND.95%
5.838210| 2.051060| 2.303778| |5 -
2.640156| 1.771630| 1.952445
1.953466| 1.563366| 1.708953| [6-0 1
1.385635| 1.388553|1.521725
0.634600| 1.239614| 1.347275
0.353217| 1.098187| 1.195431| [4.0 -
0.310052| 0.978249| 1.071068

Parallel analysis

5.0 -

e==f§= Eigen value
= & = RND.95%

0.252763| 0.862912| 0.955985| [ ]

0.228203| 0.752236| 0.840423| [, o4 =

0.189341| 0.649536| 0.737475 -d

0.092301| 0.551690| 0.642607| [*© St SRS —“—e .

0.069035| 0.457871| 0.545664| | ' ' ——— ﬁ.,,_,_".'_‘.
0.047970| 0.366953| 0.448322 0 ) 4 6 3 10 12 14

= U U U S
A O D230V ®NOoO ULAWN -

0.005051| 0.268144| 0.351839 k- Number of eigenvalues

The first three factors are clearly approved. The situation is more complicated for the 4™ factor. The
observed eigenvalue (A,=1.3856) is very close to the mean of the eigenvalues obtained on the
generated datasets (14 = 1.3885). We find again here the uncertainty observed for the broken stick

method. The 5" and the remaining factors can be clearly neglected.

Statistical tables. Some references give statistical tables at the 95% level for various values of n and
p. We can thus directly compare the observed eigenvalue with the provided critical values.

P-value. We can obtain an approximation of the p-value by calculating the proportion of simulated
eigenvalues higher than the observed eigenvalue (). If this p-value is lower than 5%, we can claim

that the factor is significant.

Here is the source code:

prop <- rep(0,length(eig.val))
names(prop) <- names(eig.val)
for (k in 1:length(eig.val)){
prop[k] <- length(which(res[k,] > eig.val[k]))/T
}
print(prop)

We obtain:
-
R R Console ===
; -
> print (prop)
Comp.1l Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9 Comp.l0 Comp.ll
0.000 0.000 0.000 0.501 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Comp.12 Comp.13 Comp.l4
1.000 1.000 1.000
>

4 ¥

The first 3 factors are highly significant, the 5" and the remaining are clearly not significant.
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Parallel analysis for PCA based on covariance matrix. The parallel analysis can be easily extended to
the PCA on covariance matrix. For each variable, we use the observed mean and standard deviation

during the generation of the column according to the Gaussian distribution.
8.2 Randomization approach

The parallel analysis is robust against departures from normality used during the generation of the
artificial dataset. But the process appears uselessly restrictive. We can use the available dataset in

order to create the artificial dataset by using randomization approach.

The protocol is the following: we randomize the values within the variables in the dataset; we
perform the PCA on the randomized dataset; we repeat T times this process (Neto and al., 2004).
Thus, the correlations between the variables, if they exist, are degraded. The main advantage is that
we use the available values, the characteristics of each variable, independently to the others, are

preserved. We use the collected eigenvalues to define the critical values (the quantile or the mean).

set.seed(1)
one.randomization <- function(dataset){

dataset.rdz <-
data.frame(lapply(dataset,function(x) {sample(x,length(x),replace=F)}))

pca.rdz <- princomp(dataset.rdz,cor=T)

eig.rdz <- pca.rdz$sd"2

return(eig.rdz)

}

res.rdz <- replicate(T,one.randomization(crime.data))

rdz.mean <- apply(res.rdz,1,mean)

print(rdz.mean)

rdz.95 <- apply(res.rdz,1,quantile,probs=(0.95))
print(rdz.95)

We obtain a new version of the table from the parallel analysis. It is very similar to the previous one
actually. But now, for the fourth factor, the observed eigenvalue is slightly higher than the mean of

the simulated values (but remains lower than the quantile at 95% level).
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Axis Eigen value RDZ.Mean RDZ.95%
5.838210| 2.062149| 2.330069| |5 -
2.640156| 1.767845| 1.940688
1.953466| 1.561557| 1.703605| [6-0 1
1.385635( 1.385119| 1.505952
0.634600| 1.236817| 1.341472
0.353217| 1.100492| 1.202589| [4.0 -
0.310052| 0.974988| 1.073624
0.252763| 0.860179| 0.951342
0.228203| 0.752086| 0.842079| |, ¢ -
0.189341| 0.648836| 0.739747
0.092301| 0.552711| 0.640388| [0
0.069035| 0.458954| 0.537746| |

5.0 -

3.0 -

Randomization

e==f= Eigen value
= @& = RDZ.95%

= U U S——~
Do a9 Y ®NOo UANWN =

0.047970| 0.367645| 0.445864 0
14 0.005051| 0.270622| 0.352655

. e —p—p—y,
4 6 8 10 12 14

k- Number of eigenvalues

8.3 Bootstrap method (1)

The bootstrap approach enables to obtain an estimation of the standard error of the eigenvalue

calculated on the dataset. We repeat T times the following process in order to obtain various

estimates of each eigenvalue A,: we create a bootstrapped sample of size n; we perform the PCA on

this sample; we collect the values of A,.

Then, we use a variant of Kaiser-Guttman rule. We approve a factor if the quantile at 5% level (/12'05)

of the bootstrapped eigenvalues is higher than 1. This quantile corresponds to the lower limit of

bootstrap confidence interval according to the percentile method.

We use the following program for our dataset:

one.replication <- function(dataset){
n <- nrow(dataset)

index <- sort(sample.int(n,replace=T))
out.dataset <- dataset[index,]

return(out.dataset)

}

pca.replication <- function(dataset){
one.dataset <- one.replication(dataset)
pca <- princomp(one.dataset,cor=T)

eig <- pca$sd~2

return(eig)

}
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res.boot <- replicate(T,pca.replication(crime.data))

boot.05 <- apply(res.boot,1,quantile,probs=(0.05))
print(boot.05)

The results confirm those obtained with the other approaches. There is always a doubt about the 4™
factor (19%° = 0.966).

Axis Boot 0.05
1 5.176478
2 2.297267
3 1.649235
4 0.966243
5 0.459941
6 0.309183
7 0.228693
8 0.169048
9 0.120807
10 0.078729
11 0.047379
12 0.030524
13 0.016199
14 0.001778

8.4 Bootstrap method (2)

This approach checks the equality of the successive eigenvalues (A > A1) using the bootstrap
scheme. In practice, we checks if there are overlap between the percentile confidence interval of the
successive eigenvalues. Thus, we adopt the k™ factor if A%9%% > 1295 je. the lower limit of the

confidence interval of the k™ factor is higher than the upper limit of the following factor.

We can use the results of the bootstrap process from the previous section to calculate the upper

limit of the confidence intervals.

boot.95 <- apply(res.boot,1,quantile,probs=(0.95))
print(boot.95)

We show the values of the lower and upper limits of the confidence intervals into the following table.

Besides the 3 first factors, we observe that the 4" factor is considered relevant with this approach.
Indeed: 13°° = 0.9662 > 122> = 0.8790.
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Boot 0.95 Axis
Axis Boot U.U5 6.6547 1
1 5.1765 3.4381 2
2 2.2973 2.2418 3
3 1.6492 1.6303 4
4 0.9662 0.8790 5
6

7

8

9

10

11

12

13

14

0.0018

A graphical representation of the confidence intervals is more intuitive. Obviously, the gap between

the confidence intervals disappears starting from the 5th factor.

Eigenvalue

I

w

Bootstrap 90% confidenceinterval

Ly

$

b4 $ Sy

.

PS

Py

5 6 7

8 9 10

k- Number of eigenvalues

11

12

13

14

9 Interpretation of the 4™ factor

The first three factors are indisputable. The fifth and the remaining factors are clearly irrelevant. The

doubt concerns the fourth factor. Another way to validate a factor is to check if we can extract a

valuable interpretation. Let us analyze the loadings from the output of Tanagra.
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Attribute Axis_1 Axis_2 Axis_3 Axis_4
. Corr. % (Tot. %) Corr. % (Tot. %) Corr. % (Tot. %) Corr. % (Tot. %)
CrimeRate 0.4721  22% (22 %) 0.4198  18%(40%) 0.2710 7% (47 %) 0.6288 40% (87 %)
Male14-24 54.% (54 %) 0.0781 1% (54 %) 0.2781 8% (62%) -0.3600  13% (75 %)
Southern 61 % (61%) -0.3680 14 % (74 %) 0.1530 2% (77 %) -0.1726 3% (80 %)
Education 70 % (70 %) 0.3591 13 % (83 %) 0.0767 1% (84 %) -0.0701 0% (84 %)
Expend60 63 % (63 %) -0.5002 25 % (88 %) 0.2084 4% (93 %) -0.1400 2% (95 %)
Expend59 64 % (64 %) -0.4915 24 % (88 %) 0.2117 4% (92 %) -0.1144 1% (94 %)
Labor 18 % (18 %) 0.5836  34% (52 %) 0.3219 10 % (63 %) -0.2945 9% (71%)
Male b 9% (9%) 0.5307  28% (37 %) -0.2615 7 % (44 %) -0.6774 46 % (90 %)
PopSize 0.2875 8% (8%) 51% (59 %) 0.1597 3% (62 %) 0.1789 3% (65 %)
NonWhite -0.6819 47 % (47 %) -0.4572 21 % (67 %) 0.2470 6% (74 %) -0.2809 8% (81%)
Unemp14-24 1% (1%) -0.0937 1%(2%) 87 % (89 %) -0.2159 5% (93%)
Unemp35-39 0% (0 %) -0.5733  33%(33%) 56 % (89 %) -0.1624 3% (91 %)
. 88 % (88 %) -0.1075 1% (89 %) 0.0306 0% (89 %) 0.0642 0% (90 %)
IncUnderMed 79 % (79 %) -0.0986 1% (80 %) 0.0410 0% (80 %) -0.2442 6 % (86 %)
Var. Expl. 42 % (42 %) 2.6402 19 7% (61%) 1.9535 147% (75 %) 1.3856 107% (84 %)

It seems that the presence of male positively affects the criminality (MALE: “The number of males

per 1000 females”

; CRIMERATE: “# of offenses reported to police per million populations”). This is a

mysterious result. We need to better understand the context of the study and the situation of the
USA in the 1960s to better understand this result.

Let us not forget an important element for the reading of the fourth factor. It measures the

association between the variables by controlling the influence of the three first factors. Indeed, if we

measure the correlation between MALE and CRIME, we obtain r(MALE,CRIME)
significant at the 5% level.

= 0.2139.

It is not

e e N

EFHE Diagram Component Window Help

w B

Default title

- Dataset (crime_dataset_pca.xls)
: # Define status 1

Principal Component Analysis

Cross-tab parameters

H Sort results =
[=-¥§ Define status 3 e res non =
L'f T Input list  Target () and input (X)
F ¥ X r r2 t Pri[t])
| CrimeRate Male 0.2139 0.0458 1.4690 01488
Components

Data visualization I Statistics Monparametric statistics Instance selection |

| | |
Feature construction | Feature selection | Regression | Factorial analysis |

| | |

| | |

PLS Clustering Spv learning Meta-spv learning |
Scoring Association
|:|‘| ANOVA Randomized Blocks Il_%,Bofs M Test 7 Fisher's test EEGroup exploration
Z.‘:.Bartlett‘s test "j‘ Brown - Forsythe's test m Group characterization ]l_',HotelI.ing's T2

4| m |

Spv learning assessment

But, if we measure the partial correlation, by controlling the three first factors, we have r(MALE,

CRIME / FACT.1, FACT.2, FACT.3) = 0.67338. It becomes significant7.

7 The calculation of the degree of freedom is a bit complicated here because the factors are linear combination of

the original variables.
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TANAGRA 1.4.45 (beta) - [Partial

EF\I& Diagram Component Window Help ==

(= "

Default title: Control variables

=[5 Dataset (crime_dataset_pca.xls) - I
=-£4 Define status 1

B[}_{ Principal Component Analysis 1 i FhL b
isfe Factor rotation 1 z PLAT_focis 1

51:‘ Define status 2 3 PCA_1_focis_3

----- 1# Partial Correlation 1 \

Bf:i Define status 3

: .|| Partial correlati
1# Linear correlation 1 - Conf.Interval

m

L ALLY Att.X r re t p-value Lower.Limit Upper.Limit
1 CrimeRate Male 0.67338 0.45344 5.90288 0.00000 0.47342 0.80733
Components
Data visualization Statistics Monparametric statistics Instance selection Feature construction
Feature selection Regression Factorial analysis PLS Clustering
Spv learning Meta-spv learning Spv learning assessment Scoring Association
| {.‘;Levene’s test @ Normality Test £ Paired T-Test %‘Semi-parﬁal Correlation [ Univariate cg
[afLinear correlation hL One-way ANOVA Y+ Paired V-Test LmT-Test hill Univariate di
L#.Mare Univariate cont stat ]ﬁ[}lne-wa‘,r MANOVA [éfPartial Correlation hu.,,T-Test Unequal Variance +m Univariate O
] i r

Undoubtedly, the fourth factor is informative. But its interpretation is not easy.

10 Conclusion

This tutorial relies heavily on the articles cited in the bibliography, especially the Jackson's paper
(1993). Our contributions are: (1) the approaches are detailed on a dataset; (2) all the tools used are
available (Excel worksheet, R programs), the reader can reproduce all the calculations, he can also

apply the programs on another dataset.

Finally, apart from Bartlett's test, all approaches are roughly equivalent for the detection of the
number of components on our dataset. But, they bring a different perspective for the same problem.

This aspect is really interesting.
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