Tanagra Tutorial R.R.

1 Introduction

Determining the right number of neurons and layers in a multilayer perceptron.

At first glance, artificial neural networks seem mysterious. The references | read often spoke
about biological metaphors, which were very interesting of course, but did not answer the simple
questions | asked myself: Is the method applicable to predictive analysis? For which data
configurations and kind of problems does it perform best? How to set parameter values - if they

exist - associated with the method to make it more efficient on my data?

Over time, | have come to understand that the multilayer perceptron was one of the most
popular neural network approach for supervised learning, and that it was very effective if we
know to determine the number of neurons in the hidden layers. Two equally disastrous opposite
choices are to be avoided: if we set too little neurons, the model is not very competitive, unable
to discover the relationship between the target variable and the predictors, the bias of the error
is high; if we set too much neurons, the model becomes too dependent to the learning sample,
the variance of the error is too high. The difficulties come often that we do not really understand
the influence of the numbers of the neurons in the hidden layer (if we have only one hidden

layer for instance) on the characteristics of the classifier.

In this tutorial, we will try to explain the role of neurons in the hidden layer of the perceptron.
We will use artificially generated data. We treat a two-dimensional problem in order to use
graphical representations to describe concretely the behavior of the perceptron. We work with
Tanagra 1.4.48 in a first step. Then, we use R (R 2.15.2) to create a program to determine
automatically the right number of neurons into the hidden layer. We use the nnet' package for
R. The French version of this tutorial was written in April 2013, the versions of the tools are a

little old, but the results, the comments and the conclusion remain up-to-date.

2 Dataset
The data file “artificial2d.xls” contains two datasets with n = 2000 instances. We have p = 2

descriptors X1 (defined in [-0.5, +0.5]) and X2 ([0, 1]). The target Y is binary {pos, neg}.
1. The first dataset “data2” corresponds to a problem defined as follows:

IF (0.1 #+ X2 > X12) THEN Y = pos ELSE Y = neg

' https://cran.r-project.org/web/packages/nnet/index.html
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2. The underlying concept for “data4” is more complicated
If (X1 < 0)
THEN IF (0.5 * X2 > 0.5 - IX1l) THEN Y = pos ELSE Y = neg
ELSE IF (X2 > X1 et 1 - X2 > X1) THEN Y = pos ELSE Y = neg

Of course, we do not have this information in real studies. The aim of this tutorial is above all to

understand the behavior of the perceptron.

3 Single layer perceptron with Tanagra

A single layer perceptron has not a hidden layer. We have thus a linear classifier. We analysis

its behavior on our datasets.

3.1 Data Importation

We open the artificial2d.xls data file into Excel. We select the data range in the first sheet

data2, that we send to Tanagra using the Tanagra.xla add-in°.

mi gi h artificial2d.xls [Mode de CDI"I"IpEthIh‘tE] - MICFDSGH.' [gﬁﬂ
Accueil | Insert|o| Mise en| F-:urmule| Donne1| Re'v.r|5|-::||| ﬁ.fflcha:| Dwelo;| Complé |@ - B X
Sipina ~
Tanagra =
Execute Tanagra —
| st About...
AT T | x1 |
- / - - -
A ~
Execute Tanagra / | = |
1 X1
¥
2 -0.35 Dataset range (induding the name of the attributes - first row):
3 0.46 SAS1:6052001 J
4 0.00
5 0.47 OK Cancel |
b -0.39( - )
T -0.425 0.305 neg
8 0.467 0.948 neg
9 0.295 0.266 neg
M 4 » ¥| data? < datad ¥ 0| m
Moyenne : 0.25093325  Nb [non vides) : 6003 Somme : 1003.733 u%-lﬁl-
e ]

Tanagra is automatically launched. We have n = 2000 instances with 3 variables, of which p =

2 predictor variables.

2 http://data-mining-tutorials.blogspot.fr/2010/08/tanagra-add-in-for-office-2007-and.html

29 décembre 2017 Page 2


http://data-mining-tutorials.blogspot.fr/2010/08/tanagra-add-in-for-office-2007-and.html

Tanagra Tutorial

R.R.

¥ TANAGRA 1.4.48 - [Dataset (tan32D2.txt) ==

E File Diagram Cemponent Window Help

.5
»

[ [= ][]

0w B/ %

Analyziz

----- Dataset (tan32D2.kxt)

3 attribute(s)
2000 example(s)

*1 Continue
¥2 Continue
uisc =

Dataset description

Attribute Category Informations

m

Computaticn time : 0 ms.
Created at 12/04/2013 14:42:21

4

Data visualization |
Feature construction |
PLS |

|

Spv learning assessment

Components
Statistics | Nonparametric statistics | Instance selection |
Feature selection | Regression | Factorial analysis |
Clustering | Spv learning | Meta-spv learning |
Scoring | Association |

@'Correlation scatterplot
Export dataset

EScatterplot
]ﬁ;Scatterplot with label

‘q."iew dataset
E._i,\"iew multiple scatterplot

3.2

Single Layer Perceptron

The DEFINE STATUS component allows to define the role of the variables.

¥ TANAGRA 1448 - [Dataset (tan32D2:et) Pefmesteimse sowses |

ERfcitx)
1=

Define attribute statuses

E File Diagram Component Window| |Param

|!:i) [ Aeributes: T Target | nput | iustative

Analysis / EQ i -
D
=/ Dataset (tan3202.txt) ok
i #y Define status 1 -
\\\

! | Clearall Clearselected

N E
[ Goneel | )

Datavisualization |
Feature construction |
PLS |

Spv learning assessment |

@'Correlation scatterplot
Export dataset

I

i
Parameters |
. Attibutes | Target Input | lllustrative .
Stati slection |
Feature s g 2 *2 inalysis |
Cluste | earnming |
Scor
]1, Scatterp
]L. Scatterg
ilil ﬁl [ clearall | [Clearselected |
[ ok [ cancel |[ Hew |

29 décembre 2017

Page 3



Tanagra Tutorial R.R.

We click on the shortcut in the toolbar. We set Y as TARGET, X1 and X2 as INPUT. Then, we

insert the MULTILAYER PERCEPTRON (SPV LEARNING tab) component into the diagram.

rﬂ TANAGRA 1.4.48 - [Dataset (tan32D 2. txt)] E‘Eﬂﬂ
f File Diagram Component Window Help - | & %
= WY
Analysiz -

= [ Dataset (tan3202. 00t Dataset description

=-#% Define status 1
Supervised Learning 1 {Multilayer perceptron)

3 attribute(s)
2000 example(s)

Parameters... Attribute Category Informations

Supervised parameters... 6 31 Continuc

Execute povl Continue

View Y Discrete 2 values E

Computaticn time : 0 ms.
Created at 12/04/2013 14:42:21

Components
Data visualiza® Statistics Monparametric statistics Instance selection
Feature construct Feature selection Regression Factorial analysis
PLS Clustering | Spv learning Meta-spv learning
Spv learning assessment Scoring Association
L;«_i Linear discriminant analysis \3:" Multilayer perceptron [ Naive bayes Eh{ PLS-D¢#
#Log—Reg TRIRLS ,J?Multinomial Logistic Regression ﬂ[ﬂ Maive bayes continuous I@ PLS-LC
[l | L1} r
e
m——

We set the settings by clicking on the SUPERVISED PARAMETERS menu.

- — v - [ = 1
MLP parameters MLP parameters MLP parameters
Pafl Iheters Parameters Parameters
MNetwork Learning Stopping rule Metwork Leamning Stopping rule Network Learning Stopping rule
Learni te : 0.1500
. s Max iteration : 100 @
[[Juse hidden layer Validation set proportion : [0.20
Error rate thresold - 10.01
Attribute transformation
ber of neurons 10 @ [ @ none N [ Test errar stagnation [
() centered
B center Gap test stagnation : 20 EI
() standardized |
2 normalized
[ ok || cancel |[ Hew | [ ok || cancet || kew | [ ok || cance |[ Hew |

A = I = e = ]

We want to perform a single layer perceptron. For that, we unselect the Use Hidden Layer
option into the NETWORK tab. Into the LEARNING tab, we set Attribute Transformation =
none. We note that, by default, Tanagra subdivides the dataset into learning set (80%) and
validation set (20%). This last one is used to monitor the decreasing of the error. Because it is
not used for the calculations of the weights, it gives a good approximation of the generalization
error rate. Into the STOPPING RULE tab, we observe that the learning process is stopped after

100 iterations or when the error rate is lower than 1%.
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After we validate these settings, we launch the calculations by clicking on the VIEW menu.
e =
E File Diagram Component Window Help mmm
0w B
- Dataset (tan32D2.txt
= -’a aset (tan ) Values prediction
=-£3 Define status 1 D
- |I| Supervised Learning 1 (Multilayer perceptron) --
Parameters... - e 1141
Supervised parameters... g - - 48 859
sum 1300 700 2000
Execute
View =
Components I
Data visualization | Statistics | MNonparametric statistics | Instance selection | Feature construction |
Feature selection | Regression | Factorial analysis | PLS | Clustering |
Spv learning | Meta-spv learning | Spv learning assessment | Scoring | Association |
=Multinomial Logistic Regression [ PLS-DA == Radial basis function B
G Maive bayes IEPI_‘%-LDA -’::, Rnd Tree
ﬂ["l Maive bayes continuous I:_.,Prototype—NN = Rule Induction

4

[ n | » I

The resubstitution error rate computed on the n = 2000 instances is 36.15%. Thereafter, we can

see that it is decomposed into 36.197% for the 807% of the observations used to calculate the

weights of the neural network, and 36% for the validation sample®.

Learning characteristics

Epochs 100
Last train error rate 0.3619
Last validation error rate  0.3600
Last train mse 361.1893

Then, we can visualize the weights of the network. Since we have a binary problem, we have

the same values for the two outputs, but in the opposite signs.

Weigths

From INPUT to OUTPUT layer

-0.08557568 0.08557568
X1 -2.10453600 2.10453600
bias 1.36340152 -1.36340152

3 Because the initial weights are settled randomly in the learning process, you may obtain a slightly different result.
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3.3 Comments - Inadequacy of the linear classifier

Clearly, the classes are not linearly separable. Since we have only 2 variables, we can

represent the dataset in a scatter chart. We add the SCATTERPLOT (DATA VISUALIZATION

tab) into the root of the diagram. We set X1 in abscissa, X2 in ordinate, Y for defining the colors

of the points.

Figure 1 - Visualization of the data points into (X1, X2) - Colors defined by the observed labels
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We should have started there. The frontier is rather of parabolic shape, it is not possible to

produce a unique straight line to discriminate the classes.

For our dataset, we frontier is defined by the following equation:
-0.0856 * X1 -2.1045 * X2 + 1.3634 =0

The explicit formula of the separation line is:

X2 =-0.0407 * X1 + 0.6478

We can draw it in the representation space. We see that the solution is not appropriate. We

distinguish between misclassified instances on both sides of the frontier. There are numerous.
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It is possible to obtain a similar chart under Tanagra. We insert the SCATTERPLOT component

after the neural network into the diagram. We place X1 in abscissa, X2 in ordinate, predicted

labels for defining the colors of the points (PRED_SPVINSTANCE 1). We observe the frontier

defined by the predicted labels.
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Figure 2 - Visualization of the data points into (X1, X2) - Colors defined by the predicted labels
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Note: Any linear separator would be unable to produce an efficient classifier for our data:
whether the logistic regression, the linear discriminant analysis, or the linear SVM (vector
machine support). We need to change the representation bias i.e. the model's ability to

represent more complex underlying concepts.
3.4 Variable transformation
One possible solution, which makes sense in view of the previous scatter chart, is to perform a

variable transformation. That modifies the representation space. We choose to construct the

variable Z1 = X12, we replace X1 by this one in the model.

Into Tanagra, we add the FORMULA component (FEATURE CONSTRUCTION tab) into the

diagram. We set the parameters as follows:

[ TANAGRA 1448 - [Scatterplot 2] | '_'.' ol =
E File Diagram Component Window Help . - [|&f =
(=
Hnalysiz [XZ v] ’pred_Spﬂnsianoe_‘l v]
E'" Dataset (tan32D2. txt) (K1) X1 v, (X2) X2 by (¥} pred_Spvinstance_1
=%y Define status 1 I P vy TR L R T Y Y TR vy iy e vy v S M

E||1| Supervised Learning 1 (Multilayer| Continuous formula
: ]L. Scatterplot 2

" Scatterplot 1 Parameters

Attributes |

Parameters...

x2

Execute

View

4 T b
I_ | |
= X172 _
Data visualization Statistics |
| Feature construction Feature selecti(
0K Ca | Hel
PLS Clustering | ’ || cancel || Hel |
(= —— >
Spw learning assessment Scoring Association I
|+l 0_1_Binarize A% Binary binning  ah, Cont to disc i, Disc to cont Sl EqFreq Disc ). Eqwidth Disc £ Form
1| 1 | §

The new variable X1% is now available in the subsequent part of the diagram.

To know if this transformation is relevant, we add the SCATTERPLOT tool after FORMULA 1.
We set in abscissa the computed variable FORMULA 1 (z1), in ordinate X2, the data points are
colored according to the observed labels (Y) Now, we observe that the classes are linearly

separable. We can draw a straight line to discriminate positive and negative instances.
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Figure 3 - Visualization of the data points into (Z1, X2) - Colors defined by the observed labels

Let us see if the single layer perceptron can benefit to this configuration. We insert the DEFINE

STATUS component, we set Y as TARGET, FORMULA 1 (Z1) and X2 as INPUT.
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We want to insert the perceptron again, making sure that it is used the same settings as
above. The easiest way to do this is to move the component already inserted in the diagram

with the mouse. It is duplicated with the same parameters”.

Dataset (tan32D2.txt)
.. £% Define status 1
..[»]Supervised Learning 1 (Multilayer perceptron)
E IL. Scatterplot 2
g----]ﬁ,Scatterplot 1
ﬁ Formula 1
IL. Scatterplot 3
.. ¥4 Define status 2
|I| Supervised Learning 2 (Multilayer perceptron)
EScatterplot 4

We click on the VIEW contextual menu to obtain the results.

[ 4 TANAGRA 1.4.48 - [Supervised Leaming 2 (Multilayer perceptron]] ] P — *JLl_lg
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(= N
Analpgiz . uw -
Data description
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E||1| Supervised Learning 1 (Multilayer perceptron) # descriptors 2
o] h Scatterplot 2 i
[# Scatterplot 1 Learning characteristics |E|

21 Formula 1
-] Scatterplot 3
%% Define status 2

Epochs 100
Last train error rate 0.0150

(Multilayer perceptron)

Parameters...

Supervised parameters...

Execute
View
Data visualization T STEsHeES fgriparametric statistics Instance selection Feature construction
Feature selection Regresszion Factorial analysis PLS Clustering
Spv learning Meta-spv learning Spv learning assessment Scoring Association
@Correlation scatterplot EScatterplot View dataset
Export dataset EScatterplot with label E,_!,View multiple scatterplot
LS - -—y

The transformation carried out is fruitful with an error rate of 2.5% on the validation sample. The

single layer perceptron is perfectly adapted in (Z1, X2). Here are the estimated weights.

4 See http://data-mining-tutorials.blogspot.fr/2009/06/copy-paste-feature-into-diagram.html
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Weigths

From INPUT to OUTPUT layer

XL -3.90226715  3.90225817
Formula_1 36.07647058 -36.07636690
bias -0.01066363 0.01056308

The explicit form of the equation of the frontier is (with Z1 = X12):
X2 =0.1082 * X12 + 0.0003

The estimate is of very good quality. Indeed, it should be recalled that the frontier artificially

used when generating the data was (see Section 2):

X2 =0.1*X1?

Note: Just because a classifier knows how to represent a frontier does not mean that it can find

it necessarily. A linear discriminant analysis for instance, which is also a linear classifier,

assumes the gaussian conditional distribution. This assumption is not meet to our dataset (Figure

3). Thus, if we apply this approach (LINEAR DISCRIMINANT ANALYSIS component, SPV

LEARNING tab) on the transformed representation space (Z1, X2), we obtain a disappointing

resubstitution error rate (7.9%). This will not be better on the test set.

s 14 e G oo
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=
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4 Multilayer perceptron (MLP) with Tanagra

4.1 Specifying the right number of neurons into the hidden layer

Finding the right variable transformation is not easy or impossible in real problems. The
operation is very tedious as soon as the number of variables increases. The multilayer
perceptron enables to improve the model's representational power by introducing a so-called
"hidden" intermediate layer between the input and output layers (Note: we study the network with
only one hidden layer in this tutorial). It is possible to learn any type of function by setting

enough neurons in the hidden layer.

—
o
>
4]

-l

B
=
(o}
c

Hidden Layer
Output Layer

Figure 4 - Perceptron with a hidden layer - http://en.wikipedia.org/wiki/Feedforward_neural_network

If in doubt, we would be tempted to put many neurons in the hidden layer. However, by
exaggerating the representational capacity of the structure, we risk the overfitting issue. The

model corresponds too closely to the learning set and it is not able to generalize well.

Actually, setting the "right” number of the neurons is not easy in real situations. To do this, it
would already be necessary to understand what are the ideas underlying a hidden layer in a

neural network.
There are two ways to consider the hidden layer of a multilayer perceptron:

1. The hidden layer allows to produce an intermediate representation space where classes
become linearly separable. The idea is well understood with the transformation of variables
that we have done above. But in this case, this approach does not give us indication on the
optimal number of hidden neurons to use.

2. Each neuron of the hidden layer defines a separator line. The connection between the

hidden layer and the output allows to combine them. The model as a whole is non-linear.
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This vision is more interesting in our situation. Indeed, we realize that the combination of two
straight lines will allow us to approach as closely as possible the parable that separates the

"positive” from the "negative” instances in the original representation space (Figure 1).
In short, incorporating 2 neurons in the hidden layer would be the most appropriate for our data.
4.2 Multilayer perceptron with Tanagra
We come back to the SUPERVISED LEARNING 1 (MULTILAYER PERCEPTRON) component

into our diagram. We modify the settings by clicking on the SUPERVISED PAREMETERS menu.

We select the hidden layer (Use hidden Iayer) and we specify 2 neurons.

[~ ——— — ™
1% TANAGRA L4.48 - [Supervised Leaming 2 (Multilayer perceptron)] W I TN S aco oEel S|
S— -
E File Diagram Component Window Help |_ || 5'” x|
L= = Y
Bl FAldiliELeErs 101 dLll IouLe g
[ Dataset (tan32D2. txt) ransformation # none #
=B} Supervised Learning 1 {Multilayer perceptran) fid bl
! LB porrfeters
o Ii. Parameters...
i #, Scatte Supervised parameters... El
: Pa ers
- [ Formul
L1 Sca Execute I Network ‘ Learning | Stopping rule |
=y Defi View
Bm Supervised Learning 2 (Multilayer perceptro Use hidden |
: . ze hidden layer
i Sratterplot 4 | & =
F
Mumber of neurons : 2 ’
= 2 =
I Data visualization | Statistics | Mo
I[  Feature construction | Feature selection |
= PLS | Clustering | I |
I Spv learning assessment | Scoring |
|| [fiscas & CRT | |
[ C-PLS £ CS-CRT L ok || cancel || Hew ||,
I I 3

We validate, and we click on the VIEW menu. The error rate is 2.65% now.
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—_
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¢ Scatterplot 1
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h Scatterplot 3
[=-¥7§ Define status 2

Execute
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View
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Components |
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With 2.627% on the training set and 2.757% on the validation set.

Learning characteristics

Epochs 100
Last train error rate 0.0262
Last validation error rate 0.0275
Last train mse 28.6295

We have the weights, connecting the input layer to the hidden layer on the one hand, and the

hidden layer to the output layer on the other hand.

Weigths

From INPUT to HIDDEN layer

19.91611619 -19.292621930
X2 503061779 -4.780118h8
bias -1.61075713 -1.98975673

From HIDDEN to OUTPUT layer

Heuron "1* 13.09724306 -13.09724287
Meuron “2* 12.87395088 -12.87395070
bias -6.48310191  6.483101382
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4.3 Frontiers into the original representation space

Let us consider the equations connecting the input layer to the hidden layer.

Neuron "1" | Neuron "2"
X1 19.9161 -19.2926
X2 -5.0306 -4.7801
bias -1.6108 -1.9898

In the explicit form:
Equation 1 (Frontier 1): X2 = 3.9590 * X1 - 0.3202
Equation 2 (Frontier 2): X2 = -4.0360 * X1 - 0.4163

When we draw the corresponding straight lines into the original representation space (X1, X2),
we observe the frontiers defined by the two neurons of the hidden layer to discriminate the

classes. We can therefore identify misclassified individuals, which are on the wrong side of

borders.
x2 + .

r'd

o

4.4 Frontier into the intermediate representation space

Another approach to understand the MLP is to plot the data points into the intermediate
representation space (U1, U2) defined by the neurons of the hidden layer. By applying the

activation function (sigmoid), the intermediate variables are defined as follows:
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1

Ul = 1 4 ¢-(19.9161xX1-5.0306XX2—1.6108)
1

U2 =

- 14+ e—(—19.2926><X1—4.7801XX2—1.9898)

The separation line in this intermediate representation space is defined the weights between the

hidden layer and the output layer.

- neg pos
Neuron "1" 13.0972 -13.0972
Neuron "2" 12.8790 -12.8790
bias -6.4831 6.4831

In the explicit form:
Frontier - Intermediate representation space: U2 =-1.0169 * U1 + 0.5034

Let us see the data points in the representation space (U1, U2):

uz
09
b
08
4
0.7 l}
P,
‘
3 * neg
06 § = pos
g

Separating line

0.2

0.1

0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1

U1

Here also, we can identify the misclassified instances.

Conclusion: It is all very inspiring. Personally, it took me a long time to really understand these
mechanisms. MLP is rarely presented from this point of view in books. Yet, being able to identify

the right number of neurons in the hidden layer is a major challenge that concerns everyone. It
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will be very difficult to make the right choices if the consequences of adding neurons into the

hidden layer are not well understood.

5 Perceptron with R — “nnet” package

Our study is easy to lead because we have only p = 2 descriptors. We can use graphical
representations. When (p > 2), we need to define a generic strategy that allows us automatically
identifies the right number of neurons for a dataset. We use R because we can program

complex sequences of instructions. It is a privileged tool for that.

In this section, we first reproduce the above study (on data2) to describe the implementation of
the multilayer perceptron with the nnet package. Then, in a second time, we set up an
approach to determine the appropriate number of neurons of the hidden layer for the data4 file
where the concept to learn is more difficult.

5.1 The package nnet for R
5.1.1 Importation and subdivision of the dataset
We have transformed the Excel sheet data2 in a tabulation-separated text file. We import this

data file into R with the read.table() command. We display the characteristics of the variables

using the summary() command.

#loading the data file "data2"
data2 <- read.table(file="artificial2d data2.txt",sep="\t",dec=".",header=T)

#number of instances
n <- nrow(data?2?)
print (n)

#summary
print (summary (data?2))

We obtain:

-

IR R Console = '= "=

> print(n)
[1] 2000

=

¥ fsummary

> print (summary (datal) )
X1 X2 ¥
Min. :—0.500000 Min. :0.0010 neg:1141
1st gu,.:-0,251000 1=t Qu.:0.24530 pos: 858
Median : 0.017000 Median :0.5005
Mean 0.002388 Mean :0.4985
3rd Qu.: 0.247250 3rd Qu.:0.7500
Max. 0.459000 Max. :0.9980 =
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We randomly partition the data into two samples of equal size: the first, the learning sample, is
used to build the network; the second, the test sample, is used to evaluate generalization

performance.

#splitting in train and test samples
set.seed (5)

index <- sample(n,1000)

data2.train <- data2[index, ]
data2.test <- data2[-index, ]

print (summary (data2.train))

print (summary (data2.test))

set.seed() allows to generate the same sequence of random values. So, the reader will obtain

the same results as those described in this tutorial.

IR ® Console F=5 E= 5
-
> print (summary(data2.train))
X1 X2 Y
Mim. :—0.50000 Mim. 10,0010 neg:576
1st Qu.:-0.24125 1st Qu.:0.2520 pas:424
Median : 0.03100 Median :0.4980
Mean : 0.01127 Mean :0.4983
3rd Qu.: 0.26223 3rd Qu.:0.7540
Max. : 0.49900 Max. :0.9990
> print (summary (datad.test))
X1 X2 T
Min. :—0.499000 Min. :0.0010 neg:565
1st Qu.:-0.258500 1st Qu.:0.2427 posS:i435
Median : 0.001000 Median :0.5025
Mean :—0.0064596 Mean :0.5007
3rd Qm.: 0.238250 3rd Qu.:0.7432 =
Max. : 0.497000 Hax. :0.95980
4 F

The subdivision was done randomly. We note that the characteristics of the two samples are

very similar.

5.1.2 Learning process

We use the nnet package in this tutorial. It is easy to use. But, its drawback is the brevity of its

outputs. We can however get the weights of the perceptron.

#loading the nnet package

library(nnet)

fmultilayer perceptron, 2 neurons into the hidden layer

set.seed (10)

model?2 <- nnet (Y ~ .,skip=FALSE,size=2,data=data2.train,maxit=300, trace=F)
print (model?2)

print (summary (model?2))

The nnet() command launches the learning process. We set the maximum number of iterations
to 300 (maxit = 300). The option "skip = FALSE" indicates that we want to include a hidden

layer in our network; "size = 2" specifies the number of neurons into the hidden layer.
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R R Console E=mE=n=

|> print (model2) 1

a 2-2-1 network with 9 weights

inputs: X1 X2

output (s): ¥

options were - entropy fitting

> print (summary (modell)

a 2-2-1 network with 9 weights

options were - entropy fitting
b->»hl il->hl1 i2->hl

-0.83 13.06 -2.04
b->n2 1il->h2 12->h2
-0.29 -9.28 -1.580

b->o hl-»>o h2->o
178.04 -226.91 -255.67

T

Because we have a binary target attribute, the weights of the two outputs neurons are strictly the

same with the opposite signs. Therefore, nnet() shows only one of them. Here is the network:

The coefficients seem very different from those of Tanagra. But when we calculate the explicit
equations, we get the same boundaries (almost, there is a part of randomness in the learning of

the weights of the network).

5.1.3 Evaluation

We program a function for evaluation. It takes the data to be used and the model as input. The
latter calculates the prediction using the predict () command. We construct the confusion matrix
by comparing the observed values of the target attribute and the predicted values of the model.

We then compute the error rate (misclassification rate).

#evaluating the model
err.rate <- function(test.data,model) {

#prediction on the test set

pred <- predict (model,newdata=test.data, type="class")
#confusion matrix

mc <- table(test.data$Y,pred)

#error rate

error <- l-sum(diag (mc)) /sum (mc)

#output

return (error)
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Applied on the test set (1000 observations), the test error rate of the model...

#fprinting the error rate on the test set
print (err.rate (data2.test,model?))

.. is 0.004.
-
IR R Console (= &=
- - . . o
> Fprinting the error rate on the test set
» print (err.rate(datad.test, model2))
[1] 0.004

>

#| [}

5.2 Approach for determining automatically the right parameters

Our objective in this section is to program a very simple procedure for detecting the "optimal”
number of neurons in the hidden layer. It must be generic i.e. can be applied regardless of the
number of predictors. We will then use it to learn the function - the concept - associating (X1,

X2) with Y for the “data4” dataset.

5.2.1 PrograminR

The approach is very similar to the wrapper strategy used for the variable selection’. The dataset
is partitioned into training sample and test sample. We try different hypotheses on the learning
sample. In our case we modify the number of neurons in the hidden layer (1, which corresponds
to a simple perceptron; then 2, then 3, etc.). We evaluate the models on the test sample. We
select the solution corresponding to the most parsimonious model (the lowest number of neurons

into the hidden layer) with the lowest error rate.

The program tries in a loop different values of "k”, number of neurons in the hidden layer. We
have set the maximum number of neurons to be tested (K = 20). It was the easiest to program.
But we could also imagine more elaborate schemes (e. g. stopping as soon as the error rate no

longer decreases).

#detecting the right number of neurons in the hidden layer
K <- 20
res <- numeric (K)
for (k in 1:K) {
set.seed (10)
model <- nnet(Y ~ .,skip=FALSE,size=k,data=datad.train,maxit=300, trace=F)
error <- err.rate(datad.test,model)
res([i] <- error

}

> See http://data-mining-tutorials.blogspot.fr/2010/03/wrapper-for-feature-selection.html and http://data-mining-

tutorials.blogspot.fr/2010/04/wrapper-for-feature-selection.html
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The name of the target variable must be Y in this small program. But, on the other hand, there

is no limitation on the number and name of predictors.

5.2.2 Application on the data4 dataset

To check the effectiveness of the program, we apply it to datat4 dataset for which we are not
supposed to know the correct number of neurons (see Section 2). We show below the complete
process: importing data, subdividing it into learning and validation, implementing detection of the

number of neurons, displaying results (number of neurons vs. error rate in vaIidation) in a chart.

#loading the data file "data4d"
data4 <- read.table(file="artificial2d data4.txt",sep="\t",dec=".", header=T)

#splitting in train and test samples
datad.train <- data4[index, ]
datad.test <- data4d[-index, ]

#detecting the right number of neurons in the hidden layer
K <- 20
res <- numeric (K)
for (k in 1:K){
set.seed (10)
model <- nnet(Y ~ .,skip=FALSE,size=k,data=datad4.train,maxit=300, trace=F)
#print (model)
error <- err.rate(datad.test,model)
res[k] <- error

}

plot(1:K,res,type="b",xlab="Neurons into the hidden layer",ylab="Test error rate")

We obtain a particularly enlightening curve. From k = 4 neurons into the hidden layer, we have a

perfect model.

Test error rate

Neurons into the hidden layer
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For k = 14, this is primarily an artifact caused by the sampling fluctuations. It would be more
appropriate to use cross-validation to obtain more stable results. This is a possible improvement
of our program.

5.2.3 Graphical representation of the concept

The solution “k = 4” neurons is it really the right one here? To find out this, and since we only

have 2 descriptors, we draw the labelled observations in a scatter graph.

#graphical representation of the instances

plot(datad$X1,data4$X2, pch = 21, bg = c("blue","red")[unclass(data4$Y)], main="Data4 problem")

Yes, we need a combination of 4 straight lines to discriminate the classes.

DQta4 problem
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5.3 Variable selection and configuration of the network

We have placed ourselves in a very favorable situation in this tutorial. We had a small number
of predictive variables and we knew in advance that they were all relevant. In real studies, the
circumstances are a little more difficult. It is necessary to both detect the right variables and

identify the right network architecture.
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A priori, the generalization of our approach to this type of situation is a possible approach. We
can set a double nested loop to combine the search for the right predictive variables and the
number of neurons in the intermediate layer. But beware of overfitting. By multiplying the
hypotheses to be tested, we increase the risk of finding false optimal solutions. In addition, the
test sample as we defined it in our approach becomes part of the learning process since it
serves to identify the best solution among the many "variable-architecture” combinations which

are submitted. Last, the computation time becomes rapidly a serious bottleneck.

The search for the best combination of the variables and the number of neurons remains a

difficult problem.

6 Conclusion
The multilayer perceptron is a well-known method, for a long time. After having been masked by
ensemble methods and support vector machine (SVM) approaches in the publications during a

moment, it has been revived with the success of the deep learning in the recent years.

Two issues are often stated when we talk about neural networks: it is a "black box" model in the
sense that we cannot identify the influence of predictive variables in the prediction/explanation of
the target variable; specifying the right values of the parameters is difficult, especially when we
want to determine the number of neurons in the hidden layer. As for this second drawback, we
show in this tutorial that it is possible to implement simple solutions that correspond to a few

lines of instructions in R.
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