1 Topic

PSPP, an alternative to SPSS.

I spend a lot of time to analyze the available free statistical and data mining tools. There is not bad software, but some tools are more appropriate for some tasks. Thus, we must identify the one which is the best suited to our configuration. For that, we must know a large number of tools.

In this tutorial, we describe PSPP. It is presented as an alternative to the well-known SPSS: "*PSPP is a program for statistical analysis of sampled data. It is a free replacement for the proprietary program SPSS, and appears very similar to it with a few exceptions*¹". Instead of to describe in detail each feature, the documentation is available on the website, we present some statistical techniques. We compare the results with those of **Tanagra, R 2.13.2** and **OpenStat (build 24/02/2012)**. This is also a way to validate them. If they provide different results, it means that there is a problem.

2 Dataset

We use a version of the "Automobile" dataset from the UCI server². According to the statistical method that we analyze, we use some variables of the dataset. The most important here is to show how to perform the various analyses with PSPP.

3 PSPP

3.1 Loading and installing PSPP

			- II I I Lange, Fill des	- • X
http://www.gnu.org/sc	oftware/pspp/	ନ - ଛ ୯ × 🧔 GNU I	ospp ×	\$ \$ \$
Ge	et PSPP	FAQ	Documentation	
	0	÷		
DSPY	Contribute	e Quick Tour		
PSPP is a program for statistical at appears very similar to it with a few	w exceptions. The most important of th PSPP will not "expire" or artificial limits on the nur additional packages to p PSPP currently supports PSPP can perform desc	nese exceptions are, that there is r deliberately stop working in the mber of cases or variables whice surchase in order to get "advance s is in the core package. rriptive statistics, T-tests, linear	are no "time bombs"; your copy of f tuture. Neither are there any h you can use. There are no ed" functions; all functionality that regression and non-parametric tests.	USEFUL LINKS • Latest News User Maling ListAsk general questions here • Developer Website • Developer Website • User Unofficial Resources: • Lister With • Developer With • Developer With • Developer H (PB
Tanta matrix	•		as possible, regardless of the size of rface or the more traditional syntax	Blog: <u>en</u> , <u>pt_BR</u>
commands.	the input data. Tou can	use ForF with its graphical line	hace of the more traditional syntax	Other Stats Software:
A brief list of some of the features Supports over 1 billion cases. Supports over 1 billion variabi Syntax and data files are com Choice of terminal or graphicz Choice of terminal or graphicz Choice of terminal or form spread Fast statistical procedures, ev No license fees. No expiration period. No uneflicial "end user license. No uneflicial "end user license. No uneflicial "end user license. No uneflicial "end user license. No uneflicial "end user license. Statistical process platform, Runs on man PSPP is particularly aimed at statistical	ies spatible with SPSS. al user interface. tril output formats. <u>OpenOffice.Org</u> and other isheets, text files and datat ven on very large data sets e agreements". rr <u>GPLV3</u> or later. y different computers and i isticians, social scientists a	base sources. , many different operating system ind students requiring fast convi	enient analysis of sampled data.	- R Greft - Octave - miscellaneous - Other GNU Software
Please send broken i Copyright © 1996, 19 USA - Verbatim copy preserved.	links and other corrections (or s 997, 1998, 1999, 2000, 2001, 20	e article are permitted worldwide, with	the FSF. g. es Software Foundation, Inc., 51 Franklin St - St nout royalty, in any medium, provided this notice,	

¹ http://www.gnu.org/software/pspp/pspp.html

² http://archive.ics.uci.edu/ml/datasets/Automobile

PSPP is downloadable online (<u>http://www.gnu.org/software/pspp/</u>). We use the **0.7.8** (2011/11/11) version. PSPP needs the MINGW³ environment, but fortunately, the installation of this last one is done automatically. Thus, the installation process under Windows is performed easily.

3.2 Command line mode

We can set instructions in a program file (e.g. with a standard text editor) and send this one to the executable file PSPP.EXE. The syntax of the commands is the same to the one of SPSS. By learning to program with PSPP, we will know to do this with SPSS. This is really interesting.

For instance, we want to compare the horsepower of the cars according to their fuel type using a ttest. We set the following commands into the "**test.syn**" program file.

```
GET FILE="D:\dataset\pspp\autos.sav".
T-TEST /VARIABLES= horsepower
    /GROUPS=fuel_type("gas","diesel") /MISSING=ANALYSIS
    /CRITERIA=CIN(0.95).
```

The results are displayed into the MSDOS console.

D:\DataMini)\pspp\bin\ Group Stati	pspp" test. stics	. syn	-				et\pspp>"c:	∖program file	s (x86
; ;	fuel_type								
horsepower	gas	185	106.3	#	4	40.18	2.95# #		
	diesel	20	84.4	45 #=#===		25.96	# 5.80# ======#		
ndependent	Samples T	est "							
# # Levene's t-test for Equality of Means # # Test for # # Equality # # of # # Variances # #+++++++									
	# # # # # # # # # #	F	Sig.	t	df	Sig. (2-	Mean	Std. Error	
	# #		#====#	/;	 	tailed		======================================	: г
	Equal # variances# assumed #	1.92	.17	2.39	203.00	.0	2 21.9	4 6.51	:
	Equal # variances# not # assumed #			3.37	29.91	.0	0 21.9	4 6.51	L

PSPP compares first the conditional variances with the Levene's test. Then, it compares the means with and without the homoscedasticity assumption.

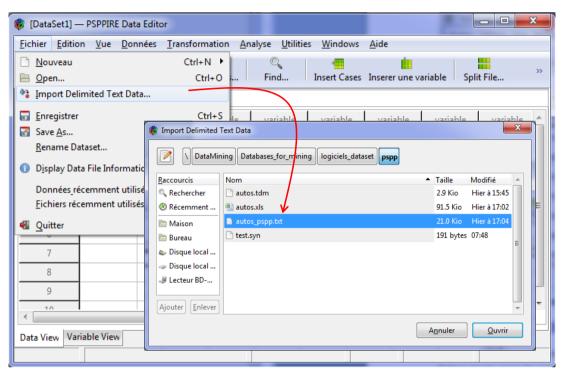
³ http://www.mingw.org/

3.3 Terminal mode

We can use also PSPP in a terminal mode. After we launch PSPP.EXE, a command interpreter allows us to set the instructions. The results are displayed into the same window. Here, we load the "autos.sav" data file, and we display the dataset dictionary.

C:\Windows\system	32\cmd.exe - "c:\program files	s (x86)\pspp\bin\pspp"
+ PSPP> GET FILE='aut PSPP> DISPLAY DICT	tos.sav'. IONARY.	*
† Variable #	Description	[Position]
normalized_losses	Format : F3.0 Mesure : Echelle Display Alignment: Droite Affiche la largeur : 8	
make	Format : A13 Mesure : Nominale Display Alignment: Gauche Affiche la largeur : 13	2
fuel_type	Format : A6 Mesure : Nominale Display Alignment: Gauche Affiche la largeur : 6	3
fuel_type_gas	Format : F1.0 Mesure : Echelle Display Alignment: Droite Affiche la largeur : 8	4 3

3.4 Menu-driven mode


🐞 *autos.sav [[DataSet1] — P	IRE Data Cor	₽			-				x
<u>Fichier</u> Editio	n <u>V</u> ue <u>D</u> onnée	es <u>T</u> ransformation	<u>A</u> nalyse	<u>U</u> tilities	<u>W</u> indows	<u>A</u> ide				
		ا الله 🕹	<u>S</u> tat	istiques Des	criptives		+			~
Open E	nregistrer Go	To Case Variables.		•	es Moyenn	es	•	able Split File		**
				riate <u>C</u> orrel						
	normalized_losses	make		leans Cluste tor <u>A</u> nalysis				I contraction where	o nur	
	hormalized_losses	таке		ability				aspiration_turk	o nur	_
1	106	nissan	-	ar <u>R</u> egressi	on				0 four	
2	74	toyota		istiques <u>N</u> o C Cur <u>v</u> e	n-parametri	ques	•		0 four	
3	168	nissan		as		1	std	1	0 two	
4	103	volvo	g	as		1	turbo		1 four	
5	93	mercedes-benz	d	iesel		0	turbo		1 four	_
6	145	dodge	g	as		1	turbo		1 two	_
7	106	nissan	g	as		1	std		0 four	_
8		how		ər		1	etd		0 540	-
	III								•	
Data View Var	iable View									
					F	ilter of	f Wei	ights off	No Split	:

The easiest way to handle PSPP is the menu-guided mode. We use it in this tutorial. The features are grouped in menus "données" (dataset), "transformation", and "analyse" (analysis). *Curiously*,

although that I have installed the English version, some menu-items are in French on my computer. I do not know if we have the same phenomenon with an English language operating system.

4 Importing the data file

First, we must import the « autos_pspp.txt » tab delimited text file. We click on the FICHIER / IMPORT DELIMITED TEXT DATA menu. We pick the file into the dialog box.

A wizard appears. We must: (1) import all the instances; (2) the first row corresponds to the variable name; (3) the TAB character is the column separator; (4) the values are string (chaîne) or numeric (numérique). We click on the APPLIQUER button.

njus		Tormat	des variak						
				et régler le s'il	mat des données affi est incorrect. Vous p	oouvez fixer			
				d'autres propi tard.	riétés de variables m	aintenant ou plus			
/ariable				tara.					
		Nom	Туре	L	Decimals	Etiquette	Values	Manquant	Col
	1	normalized_loss	Numérique	3	0		None	None	8
	2	make	Chaîne	13	0		None	None	13
	3	fuel_type	Chaîne	6	0		None	None	6
4	<u>, </u>								-
Prévieur	lication	des données							,
Ligne		alized_losses	make	fuel_ty	pe fuel_type_gas	aspiration	aspiration_turbo	num_of_doors	bod
2	106		nissan	gas	1	std	0	four	hat
3	74		toyota	gas	1	std	Θ	four	hat
4	168		nissan	gas	1	std	Θ	two	har
-	100					100 A 100 A			/

We save the loaded dataset into the PSPP native format ("autos.sav"). This is the same one as SPSS.

🍀 *[DataSet1] — PSPPIRE Data Editor		×
<u>Fichier</u> <u>Edition</u> <u>Vue</u> <u>D</u> onnées <u>T</u> ran	nsformation <u>A</u> nalyse <u>U</u> tilities <u>W</u> indows <u>A</u> ide	
🗋 <u>N</u> ouveau	Ctrl+N 🕨 🔍 📲 🛗	~
<u>— О</u> реп	Ctrl+O Find Insert Cases Inserer une variable Split File	
Import Delimited Text Data		
Enregistrer	Ctrl+S fuel_type fuel_type_gas aspiration aspiration_turbo	nun 🔺
Save As		
<u>R</u> ename Dataset	gas 1 std 0 fo	bur
① Display Data File Information	🛞 Enregistrer	x
Données_récemment utilisées	↓	
<u>F</u> ichiers récemment utilisés	Nom : autos.sav	
🐔 Quitter		-
93 merced	Parcourir d'autres dossiers	
6 145 dodge		
7 106 nissan	Ichier Systeme	
8 188 hmw	Fichier portable	
< D88180000	A <u>n</u> nuler <u>Enregistrer</u>	
Data View Variable View		
	Filter off Weights off No S	Split

5 A few statistical methods with PSPP

In this section, we present some statistical techniques available in PSPP. When this is possible, we compare the results with those of Tanagra.

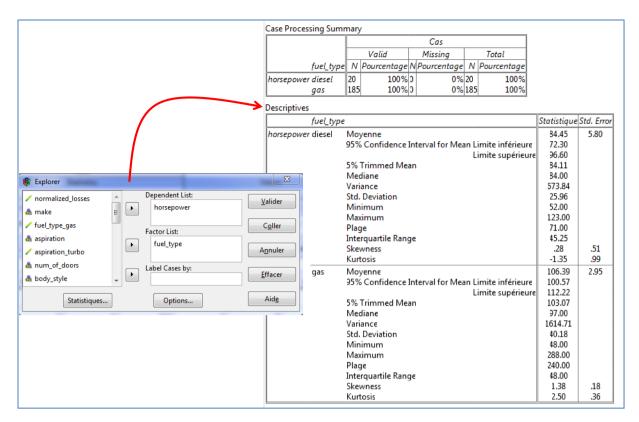
5.1 Descriptive statistics – Numeric variables

To obtain the description for horsepower and city mpg, we click on the ANALYSE / STATISTIQUES DESCRIPTIVES / DESCRIPTIVES menu. Into the dialog settings, we select the indicators to compute.

🐞 *autos.sav [DataSet1] -	- PSPPIRE Da	ta Editor								l		x
<u>Fichier</u> Edition	on <u>V</u> ue	<u>D</u> onnées <u>T</u> r	ansformation	<u>A</u> nalyse <u>U</u>	tilities	<u>W</u> indows	<u>A</u> ide						
Open	Enregistrer	Go To Cas	se Variables.	Compar Bivariate	raison e <u>C</u> orre		25	•	Des Exp	quencies criptives – lore	It	Cases	»
	ngine type	um_of_cylinde	engine_size	<u>K</u> -Mean Factor A					pg Cro	sstabs highway_mpg	F	price	
1		four	1	Re <u>l</u> iabili Linear <u>R</u>	ty	escriptives			-9			X	
2	hc	four	9	Statistiq		fuel_type_gas		*	<u>V</u> arial		_	Valider	
3	hc	four	g	ROC Cu		aspiration_turk	00			-			
4	hc	four	13	0		wheel_base length			S <u>t</u> atis		*		
5	hc	five	18	13	/	width						C <u>o</u> ller	
6	hc	four	15	6		height curb_weight		E		Minimum	=		
7	hc	four	12	20		engine_size				Maximum ⁺ Plage		Annuler	
8	hc	six	16	j4		peak_rpm highway_mpg				Somme Standard error			
9	hc	four	12	22		price					-		
10	hc	four	g	0		symboling tions :		Ŧ	4	4		<u>E</u> ffacer	
11	hc	four	14	1			entire case	if any s	elected var	iable is missing			
12	hc	six	20	9			iser-missin	-	-	new variables		Aide	
•						58VE <u>Z</u> -S0	cores of se	ected v	ariables as	new variables		Alde	
Data View Va	riable View					_							
									Filter off	Weights of	ff	No Spli	it

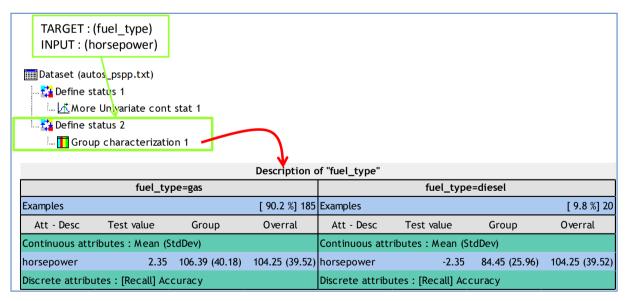
The results are displayed into a new window ("Output viewer").

🛞 Output — PSPPIF	RE Output Vie	wer	-		-						x
Fichier Edition V	<u>V</u> indows <u>A</u> io	de									
	DESCRIPTIVE DESCRIPTIVE /VARIABLE /STATISTIC	S S=				NESS.					
	Valid cases =	_			<u> </u>	<u> </u>	Skewners	S.F. Skow	Minimum	Maximum	
	horsepower		104.25	39.52	2.68	.34	1.40	.17	48.00	288.00	


The MORE UNIVARIATE CONT STAT of **Tanagra** provides the same values.

	Attribute	Stats					
		Statistics					
		Average	104.2537				
		Median	95				
TARGET : ()		Std dev. [Coef of variation]	39.5192 [0.3791]				
INPUT : (horsepower, city_mpg)		MAD [MAD/STDDEV]	30.2093 [0.7644]				
		Min * Max [Full range]	48.00 * 288.00 [240.00]				
		1st * 3rd quartile [Range]	70.00 * 116.00 [46.00]				
Dataset (autos pspp.txt)		Skewness (std-dev)	1.3980 (0.1698)				
Entry Define status 1		Kurtosis (std-dev)	2.6785 (0.3381)				
More Univariate cont stat 1							
		Statistics					
		Average	25.2195				
		Median	24				
		Std dev. [Coef of variation]	6.5421 [0.2594]				
		MAD [MAD/STDDEV]	5.2155 [0.7972]				
	city_mpg	Min * Max [Full range]	13.00 * 49.00 [36.00]				
		1st * 3rd quartile [Range]	19.00 * 30.00 [11.00]				
		Skewness (std-dev)	0.6637 (0.1698)				
		Kurtosis (std-dev)	0.5786 (0.3381)				

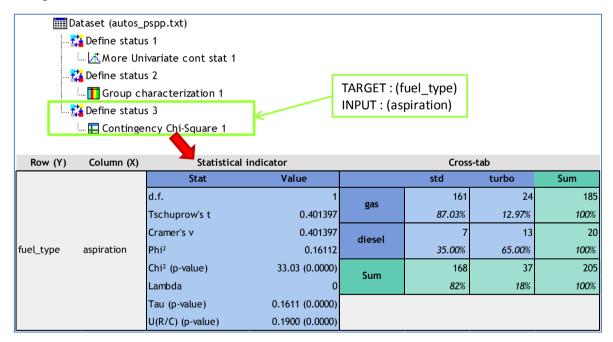
5.2 Conditional descriptive statistics


We want calculate the descriptive statistics for horsepower according to the values of fuel type ("gas" or "diesel").

We click on the ANALYSE / STATISTIQUES DESCRIPTIVES / EXPLORE menu. We set "horsepower" into DEPENDENT LIST, "fuel type" into FACTOR LIST. By clicking the STATISTICS button, we can specify the indicators to compute. We validate.

For instance, we observe that the mean of horsepower is 84.45 for the cars corresponding to "fuel type = gas", and 106.39 for "fuel type = diesel". We obtain very detailed results.

The GROUP CHARACTERIZATION component of **Tanagra** provides the same values, but the results are definitely less detailed.


5.3 Contingency table

We want to analyze the relation between fuel type and aspiration ("turbo" or "standard") with a cross tab. We click on the ANALYSE / STATISTIQUES DESCRIPTIVES / CROSSTABS menu. We set the first variable into ROWS list, the second one into the COLUMNS.

fuel_type * aspiration [Compter, ligne %, colonne %, total %]. fuel_type * aspiration fuel_type * aspiration fuel_type gas fuel_type gas columns aspiration Effacer Format Statistics Cells Aide Total 100.0% 100.0% 82.0% 18.0%/100.0% 82.0% 18.0%/100.0% 82.0% 18.0%/100.0% 100.0%/100.0%
Continuity Correction 29.61 1 .00

Here also, PSPP can provide very detailed results. Some measures of association (Theil's U, Cohen's Kappa, etc.) and the various percentages are also displayed.

The same results are available under **Tanagra** with the CONTINGENCY CHI-SQUARE component. But the organization is a little different.

5.4 Comparison of two means – Independent samples

Beyond the conditional descriptive statistics, we can test if the means are significantly different. We click on the ANALYSE / COMPARAISON DES MOYENNES / INDEPENDENT SAMPLES T TEST, we set horsepower into TEST VARIABLE list, fuel type into DEFINE GROUPS.

PSPP compares the conditional variances first by using the Levene's test. We observe that they are not significantly different at the 5% level (p-value = 0.17). However, it displays the comparison of means with and without the homoscedasticity assumption. In both cases, we see that the means are significantly different.

👘 Independent-Samples T Test		-			×	J			
normalized_losses	Test Varia				<u>V</u> alider				
<pre>/ fuel_type_gas</pre>					C <u>o</u> ller				
aspiration		efine Groups			A <u>n</u> nuler				
aspiration_turbo		fuel_type <u>Effacer</u>							
a num_of_doors Define Groups Options Aide									
A body style	hody chilo								
Group Statistics									
fuel_type N Moyenne									
horsepower gas 185 106.39 diesel 20 34.45		2.95 5.80					/		
Independent Samples Test						V			
	Levene's Test Varia					t-test fo	or Equality of Mea	ins	
									e Interval of the rence
	F	Sig.	t	df	Sig. (2- tailed)	Mean Difference	Std. Error Difference	Le plus bas	Le plus haut
horsepowerEqual variances 1.92 .17 assumed				203.00	.02	21.94	5.51	Э.10	34.79
Equal variances not assumed			3.37	29.91	.00	21.94	5.51	3.64	35.25

We use three components under **Tanagra**. But they are plugged after the same DEFINE STATUS, which specify the role of the variables, into the diagram. There is not repetitive handling.

		Define statu Levene's	s 4	1				
	Attribute_Y Attribute_		Description		1	Statistica		
			•	J	-dev	Tes		
Levene	horsepower fuel_type	gas			40.1834 Leven	e's W	1.924219	
	_	diesel	20		25.9584 df		1/203	
		All	205	104.2537	39.5192 p-valu	e	0.166913	
	Attribute_Y Attribute_	(Descri	ption			Statistical te	
T-Test		Value	Examples	Average	Std-dev	т	21.94	46 / 9.1970 = 2.386065
1 1031	horsepower fuel_type	gas	185	106.3946	40.1834	d.f.		203
		diesel	20	84.45	25.9584	p-value		0.017949
		All	205	104.2537	39.5192			
	Attribute_Y Attribute_>		Descrij	otion			Statistical te	
T-Test		Value	Examples	Average	Std-dev	т	21.944	6 / 6.5131 = 3.369315
Uneq.	horsepower fuel_type	gas	185	106.3946	40.1834	d.f.		29.91
variance	/ 1	diesel	20	84.45	25.9584	p-value		0.002085
variance		All	205	104.2537	39.5192			

Of course, the results are identical to those of PSPP.

5.5 Comparison of two means – Paired samples

Now, we want to compare the city mpg and the highway mpg. The difference has to be computed for each car i.e. we have paired samples. We click on the ANALYSE / COMPARAISON DES MOYENNES / PAIRED SAMPLES T TEST menu. We select the pair of variables "city mpg" and "highway mpg".

PSPP provides the mean for each variable (25.2 city mpg, 30.75 highway mpg), the correlation between them, and the details for the statistical test. Patently, the consumption is higher in city (the miles that we can cover with one gallon of fuel is significantly lower).

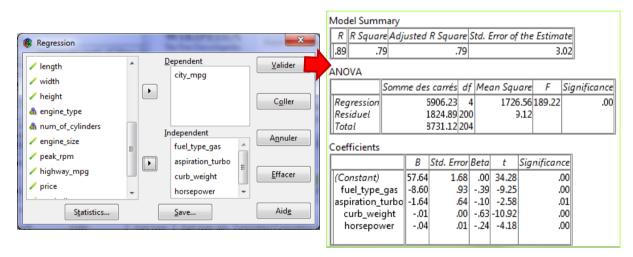
Paired Samples T Test			Andrea I		<u>x</u>)		
fuel_type_gas		Test <u>P</u> ai	r(s):	Valide			
aspiration_turbo		► Var1	Var2	value			
✓ wheel_base		city_r	mpg high	way_mpg			
🖊 length				Coller			
/ width				Coner			
🖊 height							
Curb weight				Annula			
^{en} Paired Sample Statistics							
	V Std. Do	viation S.E. M					
Pe Pair Ocity_mpg 25.22 2		6.54	.46				
<pre>/ hi highway_mpg 30.75 2</pre>		6.89	.48				
r anca samples conclutions							
✓ sy		elation Sig.					
Pair 0 city_mpg & highway_mp	g 205	.97 .00					
Paired Samples Test							
			Paired	Differences			
					erval of the Difference		
	Moyenne	Std. Deviatio	n Std. Error Mea	Le plus bas	Le plus haut	t dj	Sig. (2-tailed)
Pair 0city_mpg - highway_mpg	-5.53	1.6	4 .1	L -5.76	-5.31	-48.19 20	4 .00

Le PAIRED T-TEST component of Tanagra provides the same values.

5.6 Comparison of K means – Analysis of variance (ANOVA)

We want now to compare the means of several (> 2) groups. We click on the ANALYSE / COMPARAISON DES MOYENNES / ONE WAY ANOVA menu.

🖗 One-Way ANOVA			1	×						
aspiration_turbo da num_of_doors	aspiration_turbo a num_of_doors doirve_wheels engine location		te(s) :	s): Valider						
a drive_wheels	=		Test of Hom	ogeneity of Varia	inces					
& engine_location	-			Levene Statistic	df1 <mark>d</mark> f	2 Significanc	e	V		
✓ wheel_base		body_style	horsepower	1.69	4 20	0.1	5			
🖊 length		Statistiques	ANOVA							
🖊 width		✓ <u>H</u> omogeneity			Somr	ne des carrés	df	Mean Square	F	Significance
🖊 height	Ŧ	Introgeneity	horsepower	Between Groups		17744.68	4	4436.17	2.95	.02
				Within Groups		300856.1				
				Total		318600.8	204			


We set "horsepower" as DEPENDENT VARIABLE, and "body style" as FACTOR. PSPP assess the homoscedasticity assumption with the Levene's test. Then, it performs the comparison of means. At the 5% level, we reject the null hypothesis.

	Attribute_Y	Attribute_X		Descri	ption				Statistic	al test	
			Value	Example	es A	verage	Std-de	ev	Te	st	
			hatchback		70	101.3714	14 42.37		.evene's W	1.690393	
			hardtop		8	142.2500	50.	6127	if	4/200	
TARGET : (horsepower)	horsepower	body_style	sedan		96 103.1042		37.	1641	o-value	0.153627	
INPUT : (body_style)			wagon		25	98.0000	27.	9672			
			convertible		6	131.6667	42.5566				
			All		205	104.2537	39.	5192	2		
Define status 6	Attribute_Y	Attribute_X		Description	n				Statist	tical test	
			Value	Examples	Avera	ge Ste	d-dev		/ariance d	ecompositi	on
			hatchback	70	101.	.3714	42.3728	Sourc	e Sum o	f square	d.f.
			hardtop	8	142.	2500	50.6127	BSS		17744.6752	4
	horsepower	body style	sedan	96	103.	1042	37.1641	WSS	3	00856.1345	200
	norseponer	body_style	wagon	25	98.	.0000	27.9672	TSS	3	18600.8098	204
			convertible	6	131.	6667	42.5566		Signific	ance level	
			All	205	104.	2537	39.5192	Statisti	s V	alue	Proba
								Fisher's	F	2.949030	0.021317

Tanagra provides the same results. But we use two components.

5.7 Multiple regression

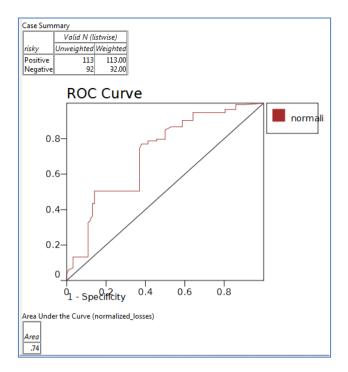
We want to explain the consumption (city mpg) from the fuel type (dummy variable), the aspiration, the curb weight and the horsepower. We set these parameters into the dialog box of ANALYSE / LINEAR REGRESSION menu.

PSPP provides the multiple correlation coefficient R; the coefficient of determination R-squared; the ANOVA table for the regression, the table of coefficients. The model is globally significant at the 5% level. And all the coefficients are significant. "Weight" and "fuel type" have the highest influence on the consumption.

The MULTIPLE LINEAR REGRESSION of Tanagra provides the same results.

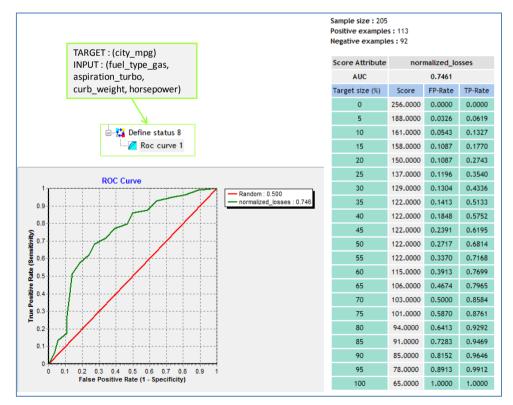
Endogenous atti	ribute		city_mpg		TARGET : (city_mpg) INPUT : (fuel_type_gas,			
Examples			205					
R ²			0.790990		ition_turbo, weight, hors	enower)		
Adjusted-R ²			0.786810	curb_		epowery		
Sigma error			3.020670		× ×			
F-Test (4,200)		189.2233	(0.000000)	🖻 🚰 Defin	e status 7			
Analysis o	of varianc	e		_	ultiple linear r	-		
Source	xSS	d.f.	xMS	F	p-value			
Regression	6906.2327	4	1726.5582	189.2233	0.0000			
Residual	1824.8892	200	9.1244					
Residual								
Total	8731.1220	204						
	nts	204 Coef.	std	t(200)	p-value			
Total	nts		std 1.681678	t(200) 34.275470	p-value 0.000000			
Total Coefficien Attrib	nts	Coef.						
Total Coefficien Attrib Intercept	nts	Coef. 57.640300	1.681678	34.275470	0.000000			
Total Coefficies Attrib Intercept fuel_type_gas	nts	Coef. 57.640300 -8.597166	1.681678 0.929372	34.275470 -9.250509	0.000000			

5.8 ROC curve


Cars are initially assigned a risk factor symbol associated with its price. Then, if it is more risky (or less), this symbol is adjusted by moving it up (or down) the scale. Insurance companies call this process "symboling"⁴. From this variable, we define a new column "risky". Its value is "yes" if "symboling > 0", "no" otherwise. At the same time, the "normalized losses" is defined as the relative average loss payment per insured vehicle year. This value is normalized for all autos within a particular size classification (two-door small, station wagons, sports/specialty, etc...).

We were wondering if the "normalized losses" allows to distinguish risky cars from non-risky ones. We want to use the ROC curve for answering to this question. We click on the ANALYSE / ROC CURVE menu. We set the following settings.

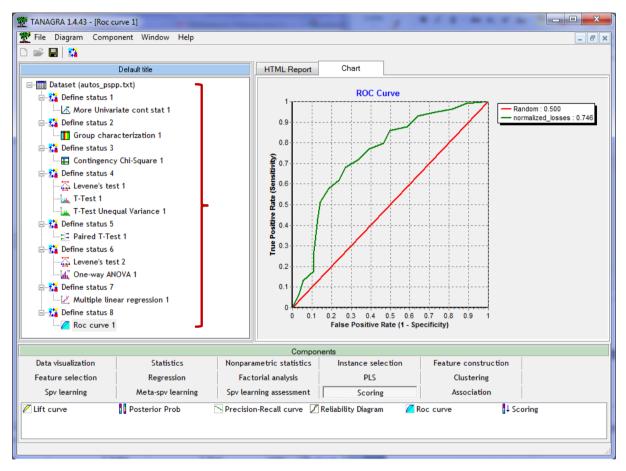
🛞 ROC Curve		×
curb_weight	<u>T</u> est Variable:	Valider
💩 engine_type	normalized_losses	<u> </u>
💩 num_of_cylinders		
🖊 engine_size	State Variable:	Coller
/ horsepower		1
🖊 peak_rpm	Value of state variable: yes	A <u>n</u> nuler
city_mpg	ROC Curve	
🖊 highway_mpg	With diagonal reference line	Effacer
🖊 price		<u></u>
🖊 symboling	Standard Error and Confidence Interval	
💩 risky	Coordinate points of the ROC Curve	Aid <u>e</u>


The "positive" instances corresponds to "risky = yes" values. PSPP calculates automatically the AUC criterion (area under curve).

⁴ http://archive.ics.uci.edu/ml/datasets/Automobile

There are 113 positive instances into the dataset. AUC = 74% i.e. the probability that a randomly chosen risky cars has higher normalized losses than a randomly chosen non-risky cars is 74%.

For this time, **Tanagra** seems not agree. The shape of the ROC curve is a little different. In effect, Tanagra cuts the score value in 20 intervals and build the ROC curve from the corresponding values. Thus, we obtain **a smooth curve**. But the underlying values used for the construction of the curve are the same. We obtain the same AUC criterion.



6 Perform the same analyses with other tools

Of course, we can implement the same statistical approaches with other tools. In this section, we show briefly the whole diagram under **Tanagra**, we details the commands under **R 2.13.2**, and we show the available features of **OpenStat** (which is really similar to PSPP).

6.1 Tanagra

Some statistical approaches available in PSPP are not available in Tanagra, and conversely. For the methods described in this tutorial, here is the whole diagram under Tanagra.

6.2 R software

Excluding the ROC curve, we detail here the commands and the corresponding outputs in R. In some circumstances, we need a specific package that we load with the **library(.)** instruction.

```
#loading the dataset
>
 setwd("D:/DataMining/Databases for mining/logiciels dataset/pspp")
>
>
 autos <- read.table(file="autos pspp.txt",header=T,sep="\t",dec=".")</pre>
>
> #descriptive statistics
> print(summary(data.frame(autos$horsepower,autos$city mpg)))
autos.horsepower autos.city mpg
       : 48.0
                         :13.00
Min.
               Min.
1st Qu.: 70.0
                1st Qu.:19.00
Median : 95.0
                Median :24.00
        :104.3
                         :25.22
Mean
                 Mean
 3rd Qu.:116.0
                 3rd Qu.:30.00
```

```
Max. :288.0 Max. :49.00
> #conditionnal descriptive statistics
>
print(tapply(autos$horsepower,autos$fuel type,FUN=function(x){c(m=mean(x),s
=sd(x))}))
$diesel
    m
84.45000 25.95842
$qas
     m
            S
106.39459 40.18342
> #crosstabs and test of independance
> library(qmodels)
>
print(CrossTable(autos$fuel type,autos$aspiration,prop.r=F,prop.c=F,prop.t=
F, chisq=T))
 Cell Contents
1 -
    -----|
ΝI
| Chi-square contribution |
|-----|
Total Observations in Table: 205
          | autos$aspiration
autos$fuel type | std | turbo | Row Total |
_____|
      diesel | 7 | 13 |
| 5.380 | 24.427 |
                               20 |
161 |
        gas |
                          24 |
                                 185 I
              0.582 | 2.641 |
          Column Total |
                168 |
                          37 |
                                 205 |
 -----|----|
Statistics for All Table Factors
Pearson's Chi-squared test
                   -----
 _____
Chi^2 = 33.02955
              d.f. = 1 p = 9.076896e-09
Pearson's Chi-squared test with Yates' continuity correction
  ------
Chi^2 = 29.60576
              d.f. = 1 p = 5.294738e-08
$t
    У
     std turbo
x
diesel 7 13
     161
          24
 gas
$prop.row
    У
          std
               turbo
Х
 diesel 0.3500000 0.6500000
 gas 0.8702703 0.1297297
```

```
$prop.col
       У
х
                std
                        turbo
 diesel 0.04166667 0.35135135
        0.95833333 0.64864865
 qas
$prop.tbl
       V
                std
                        turbo
х
 diesel 0.03414634 0.06341463
 gas
       0.78536585 0.11707317
$chisq
       Pearson's Chi-squared test
data:
      t
X-squared = 33.0295, df = 1, p-value = 9.077e-09
$chisq.corr
        Pearson's Chi-squared test with Yates' continuity correction
data: t
X-squared = 29.6058, df = 1, p-value = 5.295e-08
> #Levene test for variance homogeneity
> library(lawstat)
> print(levene.test(autos$horsepower,autos$fuel_type,location="mean"))
        classical Levene's test based on the absolute deviations from the
mean ( none not applied
       because the location is not set to median )
data: autos$horsepower
Test Statistic = 1.9242, p-value = 0.1669
> #t-test for independent samples
> print(t.test(autos$horsepower ~ autos$fuel type, var.equal=T))
        Two Sample t-test
data: autos$horsepower by autos$fuel type
t = -2.3861, df = 203, p-value = 0.01795
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-40.078454 -3.810736
sample estimates:
mean in group diesel
                      mean in group gas
             84.4500
                                 106.3946
> #Welch t-test for independent samples
> print(t.test(autos$horsepower ~ autos$fuel_type, var.equal=F))
       Welch Two Sample t-test
data: autos$horsepower by autos$fuel type
t = -3.3693, df = 29.912, p-value = 0.00209
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
```

```
-35.247706 -8.641483
sample estimates:
mean in group diesel
                      mean in group gas
             84.4500
                                106.3946
> #t-test for paired samples
> print(t.test(autos$city mpg,autos$highway mpg, paired=T))
       Paired t-test
data: autos$city mpg and autos$highway mpg
t = -48.1901, df = 204, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-5.758033 -5.305382
sample estimates:
mean of the differences
             -5.531707
> #Levene test for variance homogeneity
> print(levene.test(autos$horsepower,autos$body style,location="mean"))
       classical Levene's test based on the absolute deviations from the
mean ( none not applied
       because the location is not set to median )
data: autos$horsepower
Test Statistic = 1.6904, p-value = 0.1536
> #analysis of variance
> print(aov(horsepower ~ body style, data = autos))
Call:
   aov(formula = horsepower ~ body style, data = autos)
Terms:
               body style Residuals
Sum of Squares
               17744.68 300856.13
Deg. of Freedom
                        4
                                200
Residual standard error: 38.78506
Estimated effects may be unbalanced
> #linear regression
>
                        print(summary(lm(city mpg
fuel type gas+aspiration turbo+curb weight+horsepower, data=autos)))
Call:
lm(formula = city mpg ~ fuel type gas + aspiration turbo + curb weight +
   horsepower, data = autos)
Residuals:
            10 Median
   Min
                            30
                                   Max
-9.1931 -1.4955 -0.1292 0.8772 15.8097
Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
(Intercept)
                57.6402999 1.6816779 34.275 < 2e-16 ***
fuel type gas -8.5971662 0.9293722 -9.251 < 2e-16 ***
aspiration_turbo -1.6411239 0.6368442 -2.577 0.0107 *
curb weight -0.0078871 0.0007224 -10.918 < 2e-16 ***
```

Page 17

```
horsepower -0.0403830 0.0096536 -4.183 4.3e-05 ***
---
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
Residual standard error: 3.021 on 200 degrees of freedom
Multiple R-squared: 0.791, Adjusted R-squared: 0.7868
F-statistic: 189.2 on 4 and 200 DF, p-value: < 2.2e-16
```

Knowing the appropriate commands for each method is the main difficulty under R. Fortunately, some websites provide a valuable assistance (e.g. <u>Quick-R</u>).

6.3 OpenStat

<u>**OpenStat**</u> is also a credible alternative to SPSS. In a previous tutorial, we have studied one of its variations (LazStat) in the regression analysis framework⁵.

Like PSPP, we must import the data file first (FILES / IMPORT TAB FILE menu). The dataset is displayed into the grid.

🚺 OpenSt	tat Feb 24, 20	012			-			
FILES VA	ARIABLES EE	DIT ANALY	SES SIMU	JLATION UT	ILITIES OF	TIONS HE	LP	
ROW 1	COL. 22	Cell E	dit (Return to	o finish) N CA 205	ASES No. V	AR.S ASCII	STATUS Press F): 1 for help wh
UNITS	normalized_r	make	fuel_type	fuel_type_gft	aspiration	aspiration_as	num_of_dooi	body_styl -
CASE 1	106	nissan	gas	1	std	0	four	hatchbac
CASE 2	74	toyota	gas	1	std	0	four	hatchbac
CASE 3	168	nissan	gas	1	std	0	two	hardtop
CASE 4	103	volvo	gas	1	turbo	1	four	sedan
CASE 5	93	mercedes-be	diesel	0	turbo	1	four	sedan
CASE 6	145	dodge	gas	1	turbo	1	two	hatchbac
CASE 7	106	nissan	gas	1	std	0	four	sedan
•	-			1	-			4
Add Varia	FILE: D	:\DataMining\	\Databases_	for_mining\logi	ciels_dataset'	\pspp\autos_p	ospp.bin	

We do not detail the results for each of the methods studied above. I perform these analyses elsewhere, I note that the results are the same as PSPP (as Tanagra and R). We describe only the results for the contingency table. We note that we must code the categorical variables as dummy ones before performing the analysis.

The statistical methods are available into the ANALYSES menu. We select the NONPARAMETRIC item. The list of available techniques is really long. We will try to describe them in a forthcoming tutorial.

⁵ http://data-mining-tutorials.blogspot.com/2012/03/regression-analysis-with-lazstats.html

FILES VA	ARIABLES E	DIT ANA	ALYSES SI	MULATION	UTILITIES	OPTIO	NS HE	LP					
ROW	COL.		Descriptive	e		+	ASCII	STATUS	6:				
1	9		Compariso	ons		- + [Press F1	1 for help whe	en on any men	u item.		
UNITS	normalized	r mał	Analyses o				iration_a:	num_of_dooi	body_style	drive_wheeld	engine_locae	wheel_base	len _t -
CASE 1	106	niss	Correlation	-				four	hatchback	fwd	front	97	173
CASE 2	74	toyo	Multiple R	-				four	hatchback	fwd	front	96	159
CASE 3	168	niss	Multivaria	d Time Series	s Analysis			two	hardtop	fwd	front	95	162
CASE 4	103	volv	Nonparam				Co	mbinations a			nonk		185
			Measurem			-		iomial Probal		nions			
CASE 5	93	mer	Matrix Ma					her's Exact Te					191
CASE 6	145	doc		Process Cont	trol	•		ns Test					173
CASE 7	106	niss	Financial			•	Ch	Chi-Square Test Wilcoxon Matched Pairs, Signed Ranks Test Kruskal-Wallis Test Friedman Test Kendall's Tau Test					
CASE 8	188	bmv	Neural Net	twork			Wi						
CASE 9	125	mits	Linear Pro	gramming (S	SIMPLEX)		Kru						
CASE 10	118	dodge	gas	1	std	0	Fri						
CASE 11	95	volvo	gas	1	turbo	1	Ke						
CASE 12	122	bmw	gas	1	std	0	Ke	ndall's Coeffi	cient of Cor	ncordance			189
CASE 13	103	nissan	gas	1	std	0	Sig	n Test					170
CASE 14	148	dodge	gas	1	std	0	Ma	inn-Whitney	U Test				157
CASE 15	164	audi	- gas	1	std	0		l'est					177
CASE 16	94	volkswag	-	1	std	0		earman Rank					172
CASE 17	102	subaru	gas	1	turbo	1		plan-Meier Su		1-1-2			172
CASE 18	91	toyota	diesel	0	std	0		n's Slope Estir Imogorov-Sn		data)			166
CASE 19	154	-		1	std	0		ppa and Weig					157
		plymouth	gas	· · ·				neralized Kap		,			
CASE 20	122	mercedes	-be gas	1	std	0)IT Analysis	Pu				208 •
	-							neirer-Ray-Ha	are Two-Wa		Ordinal Data		P
Add Varia	ible [D:\DataMin	ing\Database	es_for_mining	Jogiciels, data	aset\ns		dian Polish A		,	o. aniar D'utt		

For the CHI-SQUARE TEST, we set the following settings and we click on COMPUTE.

C Use frequencies in a variable Use proportions in a variable Variables: normalized_normali make fuel_type aspiration num_of_doornum_i body_style drive_wheeldrive_v engine_locaengine wheel_base length width height curb_weightcurb_v	w and column variables in the data e for a given row variable value and for a given row variable value and Row Variable: [fuel_type_gfuel_type_gas Column Variable: [aspiration_aspiration_turbo	column variable value.
engine typeengine ▼ Reset	incel	Compute

A results window appears. **OpenStat** provides additional statistics such as the Mantel-Haenszel test of linear association, the coefficient of contingency, etc.

Results Window	- 11				x
🖻 🔒 📇	× 6	A		Return	
No. of Cases	s = 205				
OBSERVED FRE	QUENCIES				ſ
	Frequenci	es			
	COL. 1	COL. 2	Total		
Row 1	7	13	20		
Row 2	161	24	185		
Total	168	37	205		
CHI-SQUARED	VALUE FOR	CELLS			
	Chi-squar				
	COL. 1				
Row 1		24.427			
Row 2	0.582	2.641			1
Chi-square =	= 33.030	with D.F. =	= 1. Prob. > v	value = 0.000	
MI Square	00.000	with D.I.	1. 1105. 7 4	value 0.000	
Liklihood Ra	atio = 24	.904 with p	orob. > value	= 0.0000	
3 statistic	= 24.904	with prob.	> value = 0.	.0000	
bi correlat	ion = 0.40	14			
one correrae					
Pearson Corr	elation r	= -0.4014			
antel-Haens	zel lest o	I Linear As	sociation =	32.868 with probability > value = 0.0000	
The coeffici	lent of con	tingency =	0.373		
Cramer's V =	= 0.401				

Unlike to PSPP, because **OpenStat** is only a menu-guided program, it is not possible to store a description of the treatments. So, it is not easy to perform the same sequence of analyses if we have a new version of the dataset for instance.

7 Conclusion

PSPP is a promising project. The structure of the software is really well thought out. Each menu action is translated into a PSPP instruction. Thus, we can save the sequence of commands into a script file. For instance, for the analysis of variance described above (section 5.6), PSPP generates the following instruction.

ONEWAY /VARIABLES= horsepower BY body_style /STATISTICS=HOMOGENEITY .

PSPP already proposes a large part of the statistical methods. It will be further complemented in the future. This is a tool that I will follow with interest.