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1 Topic 

Determining the right number of components in PCA (Principal Component Analysis). 

Principal Component Analysis (PCA)1 is a dimension reduction technique. We obtain a set of factors 

which summarize, as well as possible, the information available in the data. The factors (or 

components) are linear combinations of the original variables. 

Choosing the right number of factors is a crucial problem in PCA. If we select too much factors, we 

include noise from the sampling fluctuations in the analysis. If we choose too few factors, we lose 

relevant information, the analysis is incomplete. Unfortunately, there is not an indisputable approach 

for the determination of the number of factors. As a rule of thumb, we must select only the 

interpretable factors, knowing that the choice depends heavily on the domain expertise. And yet, this 

last one is not always available. We intend precisely to build on the data analysis to get a better 

knowledge on the studied domain. 

In this tutorial, we present various approaches for the determination of the right number of factors 

for PCA based on the correlation matrix. Some of them, such as the Kaiser-Gutman rule or the scree 

plot method, are very popular even if they are not really statistically sound; others seems more 

rigorous, but seldom if ever used because they are not available in the popular statistical software 

suite. 

In a first time, we use Tanagra and the Excel spreadsheet for the implementation of some methods; 

in a second time, especially for the resampling based approaches, we write programs for R from the 

results of the princomp() procedure. 

2 Dataset – PCA using Tanagra 

We use the “crime_dataset_pca.xls” data file. It contains p = 14 variables and n = 47 instances.  

This data file comes from the DASL repository2. We had already processed it previously when we had 

presented the VARIMAX rotation in the context of the PCA3. Thus, we describe shortly the 

implementation and the reading of the output of the PCA in this tutorial. We are focusing on the 

determination of the right number of components. 

2.1 Importing the data file 

After we load the dataset into the Excel spreadsheet, we send it to Tanagra using the add-in 

“Tanagra.xla”4. 

 

                                                           
1 http://en.wikipedia.org/wiki/Principal_component_analysis 

2 http://lib.stat.cmu.edu/DASL/Datafiles/USCrime.html 

3 http://data-mining-tutorials.blogspot.fr/2009/12/varimax-rotation-in-principal-component.html 

4 http://data-mining-tutorials.blogspot.fr/2010/08/tanagra-add-in-for-office-2007-and.html; see http://data-mining-

tutorials.blogspot.fr/2011/07/tanagra-add-on-for-openoffice-calc-33.html for OpenOffice and LibreOffice. 

http://en.wikipedia.org/wiki/Principal_component_analysis
http://lib.stat.cmu.edu/DASL/Datafiles/USCrime.html
http://data-mining-tutorials.blogspot.fr/2009/12/varimax-rotation-in-principal-component.html
http://data-mining-tutorials.blogspot.fr/2010/08/tanagra-add-in-for-office-2007-and.html
http://data-mining-tutorials.blogspot.fr/2011/07/tanagra-add-on-for-openoffice-calc-33.html
http://data-mining-tutorials.blogspot.fr/2011/07/tanagra-add-on-for-openoffice-calc-33.html
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Tanagra is automatically launched, and the dataset is loaded. We check the number of instances (n = 

47) and attributes (p = 14). 

 

We add the DEFINE STATUS component into the diagram in order to specify the variables used for 

the principal component analysis (CRIMERATE…INCUNDERMED). 
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2.2 Performing the PCA 

We add the PRINCIPAL COMPONENT ANALYSIS component (FACTORIAL ANALYSIS tab). By default, 

Tanagra performs a PCA based on the correlation matrix. 

 

Tanagra provides, among others5, the eigenvalues table. We know that the eigenvalue associated to 

a factor corresponds to its variance. Thus, the eigenvalue indicates the importance of the factor. The 

                                                           
5 See http://data-mining-tutorials.blogspot.fr/2009/04/principal-component-analysis-pca.html for a detailed 

presentation of the output of the PCA component. 

http://data-mining-tutorials.blogspot.fr/2009/04/principal-component-analysis-pca.html
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higher is the value, the higher is the importance of the factor. The challenge is determining the 

number of relevant factors that we need to keep, on the basis of their eigenvalue. This is not really 

easy. Several aspects should be considered (Jackson, 1993): the number of instances ‘n’; the number 

of variables ‘p’; the ratio between the instances and the variables ‘n:p’; the correlation between the 

variables; the possible existence of groups of correlated variables. 

The ratio 'n:p' is an important thing. It determines the stability of the factors. Some references 

indicate that 'n:p' must be higher 3 in order to obtain reliable results (Grossman et al., 1991). We 

have 47/14 = 3.36 for our dataset. 

3 Scree plot 

3.1 Scree plot 

Cattell (1966, 1977) proposes to study the plotting of the eigenvalues (k) according to the number of 

factors. The idea is to detect the "elbow" in the scree plot, highlighting a modification of the 

structure of the data. This approach is interesting because it is nuanced. It enables to go beyond the 

purely arbitrary numerical criterion. But it is complicated to implement because it can be subjective. 

The detection is not always obvious. We must answer several questions: where is located the elbow? 

Is it unique? Do we include the factor associated with the elbow in the selection? 

Usually, the elbow is pronounced when we handle highly correlated variables. When the correlations 

are low or when there are blocks of correlated variables, rather than a single "obvious" solution, we 

face several possible solutions. Concerning the integration of the elbow in the selection, Cattel was 

hesitant. Originally (1966), he advised to select only the factors which are before the elbow; then, in 

a second time (1977), he advocates to integrate it. Actually, it depends on the value of the elbow. If 

the corresponding eigenvalue is high, we must include it into the selection. If it is low, the factor can 

be neglected. 

About the CRIME dataset, we obtain: 
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For the first one, we must include the elbow into the selection i.e. we select k = 2 factors. Indeed, the 

eigenvalue (2 = 2.64) associated with the 2nd factor is high. It corresponds to 18.86% of the variance. 

If we prefer the second solution, we must neglect the 5th factor. Indeed, the corresponding 

eigenvalue is too low (5 = 0.6346, 4.53% of the total variance). We select k = 4 factors in this case. 

As we note, the determination of the right solution is not obvious. To improve the reading of this 

graph, we can use a second graph where we represent the evolution of the cumulative variance 

explained by the first k factors. We can detect also another elbow. It indicates that the remaining 

factors correspond to a too low proportion of variance and can be neglected. 

For our dataset, we have the following graph: 

 

It seems that the solution with k = 4 factors is the appropriate one. Clearly, the choice of k = 2 

factors is not good. The proportion of variance after the 2nd factor cannot be neglected. 

3.2 Proportion of total variance 

Some references advise to explicitly use the proportion of total variance to determine the number of 

factors. The rule would be: "we select enough factors in order to explain at least x % of the total 

variance". This strategy is not really reliable because it does not take account for the correlations 

between the variables. For our dataset, if we select the factors which reproduce 95% of the total 

variance, we must select 8 (!) factors. This is clearly excessive. From the 5th factor, the eigenvalues 

associated to the factors are too low. They correspond to the sampling fluctuations. 

But, after the fact, when we have determined the right number of factors, it can be interesting to 

analyze the proportion of variance that they reproduce. This is important in the graphical 

representation when we want to evaluate the proximities between the instances. 

4 Kaiser-Guttman rule and its variant 

4.1 Kaiser – Guttman rule 

The Kaiser-Guttman rule is based on a very simplistic idea. If the variables are independent, the 

eigenvalues for all the factors is 1. Thus, we select the factors which have an eigenvalue higher to 1. 
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For the CRIME dataset, we select k = 4 factors if we use the Kaiser-Guttman rule. 

Kaiser critical 

value 1

Axis Eigen value % explained % cumulated

1 5.838210 41.70% 41.70%

2 2.640156 18.86% 60.56%

3 1.953466 13.95% 74.51%

4 1.385635 9.90% 84.41%

5 0.634600 4.53% 88.94%

6 0.353217 2.52% 91.47%

7 0.310052 2.21% 93.68%

8 0.252763 1.81% 95.49%

9 0.228203 1.63% 97.12%

10 0.189341 1.35% 98.47%

11 0.092301 0.66% 99.13%

12 0.069035 0.49% 99.62%

13 0.047970 0.34% 99.96%

14 0.005051 0.04% 100.00%

Tot. 14 - -
 

A numerical threshold is always comforting, even if it sometimes appears as lacking nuance. We note 

however that this rule confirms the reading of the scree plot above. 

4.2 Karlis – Saporta - Spinaki rule (2003) 

The threshold “1” is a too permissive criterion in the majority of cases, especially when the data are 

weakly correlated. Above all, it does not take into consideration the characteristics of the dataset 

(number of instances n, number of variables p, the ratio n:p).  

A more restrictive rule overcomes this drawback. It is based on a statistical process. We select the 

factors for which their eigenvalue is significantly higher than 1 (Saporta, 2006)6. At the 5% level 

(approximately), the critical region is defined as follows: 

1

1
21






n
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  

This rule has a good behavior. It is more restrictive when the number of variables p increases against 

to the number of instances n. For the CRIME dataset, the critical value is:  
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With this new threshold (2.063), we keep only the (k= 2) first components. We remind that this is 

one of the possible solutions identified in the scree plot above. After all, this solution is perhaps not 

so bad. We observe also that the third eigenvalue (3 = 1.953466) is not far from the critical value. 

                                                           
6 See also http://cedric.cnam.fr/fichiers/RC489.pdf 

http://cedric.cnam.fr/fichiers/RC489.pdf
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n 47

p 14

Karlis et al. 

critical value 2.063

Axis Eigen value % explained % cumulated

1 5.838210 41.70% 41.70%

2 2.640156 18.86% 60.56%

3 1.953466 13.95% 74.51%

4 1.385635 9.90% 84.41%

5 0.634600 4.53% 88.94%

6 0.353217 2.52% 91.47%

7 0.310052 2.21% 93.68%

8 0.252763 1.81% 95.49%

9 0.228203 1.63% 97.12%

10 0.189341 1.35% 98.47%

11 0.092301 0.66% 99.13%

12 0.069035 0.49% 99.62%

13 0.047970 0.34% 99.96%

14 0.005051 0.04% 100.00%

Tot. 14 - -
 

5 Bartlett’s test 

5.1 Detecting the existence of relevant factors 

The Bartlett's sphericity test enables to check if the correlation matrix is significantly different to the 

identity matrix. In our context, we can use it to determine if one of the eigenvalues at least is 

significantly different to 1. That means that there is at least one relevant factor. But we cannot 

determine the number of relevant factors. 

The test statistic is defined as follows: 
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Under the null hypothesis, it follows a ² distribution with [p x (p-1) / 2] degree of freedom. 

The determinant of the correlation matrix is equal to the product of the eigenvalues. We can use the 

results from the PCA for the calculations: 
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For the CRIME dataset, we obtain 

  810889.4005051.0838210.5  
k

kR   

Thus, the test statistic and the corresponding p-value are computed below: 
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n 47

p 14

Axis Eigen value % explained % cumulated

1 5.838210 41.70% 41.70%

2 2.640156 18.86% 60.56% |R| 4.889E-08

3 1.953466 13.95% 74.51%

4 1.385635 9.90% 84.41% C 681.76

5 0.634600 4.53% 88.94% d.f. 91

6 0.353217 2.52% 91.47% p-value 2.941E-91

7 0.310052 2.21% 93.68%

8 0.252763 1.81% 95.49%

9 0.228203 1.63% 97.12%

10 0.189341 1.35% 98.47%

11 0.092301 0.66% 99.13%

12 0.069035 0.49% 99.62%

13 0.047970 0.34% 99.96%

14 0.005051 0.04% 100.00%

Tot. 14 - -
 

Clearly, there is at least one relevant factor for our analysis. 

Note: There is however a restriction on the use of this test, it tends to be always significant when the 

sample size increases.  

5.2 Detection of the number of relevant factors 

A variant of the Bartlett's test for the determination of the right number of factors exists. It was 

originally developed for the PCA based on the covariance matrix (Saporta, 2006; Grossman and al., 

1991). But, we can use it in our context. It seems that the test becomes conservative in this case i.e. 

it tends to select too few numbers of factors (Jackson, 1993; Neto et al., 2004). We will study its 

behavior on our data file. 

The process is based on the following idea: we select "k" factors because the (p-k) eigenvalues of the 

remaining factors are equals. These eigenvalues correspond to the horizontal part of the scree plot, 

after the "elbow". Here is the null hypothesis of the test: 

pkH   10 :  

Unfortunately, the references used vary about the formula of the test statistic. I decided to use the 

one presented by Saporta (2006), because it is consistent to the Bartlett's test of sphericity when we 

check the equality of all the factors. 

Under the null hypothesis, the (p-k) last eigenvalues are equals. Their arithmetic mean    ) is equal to 

their geometrical mean (  ). We use the following test statistic to compare them:   

















 





~ln)(

6

112
kp

p
nck  

Where  



p

ki

i
kp 1

1
  



Didacticiel - Études de cas   R.R. 

12 janvier 2013  Page 9 

And    



p

ki

i
kp 1

ln
1~

ln   

Under H0, it follows a ² distribution with 
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degree of freedom. 

This test statistic is consistent to the Bartlett’s sphericity test. Indeed, for k = 0, we test the equality 

of all the eigenvalues i.e. k=1, k and     . We verify that: 
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Unfortunately, the degrees of freedom are not consistent. When k = 0, we have d.f. = (p+2)(p-1)/2, 

this is different to d.f. = p x (p - 1) / 2 of the Bartlett’s test of sphericity. However, all references are 

agreed upon the formula above. It remains a mystery.  

We elaborate a worksheet under Excel. We test from k = 0 (equality of all the eigenvalues) to k = 12 

(equality of 13th and 14th eigenvalues). 

k i lambda lambda_barre lambda_tilde ln(l_barre/l_tilde) c_k d.f. p-value

0 1 5.838210 1.0000 0.3005 1.2024 681.7625 104 9.99E-86

1 2 2.640156 0.6278 0.2392 0.9651 508.1433 90 1.36E-59

2 3 1.953466 0.4601 0.1958 0.8545 415.2914 77 7.57E-48

3 4 1.385635 0.3244 0.1588 0.7140 318.0966 65 5.05E-35

4 5 0.634600 0.2183 0.1279 0.5344 216.4189 54 2.56E-21

5 6 0.353217 0.1720 0.1071 0.4741 172.8204 44 3.56E-17

6 7 0.310052 0.1493 0.0922 0.4821 156.2073 35 3.00E-17

7 8 0.252763 0.1264 0.0775 0.4884 138.4702 27 6.13E-17

8 9 0.228203 0.1053 0.0637 0.5030 122.2381 20 1.10E-16

9 10 0.189341 0.0807 0.0493 0.4926 99.7420 14 5.31E-15

10 11 0.092301 0.0536 0.0352 0.4189 67.8603 9 3.99E-11

11 12 0.069035 0.0407 0.0256 0.4643 56.4095 5 6.69E-11

12 13 0.047970 0.0265 0.0156 0.5325 43.1292 2 4.31E-10

13 14 0.005051  

Clearly, this test is not appropriate for our dataset. It claims that all the factors are relevant. This is 

not consistent with the results of the other approaches. It seems that the Bartlett's test is usable only 

for the determination of the existence of relevant factors, only if the number of instances is not too 

high. We cannot use it for the determination of the right number of factors (Neto and al., 2004). 

6 Broken-stick method 

This approach is based on the following idea: under the null hypothesis where the total variance is 

randomly allocated on the factors, the eigenvalues is distributed according to the "broken-stick" 

distribution (Frontier, 1976; Legendre-Legendre, 1983). 
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One of the main interests of the approach is that the critical values are very easily to calculate. For 

the evaluation of a solution with "k" components, the critical value is: 
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If we want to reason in terms of proportion of total variance, the critical value becomes: 
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We can calculate the threshold for each value of k in a worksheet: 

k Eigen value 1/i b_k

1 5.838210 1.000 3.252

2 2.640156 0.500 2.252

3 1.953466 0.333 1.752

4 1.385635 0.250 1.418

5 0.634600 0.200 1.168

6 0.353217 0.167 0.968

7 0.310052 0.143 0.802

8 0.252763 0.125 0.659

9 0.228203 0.111 0.534

10 0.189341 0.100 0.423

11 0.092301 0.091 0.323

12 0.069035 0.083 0.232

13 0.047970 0.077 0.148

14 0.005051 0.071 0.071  

If we test the relevance of the first factor (k=1), we have the following critical value: 
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1 = 5.83821, the first factor is accepted. 

If we want to test the relevance of the two first factors (k = 2), we have: 
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2 = 2.640156, the two first factors are accepted. 

According to the broken-stick method, k = 3 components is the right solution. We note however that 

the 4th factor is removed narrowly. 

The broken-stick approach is often efficient (Jackson, 1993). Its advantage is that it use the number 

of variables 'p' for the calculation of the critical value. Its drawback is that it does not take into 

account the size of the sample 'n' and the ratio 'n:p' (Franklin and al., 1995). 

7 Principal component analysis with R 

We perform the same analysis with R to prepare the presentation of resampling techniques in the 

next section. We used the following program: 



Didacticiel - Études de cas   R.R. 

12 janvier 2013  Page 11 

rm(list=ls()) 

#importing the data file 

library(xlsx) 

crime.data <- read.xlsx(file="crime_dataset_pca.xls",sheetIndex=1,header=T) 

#performing the pca with princomp 

crime.pca <- princomp(crime.data,cor=T) 

eig.val <- crime.pca$sdev^2 

print(eig.val) 

biplot(crime.pca) 

We obtain exactly the same results. We show here the biplot graph for the first two factors. 

 

8 Resampling approaches 

8.1 Parallel Analysis Method 

The parallel analysis enables to calculate the critical values for the eigenvalues without 

determination of their distribution under the null hypothesis (H0: the variables are independent). For 

that, it uses a Monte Carlo approach (Neto et al, 2004). The idea is to calculate the many versions of 

eigenvalues on artificial datasets with the same characteristics (n and p) than the studied dataset, 

but where the variables are independent. A factor is considered relevant if its observed eigenvalue is 

higher than the mean or the quantile at 95% level of the simulated eigenvalues under the null 

hypothesis. Here are the main steps of the process: 

1. Generate randomly a dataset with n instances and p variables. Each variable is distributed as a 

Gaussian distribution N(0, 1). The variables are generated in independent way.  

2. Perform a PCA on this dataset. We obtain ‘p’ eigenvalues (          ). 

3. Repeat T times (e.g. T = 1000) the steps (1) and (2). 
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4. Compute the mean (  ) of the eigenvalues for each factor as critical value. 

5. We consider that a factor is relevant if its eigenvalue computed on the original dataset is higher 

than the corresponding critical value (     ). 

A more restrictive rule is to use the quantile at 95% [  
    ]. We accept the factor if (     

    ) at 

the step 5 of the process. 

Here is the R source code for the calculation of the critical values (T = 1000). 

#***************** 

#PARALLEL ANALYSIS 

#***************** 

#n : number of instance, p : number of variables 

n <- nrow(crime.data) 

p <- ncol(crime.data) 

#generation of a dataset 

gendata <- function(n,p){ 

  df <- list() 

  for (k in 1:p){ 

    x <- rnorm(n) 

    df[[k]] <- x 

  } 

  df <- data.frame(df) 

  colnames(df) <- 1:p 

  return(df) 

} 

#pca on gendata 

pca.gendata <- function(n,p){ 

  data.gen <- gendata(n,p) 

  pca <- princomp(data.gen,cor=T) 

  eig <- pca$sd^2 

  return(eig) 

} 

set.seed(1) 

#repeating T times the analysis 

T <- 1000 

res <- replicate(T, pca.gendata(n,p)) 

#computing the mean of the eigenvalues 

rnd.mean <- apply(res,1,mean) 

print(rnd.mean) 

#computing the 0.95 percentile 

rnd.95 <- apply(res,1,quantile,probs=(0.95)) 

print(rnd.95) 

We show in the table below the mean and the quantile from the parallel analysis. We insert into the 

graph the observed eigenvalue on the CRIME dataset and the quantile at 95% level. 
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The first three factors are clearly approved. The situation is more complicated for the 4th factor. The 

observed eigenvalue (4=1.3856) is very close to the mean of the eigenvalues obtained on the 

generated datasets (4 = 1.3885). We find again here the uncertainty observed for the broken stick 

method. The 5th and the remaining factors can be clearly neglected. 

Statistical tables. Some references give statistical tables at the 95% level for various values of n and 

p. We can thus directly compare the observed eigenvalue with the provided critical values. 

P-value. We can obtain an approximation of the p-value by calculating the proportion of simulated 

eigenvalues higher than the observed eigenvalue (k). If this p-value is lower than 5%, we can claim 

that the factor is significant. 

Here is the source code: 

#computing the proportion of values upper than eig.val 

prop <- rep(0,length(eig.val)) 

names(prop) <- names(eig.val) 

for (k in 1:length(eig.val)){ 

 prop[k] <- length(which(res[k,] > eig.val[k]))/T 

} 

print(prop)  

We obtain: 

 

The first 3 factors are highly significant, the 5th and the remaining are clearly not significant. 

Axis Eigen value RND.Mean RND.95%

1 5.838210 2.051060 2.303778

2 2.640156 1.771630 1.952445

3 1.953466 1.563366 1.708953

4 1.385635 1.388553 1.521725

5 0.634600 1.239614 1.347275

6 0.353217 1.098187 1.195431

7 0.310052 0.978249 1.071068

8 0.252763 0.862912 0.955985

9 0.228203 0.752236 0.840423

10 0.189341 0.649536 0.737475

11 0.092301 0.551690 0.642607

12 0.069035 0.457871 0.545664

13 0.047970 0.366953 0.448322

14 0.005051 0.268144 0.351839
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Parallel analysis for PCA based on covariance matrix. The parallel analysis can be easily extended to 

the PCA on covariance matrix. For each variable, we use the observed mean and standard deviation 

during the generation of the column according to the Gaussian distribution. 

8.2 Randomization approach 

The parallel analysis is robust against departures from normality used during the generation of the 

artificial dataset. But the process appears uselessly restrictive. We can use the available dataset in 

order to create the artificial dataset by using randomization approach. 

The protocol is the following: we randomize the values within the variables in the dataset; we 

perform the PCA on the randomized dataset; we repeat T times this process (Neto and al., 2004). 

Thus, the correlations between the variables, if they exist, are degraded. The main advantage is that 

we use the available values, the characteristics of each variable, independently to the others, are 

preserved. We use the collected eigenvalues to define the critical values (the quantile or the mean). 

#************** 

# RANDOMIZATION 

#************** 

set.seed(1) 

one.randomization <- function(dataset){ 

 dataset.rdz <- 

data.frame(lapply(dataset,function(x){sample(x,length(x),replace=F)})) 

 pca.rdz <- princomp(dataset.rdz,cor=T) 

 eig.rdz <- pca.rdz$sd^2 

 return(eig.rdz) 

} 

 

#repeat the procedure 

res.rdz <- replicate(T,one.randomization(crime.data)) 

 

#mean 

rdz.mean <- apply(res.rdz,1,mean) 

print(rdz.mean) 

#quantile 

rdz.95 <- apply(res.rdz,1,quantile,probs=(0.95)) 

print(rdz.95) 

We obtain a new version of the table from the parallel analysis. It is very similar to the previous one 

actually. But now, for the fourth factor, the observed eigenvalue is slightly higher than the mean of 

the simulated values (but remains lower than the quantile at 95% level). 
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8.3 Bootstrap method (1) 

The bootstrap approach enables to obtain an estimation of the standard error of the eigenvalue 

calculated on the dataset. We repeat T times the following process in order to obtain various 

estimates of each eigenvalue k: we create a bootstrapped sample of size n; we perform the PCA on 

this sample; we collect the values of k. 

Then, we use a variant of Kaiser-Guttman rule. We approve a factor if the quantile at 5% level (  
    ) 

of the bootstrapped eigenvalues is higher than 1. This quantile corresponds to the lower limit of 

bootstrap confidence interval according to the percentile method. 

We use the following program for our dataset: 

#********** 

# BOOTSTRAP 

#********** 

 

#creating one replication of the dataset 

one.replication <- function(dataset){ 

 n <- nrow(dataset) 

 index <- sort(sample.int(n,replace=T)) 

 out.dataset <- dataset[index,] 

 return(out.dataset) 

} 

 

#performing a pca on a replication of the dataset 

pca.replication <- function(dataset){ 

 one.dataset <- one.replication(dataset) 

 pca <- princomp(one.dataset,cor=T) 

 eig <- pca$sd^2 

 return(eig) 

} 

Axis Eigen value RDZ.Mean RDZ.95%

1 5.838210 2.062149 2.330069

2 2.640156 1.767845 1.940688

3 1.953466 1.561557 1.703605

4 1.385635 1.385119 1.505952

5 0.634600 1.236817 1.341472

6 0.353217 1.100492 1.202589

7 0.310052 0.974988 1.073624

8 0.252763 0.860179 0.951342

9 0.228203 0.752086 0.842079

10 0.189341 0.648836 0.739747

11 0.092301 0.552711 0.640388

12 0.069035 0.458954 0.537746

13 0.047970 0.367645 0.445864

14 0.005051 0.270622 0.352655
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#bootstraping pca 

res.boot <- replicate(T,pca.replication(crime.data)) 

 

#quantile 0.05 

boot.05 <- apply(res.boot,1,quantile,probs=(0.05)) 

print(boot.05) 

The results confirm those obtained with the other approaches. There is always a doubt about the 4th 

factor (   
          ). 

Axis Boot 0.05

1 5.176478

2 2.297267

3 1.649235

4 0.966243

5 0.459941

6 0.309183

7 0.228693

8 0.169048

9 0.120807

10 0.078729

11 0.047379

12 0.030524

13 0.016199

14 0.001778
 

8.4 Bootstrap method (2) 

This approach checks the equality of the successive eigenvalues (k > k+1) using the bootstrap 

scheme. In practice, we checks if there are overlap between the percentile confidence interval of the 

successive eigenvalues. Thus, we adopt the kth factor if    
         

      i.e. the lower limit of the 

confidence interval of the kth factor is higher than the upper limit of the following factor. 

We can use the results of the bootstrap process from the previous section to calculate the upper 

limit of the confidence intervals. 

#quantile 0.95 

boot.95 <- apply(res.boot,1,quantile,probs=(0.95)) 

print(boot.95) 

We show the values of the lower and upper limits of the confidence intervals into the following table. 

Besides the 3 first factors, we observe that the 4th factor is considered relevant with this approach. 

Indeed:   
              

           .  
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Boot 0.95 Axis

Axis
Boot 0.05 6.6547 1

1 5.1765 3.4381 2

2 2.2973 2.2418 3

3 1.6492 1.6303 4

4 0.9662 0.8790 5

5 0.4599 0.5374 6

6 0.3092 0.3787 7

7 0.2287 0.2945 8

8 0.1690 0.2263 9

9 0.1208 0.1652 10

10 0.0787 0.0975 11

11 0.0474 0.0653 12

12 0.0305 0.0426 13

13 0.0162 0.0053 14

14 0.0018
 

A graphical representation of the confidence intervals is more intuitive. Obviously, the gap between 

the confidence intervals disappears starting from the 5th factor. 

 

9 Interpretation of the 4
th
 factor 

The first three factors are indisputable. The fifth and the remaining factors are clearly irrelevant. The 

doubt concerns the fourth factor. Another way to validate a factor is to check if we can extract a 

valuable interpretation. Let us analyze the loadings from the output of Tanagra. 
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Attribute

- Corr. % (Tot. %) Corr. % (Tot. %) Corr. % (Tot. %) Corr. % (Tot. %)

CrimeRate 0.4721 22 % (22 %) -0.4198 18 % (40 %) 0.2710 7 % (47 %) -0.6288 40 % (87 %)

Male14-24 -0.7332 54 % (54 %) 0.0781 1 % (54 %) 0.2781 8 % (62 %) -0.3600 13 % (75 %)

Southern -0.7788 61 % (61 %) -0.3680 14 % (74 %) 0.1530 2 % (77 %) -0.1726 3 % (80 %)

Education 0.8375 70 % (70 %) 0.3591 13 % (83 %) 0.0767 1 % (84 %) -0.0701 0 % (84 %)

Expend60 0.7952 63 % (63 %) -0.5002 25 % (88 %) 0.2084 4 % (93 %) -0.1400 2 % (95 %)

Expend59 0.7991 64 % (64 %) -0.4915 24 % (88 %) 0.2117 4 % (92 %) -0.1144 1 % (94 %)

Labor 0.4283 18 % (18 %) 0.5836 34 % (52 %) 0.3219 10 % (63 %) -0.2945 9 % (71 %)

Male 0.3001 9 % (9 %) 0.5307 28 % (37 %) -0.2615 7 % (44 %) -0.6774 46 % (90 %)

PopSize 0.2875 8 % (8 %) -0.7152 51 % (59 %) 0.1597 3 % (62 %) 0.1789 3 % (65 %)

NonWhite -0.6819 47 % (47 %) -0.4572 21 % (67 %) 0.2470 6 % (74 %) -0.2809 8 % (81 %)

Unemp14-24 0.0952 1 % (1 %) -0.0937 1 % (2 %) -0.9321 87 % (89 %) -0.2159 5 % (93 %)

Unemp35-39 0.0598 0 % (0 %) -0.5733 33 % (33 %) -0.7451 56 % (89 %) -0.1624 3 % (91 %)

FamIncome 0.9378 88 % (88 %) -0.1075 1 % (89 %) 0.0306 0 % (89 %) 0.0642 0 % (90 %)

IncUnderMed -0.8864 79 % (79 %) -0.0986 1 % (80 %) 0.0410 0 % (80 %) -0.2442 6 % (86 %)

Var. Expl. 5.8382 42 % (42 %) 2.6402 19 % (61 %) 1.9535 14 % (75 %) 1.3856 10 % (84 %)

Axis_1 Axis_2 Axis_3 Axis_4

 

It seems that the presence of male positively affects the criminality (MALE: “The number of males 

per 1000 females”; CRIMERATE: “# of offenses reported to police per million populations”). This is a 

mysterious result. We need to better understand the context of the study and the situation of the 

USA in the 1960s to better understand this result. 

Let us not forget an important element for the reading of the fourth factor. It measures the 

association between the variables by controlling the influence of the three first factors. Indeed, if we 

measure the correlation between MALE and CRIME, we obtain r(MALE,CRIME) = 0.2139. It is not 

significant at the 5% level. 

 

But, if we measure the partial correlation, by controlling the three first factors, we have r(MALE, 

CRIME / FACT.1, FACT.2, FACT.3) = 0.67338. It becomes significant7. 

                                                           
7 The calculation of the degree of freedom is a bit complicated here because the factors are linear combination of 

the original variables. 
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Undoubtedly, the fourth factor is informative. But its interpretation is not easy. 

10 Conclusion 

This tutorial relies heavily on the articles cited in the bibliography, especially the Jackson's paper 

(1993). Our contributions are: (1) the approaches are detailed on a dataset; (2) all the tools used are 

available (Excel worksheet, R programs), the reader can reproduce all the calculations, he can also 

apply the programs on another dataset. 

Finally, apart from Bartlett's test, all approaches are roughly equivalent for the detection of the 

number of components on our dataset. But, they bring a different perspective for the same problem. 

This aspect is really interesting. 
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