## 1 Theme

# Comparing the results of the Partial Least Squares Regression from various data mining tools (free: Tanagra, R; commercial: SIMCA-P, SPAD, and SAS).

Comparing the behavior of tools is always a good way to improve them.

**To check and validate the implementation of methods.** The validation of the implemented algorithms is an essential point for data mining tools. Even if two programmers use the same references (books, articles), the programming choice can modify the behavior of the approach (behaviors according to the interpretation of the convergence conditions for instance). The analysis of the source code is possible solution. But, if it is often available for free software, this is not the case for commercial tools. Thus, the only way to check them is to compare the results provided by the tools on a benchmark dataset<sup>1</sup>. If there are divergences, we must explain them by analyzing the formulas used.

**To improve the presentation of results.** There are certain standards to observe in the production of reports, consensus initiated by reference books and / or leader tools in the field. Some ratios should be presented in a certain way. Users need reference points.

Our programming of the PLS approach is based on the Tenenhaus book (1998) <sup>2</sup> which, itself, make reference to the SIMCA-P<sup>3</sup> tool. Using the access to a limited version of this software (version 11), we have check the results provided by Tanagra on various datasets. We show here the results of the study on the CARS dataset. We extend the comparison to other data mining tools.

We have also much used the Garson website<sup>4</sup> for the description of the PLS regression method, particularly to understand the tables and the figures provided by the various tools.

As a reminder, the goal of the PLS Regression is to explain / predict the values of one or more target attributes (the dependents) from the values of one or more explanatory variables (the predictors). All the variables are continuous or considered as such.

## 2 Dataset

We use the CARS\_PLS\_REGRESSION.XLS data file in this tutorial (Excel file format - <u>http://eric.univ-lyon2.fr/~ricco/tanagra/fichiers/cars\_pls\_regression.xls</u>).

We want to explain the costs indicators of cars (price, consumption, symboling) from their characteristics (engine size, fuel type, etc.).

There are 20 instances into the data file (Figure 1). It is a sample drawn from the Automobile Data Set available on the UCI Machine Learning Repository Server<sup>5</sup>.

<sup>&</sup>lt;sup>1</sup> In my case, I try often to reproduce the formulas in a spreadsheet application. This allows me to check all the intermediate results.

<sup>&</sup>lt;sup>2</sup> M. Tenenhaus, « La régression PLS – Théorie et Pratique », Technip, 1998.

<sup>&</sup>lt;sup>3</sup> SIMCA-P for Multivariate Data Analysis. <u>http://www.umetrics.com/default.asp/pagename/software\_simcap/c/3</u>

<sup>&</sup>lt;sup>4</sup> D. Garson, « Partial Least Squares Regression », from *Statnotes: Topics in Multivariate Analysis.* Retrieved 05/18/2008 from <u>http://www2.chass.ncsu.edu/garson/pa765/statnote.htm</u>.

<sup>&</sup>lt;sup>5</sup> <u>http://archive.ics.uci.edu/ml/datasets/Automobile</u>. It describes some cars in 1985, this is the reason why some features may appear to be strange today.

| Numéro | diesel | twodoors | sportsstyle | wheelbase | length | width | height | curbweight | enginesize | horsepower | horse_per_v | conscity | price | symboling |
|--------|--------|----------|-------------|-----------|--------|-------|--------|------------|------------|------------|-------------|----------|-------|-----------|
| 1      | 0      | 1        | 0           | 97        | 172    | 66    | 56     | 2209       | 109        | 85         | 0.0385      | 8.7      | 7975  | 2         |
| 2      | 0      | 0        | 0           | 100       | 177    | 66    | 54     | 2337       | 109        | 102        | 0.0436      | 9.8      | 13950 | 2         |
| 3      | 0      | 0        | 0           | 116       | 203    | 72    | 57     | 3740       | 234        | 155        | 0.0414      | 14.7     | 34184 | -1        |
| 4      | 0      | 1        | 1           | 103       | 184    | 68    | 52     | 3016       | 171        | 161        | 0.0534      | 12.4     | 15998 | 3         |
| 5      | 0      | 0        | 0           | 101       | 177    | 65    | 54     | 2765       | 164        | 121        | 0.0438      | 11.2     | 21105 | 0         |
| 6      | 0      | 1        | 0           | 90        | 169    | 65    | 52     | 2756       | 194        | 207        | 0.0751      | 13.8     | 34028 | 3         |
| 7      | 1      | 0        | 0           | 105       | 175    | 66    | 54     | 2700       | 134        | 72         | 0.0267      | 7.6      | 18344 | 0         |
| 8      | 0      | 0        | 0           | 108       | 187    | 68    | 57     | 3020       | 120        | 97         | 0.0321      | 12.4     | 11900 | 0         |
| 9      | 0      | 0        | 1           | 94        | 157    | 64    | 51     | 1967       | 90         | 68         | 0.0346      | 7.6      | 6229  | 1         |
| 10     | 0      | 1        | 0           | 95        | 169    | 64    | 53     | 2265       | 98         | 112        | 0.0494      | 9.0      | 9298  | 1         |
| 11     | 1      | 0        | 0           | 96        | 166    | 64    | 53     | 2275       | 110        | 56         | 0.0246      | 6.9      | 7898  | 0         |
| 12     | 0      | 1        | 0           | 100       | 177    | 66    | 53     | 2507       | 136        | 110        | 0.0439      | 12.4     | 15250 | 2         |
| 13     | 0      | 1        | 1           | 94        | 157    | 64    | 51     | 1876       | 90         | 68         | 0.0362      | 6.4      | 5572  | 1         |
| 14     | 0      | 0        | 0           | 95        | 170    | 64    | 54     | 2024       | 97         | 69         | 0.0341      | 7.6      | 7349  | 1         |
| 15     | 0      | 1        | 1           | 95        | 171    | 66    | 52     | 2823       | 152        | 154        | 0.0546      | 12.4     | 16500 | 1         |
| 16     | 0      | 0        | 0           | 103       | 175    | 65    | 60     | 2535       | 122        | 88         | 0.0347      | 9.8      | 8921  | -1        |
| 17     | 0      | 0        | 0           | 113       | 200    | 70    | 53     | 4066       | 258        | 176        | 0.0433      | 15.7     | 32250 | 0         |
| 18     | 0      | 0        | 0           | 95        | 165    | 64    | 55     | 1938       | 97         | 69         | 0.0356      | 7.6      | 6849  | 1         |
| 19     | 1      | 0        | 0           | 97        | 172    | 66    | 56     | 2319       | 97         | 68         | 0.0293      | 6.4      | 9495  | 2         |
| 20     | 0      | 0        | 0           | 97        | 172    | 66    | 56     | 2275       | 109        | 85         | 0.0374      | 8.7      | 8495  | 2         |

Figure 1 - Dataset: the predictors (green) and the dependents (blue)

## 3 The PLS Regression

Partial least squares (PLS) is sometimes called "Projection to Latent Structures" because of its general strategy. The X variables (the predictors) are reduced to principal components  $t_h$  (says also factors or latent variables), as are the Y variables (the dependents). The components of X are used to predict the scores on the Y components  $u_h$  (PLS responses), and the predicted Y component scores are used to predict the actual values of the Y variables. In constructing the principal components of X, the PLS algorithm iteratively maximizes the strength of the relation of successive pairs of X and Y component scores ( $u_h$ ,  $t_h$ ) by maximizing the covariance of each X-score with the Y variables. This strategy means that while the original X variables may be multicollinear, the X components used to predict Y will be orthogonal. The number of components  $t_h$  must not exceed the number of predictors (Garson, PLS Regression).

## 4 PLS Regression with TANAGRA and SIMCA-P

In this section, we detail the outputs of **TANAGRA**. We will compare them to those of **SIMCA-P**. We observe that the results are exactly identical. This suggests that the calculations are based on the same formulas but also that the underlying programming choices are similar (accuracy of the calculations, etc.).

### 4.1 Importing the data file and creating a diagram

We launch Tanagra. We click on the FILE / NEW menu to create a diagram and import the CARS\_PLS\_REGRESSION.XLS data file<sup>6</sup>.

<sup>&</sup>lt;sup>6</sup> There are various ways to import a XLS data file. We can use the add-on for Excel (<u>http://data-mining-tutorials.blogspot.com/2010/08/sipina-add-in-for-excel.html</u>, <u>http://data-mining-tutorials.blogspot.com/2010/08/tanagra-add-in-for-office-2007-and.html</u>) or, as we do in this tutorial, directly import the dataset (<u>http://data-mining-tutorials.blogspot.com/2008/10/excel-file-format-direct-importation.html</u>). In this last case, the dataset must not be opened in the spreadsheet application. The values must be in the first sheet. The first row corresponds to the name of the variables.

The direct importation is faster than the use of the "tanagra.xla add-on. But, on the other hand, Tanagra can handle only the XLS format here (up to Excel 2003).

| 🛣 TANAGRA 1.4.24         |                                   |              |                  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |  |
|--------------------------|-----------------------------------|--------------|------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--|
| File Diagram Window Help |                                   |              |                  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |  |
| New                      |                                   |              |                  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |  |
|                          | ···· >1                           |              |                  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |  |
| Che Save                 | oose your dataset and start downl | oad          |                  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |  |
| Save as                  | <b>1</b>                          |              |                  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |  |
|                          | Diagram title :<br>Default title  |              |                  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |  |
| Close                    | Data mining diagram file name :   |              |                  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |  |
| Exit                     | D:\Temp\Exe\default.tdm           |              |                  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |  |
|                          | Datacet (* tvt * arff * vlo) ·    |              |                  | $\sim$             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |  |
|                          |                                   |              |                  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |  |
|                          |                                   |              |                  |                    | <ul> <li>Image: A set of the set of the</li></ul> |        |  |
|                          |                                   |              |                  |                    | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |  |
|                          |                                   | ОК           | Cancel           | Help               | i i i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |  |
|                          |                                   |              |                  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |  |
|                          |                                   |              | Tanagra          |                    | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ? 🛛    |  |
|                          |                                   |              | Regarder dans :  | 🗀 cars-for-tutoria | al 🔽 🧿                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 🌶 📂 🛄• |  |
|                          |                                   |              |                  | Cars_pls_regree    | essionxls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |  |
|                          |                                   |              |                  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |  |
|                          |                                   |              | récents          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |  |
|                          |                                   |              |                  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |  |
|                          |                                   |              | Bureau           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |  |
|                          |                                   |              |                  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |  |
|                          |                                   |              |                  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |  |
|                          |                                   |              | Mes documents    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |  |
| Data visualization       | Statistics                        | Nonparametr  |                  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |  |
| Feature selection        | Regression                        | Factorial    | Poste de travail |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |  |
| Sov learning             | Meta-spy learning                 | Spy learning | <b>6</b>         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |  |
|                          | 186.00.00.00000                   |              |                  | Nom du tichier :   | cars_pls_regression.xis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |  |
| Correlation scatterplot  | Scatterplot with label            |              | Favoris reseau   | richiers de type : | Excel File (97 & 2000)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Annue  |  |
|                          | View gataset                      | lot          |                  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |  |
|                          | T** Alone marciple searcerb       |              |                  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •      |  |
|                          |                                   |              |                  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |  |
| Die                      |                                   |              |                  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |  |

### 4.2 Dependent and independent variables

CONSCITY, PRICE and SYMBOLING are the target attributes. The others are the predictors. We use the DEFINE STATUS component to specify the type of the variables in the analysis.



### 4.3 Settings of the PLS Regression

We add the **PLSR** component (PLS tab) into the diagram. We click on the PARAMETERS menu. Into the first tab (Parameters), we set the number of extracted factors to 3. The number of factors does not exceed the number of predictors. Into the second tab (Output), we specify the new columns generated by the tool. They are available for other calculations in the subsequent part of the diagram. Last, into the third tab (Report), we set the tables which will be included into the report.

We click on the OK button to validate these settings. Then, we click on the VIEW contextual menu.



### 4.4 Description of the output

Our presentation draws heavily from the text of Garson, dedicated to the description of the results of SPSS (<u>http://faculty.chass.ncsu.edu/garson/PA765/pls.htm</u>).

#### 4.4.1 Proportion of variance explained by latent factors

This table describes the proportion of variance explained by the latent factors, for the predictors (X) and the dependent variables (Y) (Figure 2 and Figure 3).

On the one hand, it shows the quality of the representation of the predictors. The cumulative proportion is 100% if we use all the factors (equal to the number of predictors). For our dataset, we note that the three first factors explain 81.927% of the variance of the predictors.



Figure 2 - Tanagra - Proportion of variance explained by latent factor

On the other hand, this table shows the predictive power of the factors. If we use all the factors (equal to the number of predictors), we obtain the R-squared of the linear multiple regression.



Figure 3 - SIMCA-P - Proportion of variance explained by latent factor

If the cumulative proportion is equal to 1, it means that we can predict exactly the values of the dependent variables from the selected factors. For our dataset, we observe that our model is rather good, 76.657% of the variance of the dependent variables are explained by the first three factors.

#### 4.4.2 Proportion of explained variance for each variable – R<sup>2</sup>

These tables (Figure 4) examine in more detail the preceding one. It shows the squared the correlation of each variable with the latent factor i.e. the proportion of variance explained for each variable. This is an important tool for the interpretation and the comprehension of the factors.

- For the first factor, we observe that LENGTH, CURBWEIGHT, ENGINESIZE, and to a lesser extent, HORESPOWER, are important. But we have not the direction of the influence at this stage.
- About the dependent variables, always for the first factor, we observe that CONSCITY and PRICE are well explained. There are thus a form of connection, which remains to be determined, between the predictors above and these dependent variables.
- For the second factor, which represents 28.98% of the variance of the predictors, the variables TWODOORS, HORSE\_PER\_WEIGHT and HEIGHT are important.
- For the dependent variables, this factor explain 15.56% of their variance, it is mainly in relation with SYMBOLING.
- In the last row, we have the proportion of variance explained by each factor (Figure 2).

|                  |          | Input(s)  | vs. X-Scores  | -                    | -             |          |  |
|------------------|----------|-----------|---------------|----------------------|---------------|----------|--|
| -                |          | R-squared |               | Cumulative R-squared |               |          |  |
| Input            | Factor 1 | Factor 2  | Factor 3      | Factor 1             | Factor 2      | Factor 3 |  |
| diesel           | 0.0871   | 0.1904    | 0.4243        | 0.0871               | 0.2775        | 0.7018   |  |
| twodoors         | 0.0012   | 0.6790    | 0.0152        | 0.0012               | 0.6802        | 0.6954   |  |
| sportsstyle      | 0.0189   | 0.2612    | 0.2483        | 0.0189               | 0.2801        | 0.5284   |  |
| wheelbase        | 0.5527   | 0.3602    | 0.0393        | 0.5527               | 0.9129        | 0.9522   |  |
| length           | 0.8236   | 0.1376    | 0.0027        | 0.8236               | 0.9613        | 0.9639   |  |
| width            | 0.7692   | 0.0961    | 0.0118        | 0.7692               | 0.8652        | 0.8771   |  |
| height           | 0.0157   | 0.5017    | 0.0173        | 0.0157               | 0.5174        | 0,5347   |  |
| curbweight       | 0.9244   | 0.0258    | 0.0026        | 0.9244               | 0.9502        | 0.9528   |  |
| enginesize       | 0.8967   | 0.0037    | 0.0240        | 0.8967               | 0.9005        | 0.9244   |  |
| horsepower       | 0.7035   | 0.2546    | 0.0155        | 0.7035               | 0.9581        | 0.9737   |  |
| horse_per_weight | 0.2155   | 0.6775    | 0.0146        | 0.2155               | 0.8930        | 0.9076   |  |
| Total Exp.       | 0.4553   | 0.2898    | 0.0742        | 0.4553               | 0.7451        | 0.8193   |  |
|                  |          |           |               |                      |               |          |  |
|                  |          | Target(s) | ) vs. X-Score |                      | •             |          |  |
| -                |          | R-squared |               | Cum                  | ulative R-squ | lared    |  |
| Target           | Factor 1 | Factor 2  | Factor 3      | Factor 1             | Factor 2      | Factor 3 |  |
| conscity         | 0.8836   | 0.0407    | 0.0030        | 0.8836               | 0.9243        | 0.9273   |  |
| price            | 0.7790   | 0.0168    | 0.1129        | 0.7790               | 0.7958        | 0.9087   |  |
| symboling        | 0.0294   | 0.4100    | 0.0242        | 0.0294               | 0.4394        | 0,4637   |  |
| Total Eve        | 0.5640   | 0 1558    | 0.0467        | 0.5640               | 0.7199        | 0.7666   |  |

• The third factor is hard to understand. It explains a minor part of the variance (7.42%) anyway.

Figure 4 - Tanagra –  $\mathbf{R}^2$  with the factors  $t_h$  – Independent and dependent variables

| 1                | 2      | 3      | 4         | 5       | 6        | 7         |
|------------------|--------|--------|-----------|---------|----------|-----------|
| Var ID (Primary) |        | R2VY   | R2VY(cum) | Q2VY    | Q2 limit | Q2VY(cum) |
| Total            | Comp 1 | 0.5640 | 0.5640    | 0.3340  | 0.0500   | 0.3340    |
|                  | Comp 2 | 0.1558 | 0.7199    | 0.1868  | 0.0500   | 0.4584    |
|                  | Comp 3 | 0.0467 | 0.7666    | -0.0595 | 0.0500   | 0.4262    |
|                  |        |        |           |         |          |           |
| conscity         | Comp 1 | 0.8836 | 0.8836    | 0.7999  | 0.0500   | 0.7999    |
|                  | Comp 2 | 0.0407 | 0.9243    | 0.2820  | 0.0500   | 0.8564    |
|                  | Comp 3 | 0.0030 | 0.9273    | -0.0425 | 0.0500   | 0.8503    |
|                  |        |        | 4         |         |          |           |
| price            | Comp 1 | 0.7790 | 0.7790    | 0.5834  | 0.0500   | 0.5834    |
|                  | Comp 2 | 0.0168 | 0.7958    | -0.3478 | 0.0500   | 0.5417    |
|                  | Comp 3 | 0.1129 | 0.9087    | 0.3452  | 0.0500   | 0.6999    |
|                  |        |        |           |         |          |           |
| symboling        | Comp 1 | 0.0294 | 0.0294    | -0.3812 | 0.0500   | -0.1000   |
|                  | Comp 2 | 0.4100 | 0.4394    | 0.2971  | 0.0500   | 0.2268    |
|                  | Comp 3 | 0.0242 | 0.4637    | -0.2092 | 0.0500   | 0.1495    |
|                  |        |        |           |         |          |           |
|                  |        |        |           |         |          |           |
|                  |        |        |           |         |          |           |
|                  |        |        |           |         |          |           |
|                  |        |        |           |         |          |           |
|                  |        |        |           |         |          |           |

Figure 5 – SIMCA-P – R<sup>2</sup> of the dependent variables with  $t_{h}$ 

#### SIMCA-P: Menu ANALYSIS / SUMMARY / MODEL OVERVIEW LIST (Figure 5)

#### 4.4.3 LOADINGS of predictors – Ph Vector

The loadings represent the "correlation" between the factors and the predictors. They supplement the values provided by the R2 table (Figure 4). It specifies the direction of the association. In practice, one considers that an absolute value upper than 0.4 reflects a significant association. But the most important is to obtain an interesting interpretation of the results.

Note that the LOADINGS do not exactly correspond to correlation coefficients. However, they allow to position the variables in the same way with regard to the factors, and this is the most important for the interpretation. We will focus primarily on variables with high absolute value.

We observe that the first factor describes the cars with the same characteristics about LENGTH, WIDTH, CURBWEIGHT and ENGINESIZE. For the second factor, we observe the association between TWODOORS and HORSE\_PER\_WEIGHT, antinomic with HEIGHT.

|                  |          |           |           |    |                   |                  | 311     | CA-F    |         |   |
|------------------|----------|-----------|-----------|----|-------------------|------------------|---------|---------|---------|---|
| X-loadings (Mo   | del Effe | ct Loadir | ngs - Vec | h) | General List [M1] |                  |         |         |         |   |
|                  | F        | F 1 0     | F 1 0     |    |                   | 1                | 2       | 3       | 4       |   |
| Input            | Factor1  | Factor2   | Factor3   |    | 1                 | Var ID (Primary) | M1.p[1] | M1.p[2] | M1.p[3] |   |
| diesel           | -0.1326  | -0.2496   | -0.7368   |    | 2                 | diesel           | -0.1326 | -0.2496 | 0.7368  |   |
| twodoors         | 0.0154   | 0.4714    | 0.1393    |    | 3                 | twodoors         | 0.0154  | 0.4714  | -0.1393 |   |
| sportsstyle      | -0.0617  | 0.2924    | 0.5636    |    | 4                 | sportsstyle      | -0.0617 | 0.2924  | -0.5636 |   |
| wheelbase        | 0.3342   | -0.3433   | 0.2242    |    | 5                 | wheelbase        | 0.3342  | -0.3433 | -0.2242 |   |
| length           | 0.4080   | -0.2122   | 0.0586    |    | 6                 | length           | 0.4080  | -0.2122 | -0.0586 |   |
| width            | 0 3942   | -0.1773   | 0.1231    |    | 7                 | width            | 0.3942  | -0.1773 | -0.1231 |   |
| ••••••••         | 0.0742   | 0.1775    | 0.1201    |    | 8                 | height           | 0.0563  | -0.4052 | -0.1488 |   |
| height           | 0.0563   | -0.4052   | 0.1488    |    | 9                 | curbweight       | 0.4322  | -0.0919 | 0.0577  |   |
| curbweight       | 0.4322   | -0.0919   | -0.0577   |    | 10                | enginesize       | 0.4257  | 0.0349  | 0.1751  |   |
| enginesize       | 0.4257   | 0.0349    | -0.1751   |    | 11                | horsepower       | 0.3770  | 0.2886  | 0.1410  |   |
| horsepower       | 0.3770   | 0.2886    | -0.1410   |    | 12                | horse_per_weigh  | 0.2087  | 0.4708  | 0.1367  | ] |
| horse_per_weight | 0.2087   | 0.4708    | -0.1367   |    |                   | _                |         |         |         |   |

TANAGRA



SIMCA-P: Menu ANALYSIS / LOADINGS / LINE PLOT, select the « p » series.

#### 4.4.4 WEIGHTS for dependent variables (TARGET) – Ch Vector

They indicate how much the dependent variables are correlated to the PLS responses (Figure 7). It enables to determine which are the variables that are well explained by the PLS responses  $(u_h)$ . Here also, these are not really the correlation coefficient, but the interpretation is the same.

Thereafter, we must make the connection between these characteristics with the predictors.

|           | TANAGRA   |           |           |  |  |  |  |  |  |  |  |  |
|-----------|-----------|-----------|-----------|--|--|--|--|--|--|--|--|--|
| Y-Weigh   | ts (Depei | ndent Var | riable We |  |  |  |  |  |  |  |  |  |
| Target    | Factor 1  | Factor 2  | Factor 3  |  |  |  |  |  |  |  |  |  |
| conscity  | 0.4225    | 0.1154    | 0.0623    |  |  |  |  |  |  |  |  |  |
| price     | 0.3968    | 0.0742    | -0.3800   |  |  |  |  |  |  |  |  |  |
| symboling | -0.0771   | 0.3663    | -0.1760   |  |  |  |  |  |  |  |  |  |

| General List [M1] |                  |         |         |         |  |  |  |  |  |  |
|-------------------|------------------|---------|---------|---------|--|--|--|--|--|--|
|                   | 1                | 2       | 3       | 4       |  |  |  |  |  |  |
| 1                 | Var ID (Primary) | M1.c[1] | M1.c[2] | M1.c[3] |  |  |  |  |  |  |
| 2                 | conscity         | 0.4225  | 0.1154  | -0.0623 |  |  |  |  |  |  |
| 3                 | price            | 0.3968  | 0.0742  | 0.3800  |  |  |  |  |  |  |
| 4                 | symboling        | -0.0771 | 0.3663  | 0.1760  |  |  |  |  |  |  |

SIMCA-P

Figure 7 - Weights for dependent variables - PLS Responses

SIMCA-P: Menu ANALYSIS / LOADINGS / LINE PLOT, « c » serie.

#### 4.4.5 WEIGHTS for the predictors (INPUT) - Wh and Wh\* vectors

They indicate how much the predictors are correlated with the PLS Responses ( $u_{b}$ ) (Figure 8). We observe that WEIGHTS and LOADINGS (section 4.4.3) are quite similar and serve similar interpretive uses. The vectors Wh\*, contrary to Wh, are directly related to the predictors. They can interpret them easily.

|                  |           | TANA     | GRA       |          |          |          | SIMCA-P            |                  |         |         |         |          |          |          |
|------------------|-----------|----------|-----------|----------|----------|----------|--------------------|------------------|---------|---------|---------|----------|----------|----------|
| X-Weights (Mo    | del Effec | t Weight | s - Vecto | r Wh and | Wh*)     |          | ☐General List [M1] |                  |         |         |         |          |          |          |
| - Wh             |           |          |           | Wh*      |          |          |                    | 1                | 2       | 3       | 4       | 5        | 6        | 7        |
| Input            | Factor 1  | Factor 2 | Factor 3  | Factor 1 | Factor 2 | Factor 3 | 1                  | Var ID (Primary) | M1.w[1] | M1.w[2] | M1.w[3] | M1.w*[1] | M1.w*[2] | M1.w*[3] |
| diesel           | -0.1396   | -0.1605  | -0.6992   | -0.1396  | -0.1731  | -0.6691  | 2                  | diesel           | -0.1396 | -0.1605 | 0.6992  | -0.1396  | -0.1731  | 0.6691   |
| twodoors         | 0.0262    | 0.4727   | 0.2439    | 0.0262   | 0.4750   | 0.1750   | 3                  | twodoors         | 0.0262  | 0.4727  | -0.2439 | 0.0262   | 0.4750   | -0.1750  |
| snortsstyle      | -0.0723   | 0.1570   | 0.5264    | -0.0723  | 0.1505   | 0.5077   | 4                  | sportsstyle      | -0.0723 | 0.1570  | -0.5264 | -0.0723  | 0.1505   | -0.5077  |
| wheelbase        | 0.2873    | -0.3950  | 0.2310    | 0.2873   | -0.3691  | 0.2727   | 5                  | wheelbase        | 0.2873  | -0.3950 | -0.2310 | 0.2873   | -0.3691  | -0.2727  |
| length           | 0.2070    | -0.4732  | 0.0704    | 0.2725   | -0.1396  | 0.0764   | 6                  | length           | 0.3725  | -0.1732 | -0.0704 | 0.3725   | -0.1396  | -0.0761  |
| width            | 0.3725    | 0.1732   | 0.0704    | 0.3725   | 0.0770   | 0.0001   | 7                  | width            | 0.3560  | -0.1094 | -0.0001 | 0.3560   | -0.0773  | 0.0025   |
| wiath            | 0.3560    | -0.1094  | 0.0001    | 0.3560   | -0.0773  | -0.0025  | 8                  | height           | 0.0142  | -0.3782 | -0.1794 | 0.0142   | -0.3769  | -0.2327  |
| height           | 0.0142    | -0.3782  | 0.1794    | 0.0142   | -0.3769  | 0.2327   | 9                  | curbweight       | 0.4278  | -0.1395 | -0.0468 | 0.4278   | -0.1009  | -0.0448  |
| curbweight       | 0.4278    | -0.1395  | 0.0468    | 0.4278   | -0.1009  | 0.0448   | 10                 | enginesize       | 0.4490  | -0.0117 | 0.1792  | 0.4490   | 0.0288   | 0.2005   |
| enginesize       | 0.4490    | -0.0117  | -0.1792   | 0.4490   | 0.0288   | -0.2005  | 11                 | horsenower       | 0.4144  | 0.3025  | 0.1251  | 0.4144   | 0.3399   | 0.1896   |
| horsepower       | 0.4144    | 0.3025   | -0.1251   | 0.4144   | 0.3399   | -0.1896  | 12                 | horse ner weight | 0.2645  | 0 5235  | 0 1845  | 0.2645   | 0 5474   | 0.2728   |
| horse_per_weight | 0.2645    | 0.5235   | -0.1845   | 0.2645   | 0.5474   | -0.2728  |                    | noise_per_weight | 0.2043  | 0.0200  | 0.1043  | 0.2043   | 0.51/1   | 0.2720   |

Figure 8 - Weight of the predictors related to the PLS responses

SIMCA-P: Menu ANALYSIS / LOADINGS / LINE PLOT, « w » et « w\* » series.

#### 4.4.6 Variable Importance in Projection for independent variables (VIP)

The VIP table reflects the relative importance of the predictors, through the H first factors, in the prediction model. We consider often that a predictor is significant when (VIP > 1). On the hand, for small value of VIP (< 0.8), we can consider that the predictor is not relevant. We can remove the variable from the model.

In our table (Figure 9), because we select the first three factors, we analyze the third column.

|                                         | TANAG                            | GRA    |        |  |  |  |  |  |  |  |  |
|-----------------------------------------|----------------------------------|--------|--------|--|--|--|--|--|--|--|--|
| VIP (Variable Importance in Projection) |                                  |        |        |  |  |  |  |  |  |  |  |
| Input                                   | Input Factor 1 Factor 2 Factor 3 |        |        |  |  |  |  |  |  |  |  |
| diesel                                  | 0.4630                           | 0.4788 | 0.7369 |  |  |  |  |  |  |  |  |
| twodoors                                | 0.0870                           | 0.7334 | 0.7383 |  |  |  |  |  |  |  |  |
| sportsstyle                             | 0.2399                           | 0.3222 | 0.5322 |  |  |  |  |  |  |  |  |
| wheelbase                               | 0.9530                           | 1.0408 | 1.0261 |  |  |  |  |  |  |  |  |
| length                                  | 1.2354                           | 1.1257 | 1.0924 |  |  |  |  |  |  |  |  |
| width                                   | 1.1807                           | 1.0586 | 1.0259 |  |  |  |  |  |  |  |  |
| height                                  | 0.0472                           | 0.5851 | 0.5857 |  |  |  |  |  |  |  |  |
| curbweight                              | 1.4187                           | 1.2741 | 1.2353 |  |  |  |  |  |  |  |  |
| enginesize                              | 1.4893                           | 1.3184 | 1.2860 |  |  |  |  |  |  |  |  |
| horsepower                              | 1.3746                           | 1.3032 | 1.2670 |  |  |  |  |  |  |  |  |
| horse_per_weight                        | 0.8774                           | 1.1206 | 1.0964 |  |  |  |  |  |  |  |  |

| TA | P List [M1]      |           |
|----|------------------|-----------|
|    | 1                | 2         |
| 1  | Var ID (Primary) | M1.VIP[3] |
| 2  | enginesize       | 1.2860    |
| 3  | horsepower       | 1.2670    |
| 4  | curbweight       | 1.2353    |
| 5  | horse_per_weight | 1.0964    |
| 6  | length           | 1.0924    |
| 7  | wheelbase        | 1.0261    |
| 8  | width            | 1.0259    |
| 9  | twodoors         | 0.7383    |
| 10 | diesel           | 0.7369    |
| 11 | height           | 0.5857    |
| 12 | sportsstyle      | 0.5322    |

#### SIMCA-P

#### Figure 9 – Variable importance in projection

SIMCA-P: Menu ANALYSIS / VARIABLE IMPORTANCE / LIST. We can only display the VIP according to the number of selected factors. The variables are sorted according the VIP.

#### 4.4.7 Unstandardized regression coefficients

This table provides the estimated unstandardized regression coefficients, one column for each dependent variable (Figure 10). We can use them directly for the prediction on new instances.

|                  | TAN          | AGRA                       |                    | SIMCA-P                |                  |                       |                    |                        |  |  |
|------------------|--------------|----------------------------|--------------------|------------------------|------------------|-----------------------|--------------------|------------------------|--|--|
| Unstandardize    | d Regression | Parameters (b <sub>)</sub> | / target variable) | Ecoefficient List [M1] |                  |                       |                    |                        |  |  |
|                  |              | Target Variable(s)         |                    |                        | 1                | 2                     | 3                  | 4                      |  |  |
| Input            | conscity     | price                      | symboling          | 1                      | Var ID (Primary) | M1.Coeff[3](conscity) | M1.Coeff[3](price) | M1.Coeff[3](symboling) |  |  |
| diesel           | -0.946269    | 4688.641651                | 0.208085           | 2                      | \$constant       | -18.187222            | -39379.011719      | 12.198215              |  |  |
| twodoors         | 0.450889     | -393.099643                | 0.337465           | 3                      | diesel           | -0.946268             | 4688.631836        | 0.208090               |  |  |
| sportsstyle      | 0.129202     | -4734.098001               | -0.081700          | 4                      | twodoors         | 0.450888              | -393.075836        | 0.337465               |  |  |
| wheelbase        | 0.040765     | -23.277199                 | -0.035576          | 5                      | sportsstyl       | 0.129203              | -4734.107422       | -0.081705              |  |  |
| length           | 0.036369     | 86.825747                  | -0.009458          | 6                      | wheelbase        | 0.040765              | -23.277510         | -0.035576              |  |  |
| width            | 0.192261     | 596.478952                 | -0.030636          | 7                      | length           | 0.036369              | 86.826599          | -0.009458              |  |  |
| height           | -0.029355    | -454.791393                | -0.093726          | 8                      | width            | 0.192261              | 596.485535         | -0.030635              |  |  |
| curbweight       | 0.000863     | 2.341868                   | -0.000159          | 9                      | height           | -0.029355             | -454.787842        | -0.093727              |  |  |
| enginesize       | 0.010825     | 49,410891                  | 0.000274           | 10                     | curbweight       | 0.000863              | 2.341853           | -0.000159              |  |  |
| horsepower       | 0.013530     | 56,182058                  | 0.003425           | 11                     | enginesize       | 0.010825              | 49.410564          | 0.000274               |  |  |
| horse per weight | 39,666768    | 201165,156382              | 23,329061          | 12                     | horsepower       | 0.013530              | 56.182014          | 0.003425               |  |  |
| _constant_       | -18.187248   | -39378.332031              | 12.198230          | 13                     | horse_per_       | 39.666752             | 201165.500000      | 23.329159              |  |  |

#### Figure 10 - Unstandardized Regression Coefficients

Because, the variables are not in the same unit, we cannot use these coefficients to compare the relative influence of the predictors in the prediction.

SIMCA-P: Menu ANALYSIS / COEFFICIENTS / LIST. Select the UNSCALED coefficients.

#### 4.4.8 Standardized Regression Coefficients

This table provides the standardized regression coefficients (Figure 11). We can use them to compare the relative importance of the variables for the prediction.

Page 9 sur 21

#### TANAGRA

#### Standardized Regression Parameters (by target variable)

| -                | Target Variable(s)    |          |           |            |           |  |  |  |  |  |
|------------------|-----------------------|----------|-----------|------------|-----------|--|--|--|--|--|
| -                | Ave                   | rage     | 10.0517   | 14579.5000 | 1.0000    |  |  |  |  |  |
| -                | Std.De                | viation  | 2.8730    | 9231.7001  | 1,1698    |  |  |  |  |  |
| Input            | Average Std.Deviation |          | conscity  | price      | symboling |  |  |  |  |  |
| diesel           | 0.1500                | 0.3663   | -0.120663 | 0.186062   | 0.065167  |  |  |  |  |  |
| twodoors         | 0.3500                | 0.4894   | 0.076801  | -0.020838  | 0.141172  |  |  |  |  |  |
| sportsstyle      | 0.2000                | 0.4104   | 0.018456  | -0.210452  | -0.028662 |  |  |  |  |  |
| wheelbase        | 99.5450               | 6.7530   | 0.095818  | -0.017027  | -0.205370 |  |  |  |  |  |
| length           | 174.6500              | 11.5355  | 0.146026  | 0.108493   | -0.093263 |  |  |  |  |  |
| width            | 65.8000               | 2.1121   | 0.141344  | 0.136468   | -0.055314 |  |  |  |  |  |
| height           | 54.0000               | 2.2480   | -0.022970 | -0.110748  | -0.180118 |  |  |  |  |  |
| curbweight       | 2570.6500             | 572.3690 | 0.171900  | 0.145197   | -0.077838 |  |  |  |  |  |
| enginesize       | 134.5500              | 47.9215  | 0.180569  | 0.256491   | 0.011226  |  |  |  |  |  |
| horsepower       | 106.1500              | 43.0034  | 0.202525  | 0.261709   | 0.125914  |  |  |  |  |  |
| horse_per_weight | 0.0406                | 0.0114   | 0.157935  | 0.249261   | 0.228124  |  |  |  |  |  |

| Ш.С | pefficient List [M1] |                         |                      | _ 🗆 ×                    |
|-----|----------------------|-------------------------|----------------------|--------------------------|
|     | 1                    | 2                       | 3                    | 4                        |
| 1   | Var ID (Primary)     | M1.CoeffCS[3](conscity) | M1.CoeffCS[3](price) | M1.CoeffCS[3](symboling) |
| 2   | diesel               | -0.120663               | 0.186062             | 0.065168                 |
| 3   | twodoors             | 0.076801                | -0.020836            | 0.141172                 |
| 4   | sportsstyl           | 0.018456                | -0.210453            | -0.028664                |
| 5   | wheelbase            | 0.095818                | -0.017027            | -0.205371                |
| 6   | length               | 0.146026                | 0.108494             | -0.093263                |
| 7   | width                | 0.141344                | 0.136470             | -0.055314                |
| 8   | height               | -0.022970               | -0.110747            | -0.180118                |
| 9   | curbweight           | 0.171900                | 0.145196             | -0.077838                |
| 10  | enginesize           | 0.180569                | 0.256489             | 0.011226                 |
| 11  | horsepower           | 0.202525                | 0.261709             | 0.125914                 |
| 12  | horse_per_           | 0.157935                | 0.249262             | 0.228125                 |

SIMCA-P

#### Figure 11 – Standardized Regression Coefficients

#### SIMCA-P: Menu ANALYSIS / COEFFICIENTS / LIST. Select SCALED & CENTERED coefficients.

#### 4.4.9 Predictions and residuals

When we have set the parameters of PLSR, we have selected all the options of the OUTPUT tab (section 4.3). In this case, PLSR provides various new data columns for the subsequent branches of the diagram. To visualize them, we use the VIEW DATASET (DATA VISUALIZATION tab) component. Into the visualization grid, we observe the original dataset, and the new columns provided by the model: the factors scores, the PLS responses, the predictions and the residuals.



About the prediction, two columns are generated: one for the predicted values, the other for the residuals (PLSR\_PRED\_TARGET\_VARIABLE\_NAME and PLSR\_RESIDUAL\_VARIABLE\_NAME) (Figure 12). These values are computed on the learning set i.e. the selected instances for the modelization. But,

it can also be computed for the test set i.e. the instances which are not used during the modelization process. We can copy the values from the visualization grid to a spreadsheet application for subsequent calculations or simply for a better display.

We observe the same value (CONSCITY) with SIMCA-P (col. 4, prediction; col. 2, residual) (Figure 13). This last one uses a separated presentation for each dependent variable. We note that SIMCA-P provides also the variance of the prediction. It can be useful when we want to compute the confidence interval of the prediction.

|          | Prédiction    |               |              | Résidus       |                |              |
|----------|---------------|---------------|--------------|---------------|----------------|--------------|
| examples | ed_conscity_1 | _pred_price_1 | _symboling_1 | al_conscity_1 | sidual_price_1 | _symboling_1 |
| 1        | 9.195         | 9684.238      | 1.090        | -0.481        | -1709.238      | 0.910        |
| 2        | 9.745         | 13793.059     | 0.886        | 0.057         | 156.941        | 1.114        |
| 3        | 15.521        | 29959.559     | -0.356       | -0.817        | 4224.441       | -0.644       |
| 4        | 13.500        | 21060.480     | 1.474        | -1.118        | -5062.480      | 1.526        |
| 5        | 10.767        | 17753.402     | 0.892        | 0.436         | 3351.598       | -0.892       |
| 6        | 13.295        | 30892.895     | 3.003        | 0.544         | 3135.105       | -0.003       |
| 7        | 8.431         | 15103.262     | 0.372        | -0.842        | 3240.738       | -0.372       |
| 8        | 10.979        | 14245.590     | -0.182       | 1.403         | -2345.590      | 0.182        |
| 9        | 7.226         | 2235.277      | 1.349        | 0.363         | 3993.723       | -0.349       |
| 10       | 9.504         | 13315.227     | 1.891        | -0.455        | -4017.227      | -0.891       |
| 11       | 6.529         | 10692.004     | 0.923        | 0.390         | -2794.004      | -0.923       |
| 12       | 10.832        | 16294.367     | 1.339        | 1.550         | -1044.367      | 0.661        |
| 13       | 7.659         | 1875.445      | 1.722        | -1.301        | 3696.555       | -0.722       |
| 14       | 7.633         | 7190.992      | 0.994        | -0.044        | 158.008        | 0.006        |
| 15       | 11.855        | 17145.168     | 1.948        | 0.527         | -645.168       | -0.948       |
| 16       | 9.114         | 8604.953      | 0.029        | 0.689         | 316.047        | -1.029       |
| 17       | 15.909        | 33689.395     | 0.246        | -0.225        | -1439.395      | -0.246       |
| 18       | 7.411         | 6413.680      | 0.996        | 0.178         | 435.320        | 0.004        |
| 19       | 7.170         | 11633.695     | 0.668        | -0.811        | -2138.695      | 1.332        |
| 20       | 8.757         | 10007.340     | 0.716        | -0.043        | -1512.340      | 1.284        |

| Figure | 12 - | Tanagra, | predictions | and | residuals |
|--------|------|----------|-------------|-----|-----------|
|--------|------|----------|-------------|-----|-----------|

| ₩Residuals List [M1] |                  |                |                   |                       |  |  |
|----------------------|------------------|----------------|-------------------|-----------------------|--|--|
|                      | 1                | 2              | 3                 | 4                     |  |  |
| 1                    | Obs ID (Primary) | Observed-Pred. | M1.YVar(conscity) | M1.YPred[3](conscity) |  |  |
| 2                    | 1                | -0.481         | 8.714             | 9.195                 |  |  |
| 3                    | 2                | 0.057          | 9.803             | 9.745                 |  |  |
| 4                    | 3                | -0.817         | 14.704            | 15.521                |  |  |
| 5                    | 4                | -1.118         | 12.382            | 13.500                |  |  |
| 6                    | 5                | 0.436          | 11.203            | 10.767                |  |  |
| 7                    | 6                | 0.544          | 13.839            | 13.295                |  |  |
| 8                    | 7                | -0.842         | 7.589             | 8.431                 |  |  |
| 9                    | 8                | 1.403          | 12.382            | 10.979                |  |  |
| 10                   | 9                | 0.363          | 7.589             | 7.226                 |  |  |
| 11                   | 10               | -0.455         | 9.049             | 9.504                 |  |  |
| 12                   | 11               | 0.390          | 6.920             | 6.529                 |  |  |
| 13                   | 12               | 1.550          | 12.382            | 10.832                |  |  |
| 14                   | 13               | -1.301         | 6.359             | 7.659                 |  |  |
| 15                   | 14               | -0.044         | 7.589             | 7.633                 |  |  |
| 16                   | 15               | 0.527          | 12.382            | 11.855                |  |  |
| 17                   | 16               | 0.689          | 9.803             | 9.114                 |  |  |
| 18                   | 17               | -0.225         | 15.684            | 15.909                |  |  |
| 19                   | 18               | 0.178          | 7.589             | 7.411                 |  |  |
| 20                   | 19               | -0.811         | 6.359             | 7.170                 |  |  |
| 21                   | 20               | -0.043         | 8.714             | 8.757                 |  |  |
| 22                   |                  | RMSEE          | 0.844             |                       |  |  |

Figure 13 - SIMCA-P – Residuals, variances of prediction, predictions

#### 4.4.10 Factor scores for predictors (Scores X, Vecteur « $t_h$ »)

#### TANAGRA

| e xa mple s | plsr_t_1_1 | plsr_t_2_1 | plsr_t_3_1 |
|-------------|------------|------------|------------|
| 1           | -0.8663    | 0.2919     | 0.5479     |
| 2           | -0.1672    | -0.3067    | -0.0102    |
| 3           | 4.9653     | -1.9137    | 0.4263     |
| 4           | 2.1854     | 1.9583     | 0.8166     |
| 5           | 0.6839     | -0.2210    | -0.2338    |
| 6           | 1.8294     | 4.1295     | -1.9338    |
| 7           | -0.5753    | -2.1501    | -1.1698    |
| 8           | 1.1884     | -2.0594    | 0.9338     |
| 9           | -2.6462    | 0.6861     | 0.8899     |
| 10          | -0.9021    | 1.7776     | -0.2343    |
| 11          | -2.2872    | -1.4091    | -1.5550    |
| 12          | 0.3808     | 0.9137     | 0.0872     |
| 13          | -2.6206    | 1.7195     | 1.2210     |
| 14          | -1.8943    | -0.3876    | 0.0527     |
| 15          | 0.6998     | 2.6030     | 0.5076     |
| 16          | -0.3893    | -1.9024    | 0.9250     |
| 17          | 5.0939     | -0.8270    | -0.2904    |
| 18          | -2.0754    | -0.4084    | 0.0810     |
| 19          | -1.7067    | -1.7503    | -1.2840    |
| 20          | -0.8963    | -0.7439    | 0.2222     |

| ≣GG | eneral List [M1] |         |         |         |
|-----|------------------|---------|---------|---------|
|     | 1                | 2       | 3       | 4       |
| 1   | Obs ID (Primary) | M1.t[1] | M1.t[2] | M1.t[3] |
| 2   | 1                | -0.8663 | 0.2919  | -0.5479 |
| 3   | 2                | -0.1672 | -0.3067 | 0.0102  |
| 4   | 3                | 4.9653  | -1.9137 | -0.4263 |
| 5   | 4                | 2.1854  | 1.9583  | -0.8166 |
| 6   | 5                | 0.6839  | -0.2210 | 0.2338  |
| 7   | 6                | 1.8294  | 4.1295  | 1.9338  |
| 8   | 7                | -0.5753 | -2.1501 | 1.1698  |
| 9   | 8                | 1.1884  | -2.0594 | -0.9338 |
| 10  | 9                | -2.6462 | 0.6861  | -0.8899 |
| 11  | 10               | -0.9021 | 1.7776  | 0.2343  |
| 12  | 11               | -2.2872 | -1.4091 | 1.5550  |
| 13  | 12               | 0.3808  | 0.9137  | -0.0872 |
| 14  | 13               | -2.6206 | 1.7195  | -1.2210 |
| 15  | 14               | -1.8943 | -0.3876 | -0.0527 |
| 16  | 15               | 0.6998  | 2.6030  | -0.5076 |
| 17  | 16               | -0.3893 | -1.9024 | -0.9250 |
| 18  | 17               | 5.0939  | -0.8270 | 0.2904  |
| 19  | 18               | -2.0754 | -0.4084 | -0.0810 |
| 20  | 19               | -1.7067 | -1.7503 | 1.2840  |
| 21  | 20               | -0.8963 | -0.7439 | -0.2222 |

SIMCA-P

Figure 14 - "  $t_{\boldsymbol{h}}$  " vectors for Tanagra and SIMCA-P

SIMCA-P: Menu ANALYSIS / SCORES / LINE PLOT, « t » series.

"SCORES X" are the factors scores computed from the predictors. The used formula is

$$t_h = X \times w_h^*$$

The projection of the instances in this new representation space enables to better understand some special cases (outliers) or to detect possible groups.

### 4.4.11 PLS Responses for dependent variables (Scores Y, « $\widetilde{u}_h$ » vectors)

"SCORES Y" are the PLS Responses scores computed from the dependent variables

$$\widetilde{u}_h = Y \times c_h$$

TANAGRA – Vecteur «  $\widetilde{u}$  »

SIMCA-P – Vecteur « u »

neral List [M1]

|           | plar utilda 1 1 | nlar utilda 2-1 | nlar utilda 2 1 |
|-----------|-----------------|-----------------|-----------------|
| e xampies | pisi_uuide_i_i  | pisi_uuide_2_1  | pisi_uuide_5_1  |
| 1         | -1.5986         | 1.3483          | 0.5151          |
| 2         | -0.3790         | 1.9482          | -0.7250         |
| 3         | 4.8511          | -1.8419         | -2.2595         |
| 4         | 0.7953          | 4.7797          | -1.7224         |
| 5         | 1.5083          | -1.4015         | -0.5196         |
| 6         | 3.6883          | 6.1095          | -5.6858         |
| 7         | -0.3933         | -2.4954         | -0.3230         |
| 8         | 0.8585          | -1.5756         | 1.7366          |
| 9         | -2.1089         | -1.0852         | 1.6193          |
| 10        | -1.0954         | -0.5408         | 1.0912          |
| 11        | -1.9944         | -3.2200         | 1.9944          |
| 12        | 0.8940          | 2.6938          | -0.7113         |
| 13        | -2.7209         | -1.4428         | 1.6212          |
| 14        | -1.9682         | -1.0264         | 1.3621          |
| 15        | 1.2440          | 0.7128          | -0.1589         |
| 16        | -0.4328         | -4.4560         | 2.9478          |
| 17        | 4.8369          | 0.3605          | -2.5362         |
| 18        | -2.0310         | -1.0527         | 1.4769          |
| 19        | -2.4206         | 0.8099          | -0.1189         |
| 20        | -1 5333         | 1 3757          | 0 3957          |

|    | 1                | 2       | 3       | 4       |
|----|------------------|---------|---------|---------|
| 1  | Obs ID (Primary) | M1.u[1] | M1.u[2] | M1.u[3] |
| 2  | 1                | -1.5986 | 1.6312  | -0.1186 |
| 3  | 2                | -0.3790 | 2.0028  | 0.9746  |
| 4  | 3                | 4.8511  | -3.4632 | 0.1017  |
| 5  | 4                | 0.7953  | 4.0662  | -0.5627 |
| 6  | 5                | 1.5083  | -1.6249 | 0.2020  |
| 7  | 6                | 3.6883  | 5.5121  | 2.5856  |
| 8  | 7                | -0.3933 | -2.3075 | 1.7039  |
| 9  | 8                | 0.8585  | -1.9636 | -1.4895 |
| 10 | 9                | -2.1089 | -0.2212 | -0.3102 |
| 11 | 10               | -1.0954 | -0.2463 | -1.3811 |
| 12 | 11               | -1.9944 | -2.4732 | 0.0918  |
| 13 | 12               | 0.8940  | 2.5694  | 0.0402  |
| 14 | 13               | -2.7209 | -0.5872 | -0.8207 |
| 15 | 14               | -1.9682 | -0.4079 | -0.0060 |
| 16 | 15               | 1.2440  | 0.4843  | -1.5150 |
| 17 | 16               | -0.4328 | -4.3289 | -1.7999 |
| 18 | 17               | 4.8369  | -1.3028 | -0.2193 |
| 19 | 18               | -2.0310 | -0.3750 | 0.0011  |
| 20 | 19               | -2.4206 | 1.3672  | 2.0088  |
| 21 | 20               | -1.5333 | 1.6683  | 0.5133  |

Figure 15 - " $\widetilde{u}$  " vectors – Tanagra; "u" vectors - SIMCA-P

#### R.R.

\_ 🗆 🗙

```
SIMCA-P: Menu ANALYSIS / SCORES / LINE PLOT, « u » series.
```

Except the first column, Tanagra and SIMCA-P do not provide the same values. The reason is that Tanagra computes the scores directly from the dependent variables (see the formula above). The values are easier to interpret.

#### 4.4.12 Some charts

PLS Regression is also a factor analysis approach. We can construct various graphical representations of the individuals or the variables. They enable to better understand the associations or the contrasts between the variables and the individuals.

**Variables Charts.** They are based on the LOADINGS and WEIGHTS. For Tanagra, we cannot design directly the plots. But we can copy the values from the data visualization grid (COMPONENT / COPY RESULTS menu) to a spreadsheet application and construct all the charts we want.

Below, we display the SIMCA-P chart from Wh\* and Ch for the first two factors. The graphical representation is especially interesting when we have a large number of variables.



Figure 16 – Variables chart - SIMCA-P - w\*c[1] vs. w\*c[2]

**Correlations between variables and factors**. Because Tanagra provides automatically the factor scores, we can calculate explicitly the correlations between the factors and the variables (target and/or input). We add the DEFINE STATUS component into the diagram. We set as TARGET the two first factors. We set as INPUT all the variables of the dataset (predictors and dependent variables) (DIESEL...SYMBOLING).

**Note**: We can add to the INPUT ones other variables which are not used during the modelization phase. It can be useful when we want to study the behavior of illustrative variables, which are not directly related to the analysis.



Then we add the CORRELATION SCATTERPLOT component (DATA VISUALIZATION tab) (Figure 17).



Figure 17 – Correlations between factors and variables – Two first factors

**Individuals representation**. A very informative aspect of factorial methods is the ability to position the instances in order to analyze proximities or to delimit groups. To create scatter plots, we add the SCATTERPLOT WITH LABEL component (DATA VISUALIZATION tab) into the diagram. We can select the factors. The points are labeled with the instance number. On our dataset, we can then observe the particular influence of some instances in the plots of the factors (t1, t2) (Figure 18), or for a factor versus a PLS response (t1,  $\tilde{u}_1$ ) (Figure 19).



Figure 18 – Scatter plot for the factors (t1, t2)



Figure 19 – Scatter plot for a factor and a PLS response (t1,  $\widetilde{u}_1$ )

## 5 PLS Regression with other tools

### 5.1 PLS Regression with SPAD

SPAD is a very popular French data mining tool which has a long history. It was one of the first French tools which provided algorithms for exploratory data analysis for personal computer in 70's.

Spad 7.0 incorporates a PLS Regression component (<u>http://www.coheris.fr/en/page/produits/SPAD-data-mining.html</u>). We create a new diagram. Then we import the data file. Last we add the PLS Regression component. We see below the main window of the software.

| SPAD 7.0 - PLS avec CARS                                                                                                                                                                        |                                                               |          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------|
| Projet Edition Affichage Diagramme Dessin Ou                                                                                                                                                    | ils ?                                                         |          |
| 🍞 Projet 💷 X 🔪 👘 💷 🗙                                                                                                                                                                            | 🕂 Diagramme 🗕 🗙                                               |          |
| PLS avec CARS                                                                                                                                                                                   | /10 m ×1本에 / 2 오고 이르 및                                        | 🗸 🎲 🔵    |
|                                                                                                                                                                                                 | cars_pls_regression.<br>dataset<br>Régression PLS             |          |
| Régression Logistique pour fonction de score                                                                                                                                                    | Brécutions - A B D                                            |          |
| Fonction de Score                                                                                                                                                                               |                                                               |          |
| Regressions optimales - Furnivated Wilson                                                                                                                                                       | Niveau Elément Stop Statut Indicateur Début Temp:             | ; 🖪      |
| Régression PLS                                                                                                                                                                                  | 1 Régression PLS 🖌 Terminé (ok) 16:31:20:968 0:0,469          | <b>^</b> |
| TA Modele ineaire général                                                                                                                                                                       | 0 .cars_pls_regression 🗸 Terminé (ok) 20 16:30:54:421 0:0,110 |          |
| Discriminante Neuronale sur Variables Contin     Discriminante Neuronale sur Variables Qualit     Modèle Log-Inéaire sur fichier Individus * Va     Modèle Log-Inéaire sur tableau de contingen |                                                               | •        |
|                                                                                                                                                                                                 |                                                               |          |

Several tables are generated. They are automatically loaded in the Excel spreadsheet application. The results are consistent with those computed from Tanagra or SIMCA-P.

Into the **DET MODEL** sheet, we observe: the WEIGHTS of the predictors ("Coefficients des variables du modèle", Wh vector, see Figure 8); the WEIGHTS of the dependent variables ("Coefficients internes des variables du modèle", Ch vector, see Figure 7); the LOADINGS of the predictors ("Poids des variables du modèle", Ph vector, see Figure 6).

| <b>X</b> 1 | Microsoft Excel - Classeur2 |                                       |                    |                               |                                 |         |
|------------|-----------------------------|---------------------------------------|--------------------|-------------------------------|---------------------------------|---------|
|            | Eichier Edition Al          | fichage <u>I</u> nsert                | ion Forma <u>t</u> | <u>O</u> utils <u>D</u> onnée | s Fe <u>n</u> être <u>3</u>     | 2 _ 8 × |
| D          | 🚘 🗖 🖨 🖷 🔺                   |                                       | - Mi 100%          | - » 6                         | 🖬 🔍 🗸 🕭                         | . »     |
|            | F7 <b>•</b>                 | ـــــــــــــــــــــــــــــــــــــ | 1000               | • = -                         |                                 | · ·     |
|            | A                           | B                                     | C                  | D                             | F                               | F -     |
| 1          | Dataila any la              | modèle e                              | inetá              |                               |                                 |         |
|            | Details sur le              | mouele a                              | Juste              |                               |                                 |         |
| 2          | Coefficients des            | variables di                          | 1 modéle           | -                             |                                 |         |
| 3          | Variable                    | 1                                     | 2                  | 3                             |                                 |         |
| 4<br>E     | diesel                      | -0.1396                               | -0.1603            | -0.6992                       |                                 |         |
| 6          | twodoors                    | 0.0202                                | 0.4/2/             | 0.2439                        |                                 |         |
| 7          | sportsstyte                 | -0.0723                               | 0.1570             | 0.5264                        |                                 |         |
| 8          | length                      | 0.2875                                | -0.3930            | 0.2310                        | └─── <b>╏</b> ──── <sup>╏</sup> | ·       |
| 9          | width                       | 0.3560                                | -0.1094            | 0.0001                        |                                 |         |
| 10         | height                      | 0.0142                                | -0.3782            | 0.1794                        |                                 |         |
| 11         | curbweight                  | 0.4278                                | -0.1395            | 0.0468                        |                                 |         |
| 12         | enginesize                  | 0.4490                                | -0.0117            | -0.1792                       |                                 |         |
| 13         | horsepower                  | 0.4144                                | 0.3025             | -0.1251                       |                                 |         |
| 14         | horse_per_weight            | 0.2645                                | 0.5235             | -0.1845                       |                                 |         |
| 15         |                             |                                       |                    |                               |                                 |         |
| 16         | Coefficients inte           | rnes des vai                          | iables du m        | odèle                         |                                 |         |
| 17         | Variable                    | 1                                     | 2                  | 3                             |                                 |         |
| 18         | conscity                    | 0.4225                                | 0.1154             | 0.0623                        |                                 |         |
| 19         | price                       | 0.3968                                | 0.0742             | -0.3800                       |                                 |         |
| 20         | symboling                   | -0.0771                               | 0.3663             | -0.1760                       |                                 |         |
| 21         |                             |                                       |                    |                               |                                 |         |
| 22         | Poids des variab            | les du modè                           | le                 |                               |                                 |         |
| 23         | Variable                    | 1                                     | 2                  | 3                             |                                 |         |
| 24         | diesel                      | -0.1326                               | -0.2496            | -0.7368                       |                                 |         |
| 25         | twodoors                    | 0.0154                                | 0.4714             | 0.1393                        |                                 |         |
| 26         | sportsstyle                 | -0.0617                               | 0.2924             | 0.5636                        |                                 |         |
| 27         | wheelbase                   | 0.3342                                | -0.3433            | 0.2242                        |                                 |         |
| 28         | length                      | 0.4080                                | -0.2122            | 0.0586                        |                                 |         |
| 29         | WIGTH                       | 0.3942                                | -0.1773            | 0.1231                        |                                 |         |
| 30         | neight                      | 0.0003                                | -0.4032            | 0.1488                        |                                 |         |
| 32         | enginesize                  | 0.4322                                | -0.0919            | -0.0577                       |                                 |         |
| 33         | horsepower                  | 0.3770                                | 0,2886             | -0.1410                       |                                 |         |
| 34         | horse per weight            | 0.2087                                | 0.4708             | -0.1367                       |                                 |         |
| 35         | <u>_</u>                    |                                       |                    |                               |                                 |         |
| 36         |                             |                                       |                    |                               |                                 | -       |
| H   4      |                             | L / SOLUTION                          | S / INTERPRET      | Τ, ◀                          |                                 |         |
| Des        | isin 👻 🔓 🖌 aut              | comatiques 👻 🔨                        |                    | 🗎 📣 🗘 📓                       | 🛯 🕭 • <u>A</u> •                | ≡ 🕤 🕴   |
| Prêt       | Prêt NUM                    |                                       |                    |                               |                                 |         |

Into the **SOLUTIONS** sheet, we observe the estimated coefficients of the model: "Coefficients associées aux variables centrées réduites" are the standardized coefficients (see Figure 11); "Coefficients associés aux variables d'origine" are the unstandardized coefficients (see Figure 10).

| <b>N</b> 1 | Microsoft Excel - Classeur2 |                        |                     |                               |                    |                |  |
|------------|-----------------------------|------------------------|---------------------|-------------------------------|--------------------|----------------|--|
| 8          | Eichier Edition A           | ffichage <u>I</u> nser | tion Forma <u>t</u> | <u>O</u> utils <u>D</u> onnée | s Fe <u>n</u> être | 2 <b>_ 8 ×</b> |  |
|            |                             | 3 0 - 5                | - <b>60</b> 100%    | · » c                         | F 8                | . »            |  |
| = L        |                             |                        |                     | • • • •                       |                    | • •            |  |
|            |                             | <i>jx</i>              | <u> </u>            | D                             | E                  |                |  |
|            |                             |                        |                     |                               | E.                 |                |  |
| 1          | Coefficients                | de regress             | ion estime          | s                             |                    |                |  |
| 2          | Coefficients ass            | ociés aux va           | riables cent        | rées réduite:                 | s                  |                |  |
| 3          | Variable                    | conscity               | price               | symboling                     |                    |                |  |
| 4          | diesel                      | -0.1210                | 0.1881              | 0.0661                        |                    |                |  |
| 5          | twodoors                    | 0.0769                 | -0.0212             | 0.1410                        |                    |                |  |
| 6          | sportsstyle                 | 0.0183                 | -0.2094             | -0.0282                       |                    |                |  |
| 7          | wheelbase                   | 0.0965                 | -0.0212             | -0.2073                       |                    |                |  |
| 8          | length                      | 0.1469                 | 0.1031              | -0.0958                       |                    |                |  |
| 9          | width                       | 0.1422                 | 0.1313              | -0.0577                       |                    |                |  |
| 10         | height                      | -0.0229                | -0.1110             | -0.1802                       |                    |                |  |
| 11         | curbweight                  | 0.1729                 | 0.1390              | -0.0807                       |                    |                |  |
| 12         | enginesize                  | 0.1816                 | 0.2500              | 0.0082                        |                    |                |  |
| 13         | horsepower                  | 0.2035                 | 0.2557              | 0.1231                        |                    |                |  |
| 14         | horse_per_weight            | 0.1586                 | 0.2454              | 0.2263                        |                    |                |  |
| 15         |                             |                        |                     |                               |                    |                |  |
| 16         | Coefficients ass            | ociés aux va           | riables d'ori       | gine                          |                    |                |  |
| 17         | Variable                    | conscity               | price               | symboling                     |                    |                |  |
| 18         | INTERCEP.                   | -18.3683               | -35832.3000         | 12.4064                       |                    |                |  |
| 19         | diesel                      | -0.9489                | 4739.8600           | 0.2111                        |                    |                |  |
| 20         | twodoors                    | 0.4513                 | -400.3030           | 0.3370                        |                    |                |  |
| 21         | sportsstyle                 | 0.1280                 | -4710.4100          | -0.0803                       |                    |                |  |
| 22         | wheelbase                   | 0.0411                 | -28.9971            | -0.0359                       |                    |                |  |
| 23         | length                      | 0.0366                 | 82.4850             | -0.0097                       |                    |                |  |
| 24         | width                       | 0.1934                 | 573.8210            | -0.0320                       |                    |                |  |
| 25         | height                      | -0.0293                | -455.6430           | -0.0938                       |                    |                |  |
| 26         | curbweight                  | 0.0009                 | 2.2414              | -0.0002                       |                    |                |  |
| 27         | enginesize                  | 0.0109                 | 48.1512             | 0.0002                        |                    |                |  |
| 28         | horsepower                  | 0.0136                 | 54.8865             | 0.0033                        |                    |                |  |
| 29         | horse_per_weight            | 39.8255                | 198036.0000         | 23.1466                       | -                  |                |  |
| 30         |                             |                        |                     | T [ 4 ]                       |                    |                |  |
| -          |                             |                        |                     |                               |                    |                |  |
| Des        | sin 🔻 🗟 🛛 Formes au         | tomatiqu               |                     | 🗎 🖪 🛟 📓                       | 🖞 🖄 र 🛕 र          | ≡ 💋 🕴          |  |
| Prêt       |                             |                        |                     |                               | NUM                |                |  |

Into the **INTERPRET** sheet, we observe various tables which are useful for the interpretation, for instance we observe below the variable importance in projection table (VIP, see Figure 9).

| 🛚 Microsoft Excel - Classeur2 |                         |                    |                               |            |  |  |
|-------------------------------|-------------------------|--------------------|-------------------------------|------------|--|--|
| Eichier Edition Al Fenêtre ?  | ifichage <u>I</u> nsert | ion Forma <u>t</u> | <u>O</u> utils <u>D</u> onnée | s<br>_ & × |  |  |
| D 🛩 🖫 🔒 🛍 🤞                   | 🗿 🗠 - Σ                 | • 🛍 100%           | • • •                         | 👌 -        |  |  |
| D33 🗸                         | <i>f</i> ∗ T3           |                    |                               |            |  |  |
| A                             | В                       | С                  | D                             | ľ,         |  |  |
| 43 symboling                  | 0.0294                  | 0.4394             | 0.4637                        |            |  |  |
| 44 Redondance                 | 0.5640                  | 0.7199             | 0.7666                        |            |  |  |
| 45                            |                         |                    |                               |            |  |  |
| 🍕 Tableau des VII             | $\sim$                  |                    |                               |            |  |  |
| 47 Composante                 | 1                       | 2                  | 3                             |            |  |  |
| 48 diesel                     | 0.4630                  | 0.4788             | 0.7369                        |            |  |  |
| 49 twodoors                   | 0.0870                  | 0.7334             | 0.7383                        |            |  |  |
| 50 sportsstyle                | 0.2399                  | 0.3222             | 0.5322                        |            |  |  |
| 51 wheelbase                  | 0.9530                  | 1.0408             | 1.0261                        |            |  |  |
| 52 length                     | 1.2354                  | 1.1257             | 1.0924                        |            |  |  |
| 53 width                      | 1.1807                  | 1.0586             | 1.0259                        |            |  |  |
| 54 height                     | 0.0472                  | 0.5851             | 0.5857                        |            |  |  |
| 55 curbweight                 | 1.4187                  | 1.2741             | 1.2353                        |            |  |  |
| 56 enginesize                 | 1.4893                  | 1.3184             | 1.2860                        |            |  |  |
| 57 horsepower                 | 1.3746                  | 1.3032             | 1.2670                        |            |  |  |
| 58 horse_per_weight           | 0.8774                  | 1.1206             | 1.0964                        |            |  |  |
| 59                            |                         |                    |                               |            |  |  |
|                               |                         |                    |                               |            |  |  |
| Formes automatiques 👻 🚿       |                         | ् 🔜 🖄 •            | · <u>A</u> - ≡ <i>∅</i>       | »<br>▼     |  |  |
| Prêt                          | -                       |                    | NUM                           |            |  |  |

## 5.2 PLS Regression with SAS

We have used the PROC PLS procedure of SAS 9.1. The description of the procedure is available online (<u>http://support.sas.com/91doc/docMainpage.jsp</u>; search: PROC PLS).

The PROC PLS is very informative. To obtain results comparable to the other tools, we set the following settings: METHOD = PLS and ALGORITHM = NIPALS. We use the following commands for our dataset.

First, we obtain the proportion of explained variance by the factors, for the predictors and for the dependent variables. The results are coherent with those of Tanagra and SIMCA-P (see Figure 2 and Figure 3).



Then, we have the LOADINGS (see Figure 6). The organization of the values is a little different.

| Number of<br>Extracted<br>Factors | diesel                                  | twodoors                         | sportsstyle                       | wheelbas                       | se lenç                           | gth width                                     |     |  |  |  |
|-----------------------------------|-----------------------------------------|----------------------------------|-----------------------------------|--------------------------------|-----------------------------------|-----------------------------------------------|-----|--|--|--|
| 1<br>2<br>3                       | -0.131855<br>-0.244389<br>-0.721275     | 0.015262<br>0.461515<br>0.136361 | -0.061349<br>0.286265<br>0.551743 | 0.33219<br>-0.33619<br>0.21946 | 97 0.405<br>50 -0.207<br>59 0.057 | 519 0.391885<br>791 -0.173595<br>399 0.120507 | ; } |  |  |  |
| Model Effect Loadings             |                                         |                                  |                                   |                                |                                   |                                               |     |  |  |  |
| Number o<br>Extracte<br>Factor    | f<br>d<br>s height                      | curbwe i                         | ght eng                           | inesize                        | horsepower                        | horse_per_<br>weight                          | า   |  |  |  |
|                                   | 1 0.055946<br>2 -0.396712<br>3 0.145641 | 0.429<br>-0.090<br>-0.056        | 607 0<br>016 0<br>496 -0          | .423140<br>.034193<br>.171430  | 0.374797<br>0.282591<br>-0.138054 | 0.207439<br>0.460990<br>-0.133844             | ſ   |  |  |  |

We note that the values seem not consistent with those of our reference tools (Tanagra and SIMCA-P). This is the same case for the WEIGTHS below (in comparison to the values into the Figure 7).

| Dependent Variable Weights        |                                  |                                   |                                    |  |  |  |  |
|-----------------------------------|----------------------------------|-----------------------------------|------------------------------------|--|--|--|--|
| Number of<br>Extracted<br>Factors | consc i ty                       | price                             | symboling                          |  |  |  |  |
| 1<br>2<br>3                       | 0.722639<br>0.295016<br>0.147212 | 0.678529<br>0.189718<br>-0.897485 | -0.131878<br>0.936468<br>-0.415751 |  |  |  |  |

The differences are explained by the normalization process used by SAS. Indeed, if we calculate the following formula for the first factor:  $0.722369^2 + 0.678529^2 + (-0.131878)^2 = 1$ . If we normalize the values provided by Tanagra and SIMCA-P, we obtain the same coefficients.

## 5.3 PLS Regression with R – The PLS package

We used the 2.6.0 version of R (<u>http://www.r-project.org/</u>). We installed and implemented the PLS package (<u>http://cran.r-project.org/web/packages/pls/index.html</u>). The main reference is the paper published into the "Journal of Statistical Software" (<u>http://www.jstatsoft.org/v18/i02</u>). We set the following commands.

```
#clear all
rm(list=ls())
#*****
#some packages
#*****
#xls data file handling
library(xlsReadWrite)
#pls regression
library(pls)
#downloading the dataset
setwd("directory of the dataset")
cars.data <- read.xls(file="cars pls regression.xls",rowNames=FALSE,sheet=1)</pre>
#checking the variables
summary(cars.data)
#subdivide the dataset into matrix Y and X
Y <- as.matrix(cars.data[,12:14])</pre>
X <- as.matrix(cars.data[,1:11])</pre>
#pls regression: 3 factors, nipals
cars.pls <- mvr(Y ~ X, ncomp = 3, method = "oscorespls", scale = TRUE)</pre>
summary(cars.pls)
```

First, we obtain a summary of the main results. Here we observe divergences compared with the results of the other tools.

```
> summary(cars.pls)
Data: X dimension: 20 11
        Y dimension: 20 3
Fit method: oscorespls
Number of components considered: 3
TRAINING: % variance explained
           1 comps 2 comps 3 comps
X 45.333 66.30 81.73

conscity 87.988 89.17 91 94
                                       [1]
price
          80.482
                      88.47
                               92.72
                                       [2]
symboling 2.546
                      33.95
                               41.78
```

About the proportion of variances explained by the factors **[1]**, the values (45.33%, 66.30% and 81.73%) are not the same as the other tools (see for instance Figure 3) where we have (45.53%, 74.51%, 81.93%). The deviation is singularly problematic for the second factor.

If we observe the cumulative proportion of variance explained by the factors for each dependent variable [2], the values are also in contradiction to the other tools (see Figure 5).

We can obtain various indicators (loadings, estimated parameters, residuals, etc.) with the following commands.

```
#loadings for X
loadings(cars.pls)
#weights for X
loading.weights(cars.pls)
#weights for Y
Yloadings(cars.pls)
#regression coefficients
coef(cars.pls)
#prediction
fitted(cars.pls)
#residuals
residuals(cars.pls)
```

About the estimated standardized regression coefficients, we have (see Figure 11).

| <pre>&gt; coef(cars.pls) , , 3 comps</pre> | $\checkmark$ | $\checkmark$ | $\checkmark$ |
|--------------------------------------------|--------------|--------------|--------------|
|                                            | conscity     | price        | symboling    |
| diesel                                     | -0.26017692  | 1557.55068   | 0.002923431  |
| twodoors                                   | 0.24626479   | -889.76672   | 0.149642873  |
| sportsstyle                                | 0.06821250   | -1820.00863  | 0.057453989  |
| wheelbase                                  | 0.27648511   | -34.11222    | -0.186698496 |
| length                                     | 0.44138223   | 462.08244    | -0.119974109 |
| width                                      | 0.41972747   | 578.93918    | -0.115984611 |
| height                                     | -0.09896129  | -1246.64032  | -0.203604184 |
| curbweight                                 | 0.50771044   | 1634.46156   | -0.045387443 |
| enginesize                                 | 0.51005416   | 3122.95037   | 0.029842667  |
| horsepower                                 | 0.57798583   | 2488.51319   | 0.121556434  |
| horse_per_weight                           | 0.43161789   | 2200.81123   | 0.198713642  |

I think that the divergence with the other tools is mainly caused by a different normalization mechanism. This is highlighted by the authors in their paper (http://www.jstatsoft.org/v18/i02/paper; last paragraph, page 3). This makes comparisons difficult.

## 6 Conclusion

In this tutorial, we introduced the PLSR component of Tanagra (from 1.4.24 version). We have mainly improved the presentation of the results in order to be comparable to the state-of-the-art tools such as SIMCA-P or SAS. We note that the most of the tools provide the same results when they are applied to the same dataset.