Case studies R.R.

1 Topic
Parallel programming in R. Using the « parallel » and « doParallel » packages.

Personal computers become more and more efficient. They are mostly equipped with multi-core
processors. At the same time, most of the data mining tools, free or not, are often based on single-

threaded calculations. Only one core is used during calculations, while others remain inactive.

Previously, we have introduced two multithreaded variants of linear discriminant analysis in Sipina
3.10" and 3.11%. We focused on the construction of the within-class covariance matrix which
appeared to be the main bottleneck in the process. Two types of subdivision of calculations have
been proposed. We use threads programming in Delphi (the development language of Sipina) to
make use of these solutions. We found that the improvement of performance compared with the

sequential version is dramatic when all of the available cores on the computer are fully used.

During the analysis that allowed me to develop the solutions introduced in Sipina, | had much studied
parallelization mechanisms available in other Data Mining Tools. They are rather scarce. | noted that
highly sophisticated strategies are proposed for the R software. These are often environments that
enable to develop programs for multi-core processors machines, multiprocessor machines, and even
for computer cluster. | studied in particular the "parallel" package which is itself derived from 'snow'
and 'multicore' packages. Let us be quite clear. The library cannot miraculously accelerate an existing
procedure. It gives us the opportunity to effectively use the machines resources by rearranging
properly the calculations. Basically, the idea is to break down the process into tasks that can be run in

parallel. When these tasks are completed, we perform the consolidation.

In this tutorial, we detail the parallelization of the calculation of the within-class covariance matrix
under R 3.0.0. In a first step, we describe single-threaded approach, but easily convertible i.e. the
basic tasks are easily identifiable. As a second step, we use the tools of “parallel” and “doParallel”
packages to run elementary tasks on the available cores. We will then compare the processing time.
We note that, unlike the toy examples available on the web, the results are mixed. The bottleneck is

the managing of the data when we handle a large dataset.

2 Calculation of the within-class covariance matrix

We dispose of a learning sample of size n. They instances are described by a set of p quantitative
measurements (X;, X,, ..., Xp), they are assigned to predefined groups described by a categorical
variable Y. There are K groups {1, 2, ..., K}. Let ® an instance, y(®) correspond to the class value of this
instance. The absolute frequency of the class k is n,. To obtain the within-class covariance matrix, we

must compute the K conditional covariance matrices W, (ignoring a multiplication factor).

Wy, = z [xi (@) = %] X [%5 (@) — %]

w:y(w)=k ij=15p

1 http://data-mining-tutorials.blogspot.fr/2013/05/multithreading-for-linear-discriminant.html

2 http://data-mining-tutorials.blogspot.fr/2013/09/load-balanced-multithreading-for-lda.htmi

27 octobre 2013 Page 1

http://data-mining-tutorials.blogspot.fr/2013/05/multithreading-for-linear-discriminant.html
http://data-mining-tutorials.blogspot.fr/2013/09/load-balanced-multithreading-for-lda.html

Case studies R.R.

Where X; ;, corresponds to the mean of X; for the individuals belonging to the group (Y = k).

The within-class covariance matrix (or pooled covariance matrix) S is computed as follows

K

5= 3w
T n—-K k
k=1

2.1 Details of the calculations

We have chosen to organize calculations in three steps. The goal is to split up the construction of the

W, into independent tasks that we can be run in parallel.

[1] First, we create an index which enables to assign each instance to its group membership.

#group: the group number to handle
#y: the class-attribute
ffoutput: a number vector which associates the instances to the groups
partition <- function (group, V) {
res <- which (y==group)
return (res)

}

We apply this function to each group with the lapply() R function.

#to each level of Y, we launch partition
#output : a list of indexes
ind.per.group <- lapply(levels(Y),partition, y=Y)

ind.per.group is a list structure where each item correspond to an index for a group. There are K
vectors into the list.

[2] We calculate W, in the second step, from the index associated to the group and the descriptors X

#instances: the index vector associating the instances to the group k
#descriptors: descriptors X : (X;, X, .., Xp)
#output: conditional covariance matrix Wk (p x p)
n.my.cov <- function(instances,descriptors) {

p <- ncol (descriptors)

m <- colMeans (descriptors[instances,])

the.cov <- matrix (0,p,p)

for (i in 1:p) {

for (3 in 1l:p){

the.cov[ij] <- (sum((descriptors[instances,i]-m[i])*(descriptors[instances,j]-m[j])))

}

return (the.cov)

}

We apply this function to all the groups with the lapply() function.

3 Of course, we can use the cov() R function for these calculations. The aim here is to describe deeply the calculations in

the learning process.

27 octobre 2013 Page 2

Case studies R.R.

#for each index vector

#we apply the function n.my.cov ()

#output: a list of W, matrices (K matrices)

list.cov.mat <- lapply(ind.per.group,n.my.cov,descriptors=X)

The key of the calculations is here: lapply() launches n.my.cov() to each index independently. We can
very well run these tasks in parallel and perform the consolidation at the end of the construction of
matrices W,. We will use this characteristic in the parallel implementations that will be presented

later in this document.

[3] In the last step, we build the S matrix by adding the values in the W, matrices. Then, we divide the

resulting values by the degree of freedom.

#adding the values from each W,

fapplying the degree of freedom correction

#output: S, the within class covariance matrix

pooled.cov.mat <- (1.0/(length(Y)-nlevels(Y)))*Reduce('+',list.cov.mat)

2.2 Function for the calculation of the S matrix

These steps are implemented into the pooled.sequential() function:

#X descriptors matrix

#Y class attribute

#sortie: S matrix

pooled.sequential <- function(X,Y) {
ind.per.group <- lapply(levels (Y),partition, y=Y)
list.cov.mat <- lapply(ind.per.group,n.my.cov,descriptors=X)
pooled.cov.mat <- (1.0/(length(Y)-nlevels(Y)))*Reduce('+',list.cov.mat)
return (pooled.cov.mat)

}

In the remainder of this document, our philosophy will be to implement parallel approaches to
calculate list.cov.mat. The strategies differ mainly for the calculation of the source code in red in
pooled.sequential() function above. This is the approach that we have followed in the multithreaded
implementation of the discriminant analysis in Sipina 3.10. The drawbacks were identified. K threads
are asked for the processing, whatever the characteristics of the machine that we used for the
calculations, some cores can remain inactive. In addition, the loads are not well distributed when we
deal with a dataset with unbalanced classes i.e. when index vectors have very dissimilar size. Some

cores can complete their treatments before the others.
2.3 Example of calculations on a dataset

We apply these functions on the WAVE500K data file that we described in the previous tutorial.
There are n = 500,000 instances, with K = 3 balanced groups, and p = 21 descriptors. We use the

following program in R.

#loading the data file
wave <- read.table(file="wave500k.txt",header=T, sep="\t",dec=".")

print (summary (wave))

27 octobre 2013 Page 3

Case studies R.R.

#Y class attribute, X descriptors
Y <- waveSONDE
X <- wave[2:22]

partition <- function (group,y) {
res <- which (y==group)

return (res)

n.my.cov <- function(instances,descriptors) {

p <- ncol (descriptors)

m <- colMeans (descriptors[instances,])

the.cov <- matrix (0,p,p)

for (i in 1:p){
for (7 in 1:p){
the.cov[i,j] <- (sum((descriptors[instances,i]-m[i])*(descriptors[instances,j]-m[j])))
}

}

return (the.cov)

pooled.sequential <- function (X,Y) {
ind.per.group <- lapply(levels(Y),partition, y=Y)
list.cov.mat <- lapply(ind.per.group,n.my.cov,descriptors=X)
pooled.cov.mat <- (1.0/(length(Y)-nlevels(Y)))*Reduce('+',list.cov.mat)

return (pooled.cov.mat)

#launching the calculation function - computation time measurement
system.time (cov.seq <- pooled.sequential (X,Y))

print (cov.seq)

system.time() is used for the calculation of the processing time.

We use R 3.0.0 under Windows 7 (64 bits) on a Quad-Core (Q9400 — 4 cores) processor...

E wversion 3.0.0 (2013-04-03) -- "Masked Marvel"™
Copyright (C) 2013 The R Foundation for Statistical Computing
Flatform: xBE_E&—wE&—mingwEfoE& [64-bit)

...we obtain the following values.

> gystem.time ([cov.3eq <- pooled.sequential (X,Y))
utilisateur systéme écoulé
10.71 4.26 15.08

The memory occupation displayed into the Windows Task Manager is ~ 237 Mo.

27 octobre 2013 Page 4

Case studies R.R.

Fichier Options Affichage 7 |
Applications | Processus |Sewices I Performance | Mise en réseau I Uﬁlisateurs| |
MNom de limage Mom du... P... Mémoire {jeu... Description i
Raui.exe Maison 00 243 120K R for Windows GUI front-end I
Maison 01 37 84K
Maison 0o 20 712K
Maison oo 20 148 K
Maison oo 14834 K =
Maison oo 12 400 K
0o 11 140K
Maison 0o T932K
Maison 0o 5968 K
Maison 0o 6 520K i
Maison 0o 509K
Maison o] 4568 K
Maison oo 3964K
oo 3290K
oo 282K
Maison] 2612K il
N . e m e ar H| . . =
[@af’ﬁd"ler les processus de tous les utilisateurs Arréter le processus
Processus: 65 UC utilisée: 1% Mémoire physique: 24 %

The « temps écoulé » (16.80 sec.) corresponds to the waiting time to the achievement of the
calculations (“real time” in the R terminology). This is what we had measured with a chronometer
moreover. In a single-threaded processing, this value is very close to the user time ("utilisateur")”. In

the following, we check if the multithreaded strategy can reduce the “real time”.

3 The « parallel » package
3.1 Parallel computing under R

The « parallel »> package is build from the « snow » and « multicore » packages. This last one is no
longer available under R 3.0.0. The overview paper describes well the ideas that we want to
implement in this tutorial. “This package handles running much larger chunks of computations in
parallel. A typical example is to evaluate the same R function on many different sets of data: often
simulated data as in bootstrap computations (or with ‘data’ being the random-number stream). The
crucial point is that these chunks of computation are unrelated and do not need to communicate in

any way. It is often the case that the chunks take approximately the same length of time.
The basic computational model is

(a) Start up M “worker' processes, and do any initialization needed on the workers.

(b) Send any data required for each task to the workers.

(c) Split the task into M roughly equally-sized chunks, and send the chunks (including the R code
needed) to the workers.

(d) Wait for all the workers to complete their tasks, and ask them for their results.

(e) Repeat steps (b - d) for any further tasks.

(f) Shut down the worker processes.”

4 http://stat.ethz.ch/R-manual/R-devel/library/base/html/system.time.html

> http://stat.ethz.ch/R-manual/R-devel/library/parallel/doc/parallel.pdf.

27 octobre 2013 Page 5

http://stat.ethz.ch/R-manual/R-devel/library/base/html/system.time.html
http://stat.ethz.ch/R-manual/R-devel/library/parallel/doc/parallel.pdf

Case studies R.R.

We want to operate this framework for the construction of S, with M = K = number of groups
described by the target variable Y. Each individual belonging only to a single group, the calculations

of W, can be performed independently.

Each 'worker' is visible as 'rscript' process into Windows Task Manager. In our case, since M =K = 3,
we will see 3 copies of rscript, with the same memory occupation because all the data is transferred
to them. This is the main drawback of the solution. Indeed, by duplicating data, it increases the
memory occupation. Their transfer to the rscript during the initialization processes takes also time. In

fact, this step will degrade the whole performance of the system as we will see later.
3.2 Detecting the number of CPU cores

The detectCores() procedure detects the number of CPU cores available. For our computer, which is

a Quad-Core, we obtain 4 cores of course.

#loading the package

library(parallel) > print (detectCores())

fprinting the number of available cores [1] 4

print (detectCores())

3.3 The mclapply() procedure

The mclapply() is a parallel version of lapply(). We can specify the number of cores to use. Thus, only

one line is modified in our function for the calculation of the S matrix.

pooled.multicore <- function(X,Y) {
ind.per.group <- lapply(levels(Y),partition,y=Y)
list.cov.mat <- mclapply(ind.per.group,n.my.cov,descriptors=X,mc.cores=1)
pooled.cov.mat <- (1.0/(length(Y)-nlevels(Y)))*Reduce('+',list.cov.mat)
return (pooled.cov.mat)

}

The « mc.cores » option enables to set the number of cores to use. We set mc.cores = 1 in a first
time. When we launch the procedure, the execution time is very close to the single-threaded

method. The calculations of the Wk are launched sequentially.

> gystem.time (cov.mc <- pooled.multicore(X,Y))
ntilisateur systéme gcoulé
10.58 3.83 14.58

Alas, when we wanted to increase the number of cores to use (mc.cores = 3), the procedure has
failed. The command relies on a technology that is not operational on Windows®. This is a pity
because that method was very easy to implement. It seems however that the function is fully

operational under Linux.

> gystem.time (cov.mc «<- pooled.multicore (X,Y))

Erreur dans mclapply(ind.per.group, n.my.cov, descriptors = X, mc.cores = 3)
'moc.cores' > 1 iz not supported on Windows

TiFing stopped at: 0.17 O 0.18

6 http://stat.ethz.ch/R-manual/R-devel/library/parallel/html/mclapply.html

27 octobre 2013 Page 6

http://stat.ethz.ch/R-manual/R-devel/library/parallel/html/mclapply.html

Case studies R.R.

3.4 The parLapply() procedure

The parLapply() procedure is also a variant of lapply(). It needs to additional steps: we must initialize
explicitly the workers to use with the makeCluster()” command; we must destroy them at the end of

the calculations with the stopCluster() command. The function for the calculation of S becomes:

pooled.parLapply <- function (X,Y) {
ind.per.group <- lapply(levels(Y),partition,y=Y)
#creation of K = 3 rscript
#fwhich appear in the Windows task Manager
cl <- makeCluster (spec=nlevels (Y))
#calling parLapply
list.cov.mat <- parLapply(cl,ind.per.group,n.my.cov,descriptors=X)
pooled.cov.mat <- (1.0/(length(Y)-nlevels(Y)))*Reduce('+',list.cov.mat)
fdestruction of rscript
stopCluster (cl)
return (pooled.cov.mat)

}

We obtain the following output:

> gystem.time ([cov.par <- pooled.parlapply (X,Y))
utili=ateur zystéme gcoulé
1.75 1.17 15.12

The improvement of the calculation time is disappointing. The real time is 15.12 sec. It is worse than
the singe-threaded version. The user time (1.75 sec.) and the system time (1.17 sec.) correspond to

the activity of the main thread. They are not assigned to the calculations of the W\ matrices.

r ~
158 Gestionnaire des taches de Windows | =HCY X |
Fichier Options Affichage 7
Applications | Processus | Services | Performance | Mise en réseau | Utlisateurs |
Mom de limage MNomdu... P... Mémoire (jeu... Description il
Rscript.exe Maison 25 273808K R for Windows front-end
Rscript.exe Maison 25 229 124K R for Windows front-end
Rscript.exe Maison 21 261636K R for Windows front-end
Maison oo 4834K =
Maison oo 1512K
Rgui.exe Maison o0 451256 K R for Windows GUI front-end
Maison v} 7 784K
Maison i} 1212K
Maison i} 2172K
Maison 00 5176K
Maison i} 2832K
Maison 00 1512K
Maison i} 988 K
Maison v} 6 392K
Maison i} 3K
Maison v} TE00K i
4| : o - B | +
['$'Af'ﬁd1er les processus de tous les utilisateurs Arréter le processus
Processus: 70 UC utilisée: 89% Mémoire physique : 37 %

7 We create the 'workers' on the same system here to use the existing cores. But makeCluster() can go further in accessing

resources from a remote machine. R must be installed on these machines.

27 octobre 2013 Page 7

Case studies

R.R.

By observing the Windows Task Manager, we note that the calculations are well distributed on 3

different “rscript” processes. We also find that the data are completely duplicated on each process

by considering the memory occupation. Despite the splitting of the calculations on the cores, we do

not obtain an overall improvement in the processing time. Why?

We have an idea on the response by using a more sophisticated tool for the processing time

measurement. We use the snow.time()? from the "snow" package.

library (snow)

#a better decomposition of the processing time

snow.time (cov.par <- pooled.parLapply(X,Y))

We understand better the behavior of the system now.

> anowW.time (cov.par <- pooled.parlLapplyv(X,Y))
elapsed gend receive node 1 node node 3
14.92 4,33 0.02 9.53 9.6

P
2 g8.78

The processing time on each worker (node) is 9 seconds approximately. We can improve the whole

process by dispatching the calculations on cores. But this improvement is completely annihilated by

the duration time of data transfer (send = 4.33 sec.). The recovery of the matrices is inexpensive

(receive = 0.02 sec.). The tool offers a comprehensive presentation of the processes in the form of

Gantt chart.

> a «<- B2now.time (cov.par «<- pooled.parLapply(X,Y))
> plot (a)

The data transfer from the main thread to the nodes is made sequentially. Thus, the last node (3™

node) is started with a big lag. We must await the end of its calculations before retrieving the results.

Cluster Usage

Node
-\-\—_-_\k_"‘*—\—.
___H_‘k_

Elapsed Time

Clearly, the parallelization is advantageous only if the duration of node processing is significantly

higher compared to the duration time of the dataset transfer to the nodes.

8 http://cran.r-project.org/web/packages/snow/snow.pdf

27 octobre 2013

Page 8

http://cran.r-project.org/web/packages/snow/snow.pdf

Case studies R.R.

3.5 Using the « foreach » ... « %dopar% » loop

The "doParallel" supplies a foreach procedure for loop mechanism. It enables to launch tasks in

parallel. We must before start the workers with the registerDoParallel() command.

library (doParallel)
#creation of 3 rscript

registerDoParallel (3)

The workers (rscript) are available in Windows Task Manager. They are waiting: they are not started

(Processeur [CPU] = 0%), and the dataset is not transferred (Memoire [Memory] ~ 24 MB).

[EI ™
1= Gestionnaire des taches de Windows l. = ﬂ
Fichier Options Affichage 7
Applications | Processus | Services | Performance | Mise en réseau | Utiisateurs |
< -
Nom de l'image MNomdu... P... Mémoire (jeu... Description o~
Maison 00 16796 K
v} 3216 K
Maison 00 295K
Maison 00 280K
Maison 00 238K
Raui.exe Maison 0o 253436 K R for Windows GUI front-end
Rscript.exe Maison 0o 24935 K R for Windows front-end
Rscript.exe Maison 0o 24932K R for Windows front-end
Rscript.exe Maison 0o 24932K R for Windows front-end L
Maison 00 15700 K 1
Maisan 01 3T704K
Maison i} 5148 K
Maison i} 3996 K b
Maison i} 2172K
Maison i} F320K
Maison i} 312K i
= e an P S
['&' Afficher les processus de tous les utilisateurs Arréter le processus
||
||Processus:?ﬁ UC utilisée : 2% Mémaoire physique : 29 %
4

The calculations are launched by a “foreach...%dopar%” mechanism i.e. for each instances from the

list ind.per.group, we process the instructions comprised between {* and ‘}.

pooled. foreach <- function(X,Y) {
ind.per.group <- lapply(levels(Y),partition,y=Y)

#loop foreach ... %dopar$
list.cov.mat <- foreach(instances = ind.per.group, .export = c("n.my.cov"), .inorder = FALSE) %dopar%
{

n.my.cov (instances,descriptors=X)

}
pooled.cov.mat <- (1.0/(length(Y)-nlevels(Y)))*Reduce('+',list.cov.mat)

return (pooled.cov.mat)

}

The option « .export » enables to use the non-standard function “n.my.cov” into the environment;

“.inorder=FALSE” stands that we can retrieve the results (the W, matrices) in any order.

When we start the process, we see that the rscript workers are activated in the Windows Task
Manager. We observe that, according the memory occupation reported here, the whole dataset is

duplicated like for the parLapply approach.

27 octobre 2013 Page 9

Case studies R.R.

" =
|8 Gestionnaire des tiches de Windows m I.-=I o=l g
= Frw A.‘ K

Fichier Options Affichage 7
Applications | Processus |Servioes | Performance I Mise en réseau I Uﬁlisateurs|
= .
Nom de I'mage Mom d'u... Proce... Mémoire (jeu... Description -~
o0 11 300K
Maison oa 30 384K i
Maison 0a 47 032K
Maison oo 93648 K
Maison oa 174K
Maison 0a 7 284K =
Maison oo 986 K
Maison oo 40 596 K
aly] 3 192K
Maison oo 284K | 4
Maison] 2308K
Rgui.exe Maison 0a 259 472K R for Windows GUI front-end
Rscript.exe Maison 25 231 376K R for Windows front-end
Rscript.exe Maison ¢ 25 274064K R for Windows front-end
Recript.exe Maizon 25 216 860K R for Windows front-end
Maison oa 15506 K i
4| W - ‘Mlﬂ” t
['&' Afficher les processus de tous les utilisateurs] ’ Arréter le processus
Processus: 71 UC utilisée: 94% Mémoire physique : 35 %

By using the ".verbose=T" option, we obtain the details of the process. The "tasks" are launched in
parallel. The results (the W, matrices) are combined in a list. Here also, the processing time (14.18
sec.) is equivalent to the single-threaded approach. The data transfer takes an important part in the

process (send = 3.10 sec.).

> snow.time (cov.foreach <- pooled.foreach(X,Y))
numValues: 3, numBesults: 0, stopped: TRUE
automatically exporting the following wvariables from the local environment:
X
explicitly exporting variables(s): n.my.cov
got results for task 1
nunValues: 3, numResults: 1, stopped: TRUE
returning status FALSE
got results for task 2
numValues: 3, numBesults: 2, stopped: TRUE
returning status FALSE
got results for task 3
nunmValues: 3, numBesults: 3, stopped: TRUE
calling combine function
evaluating call object to combine results:
fun (accum, result.l, result.2, result.3)
returning status TRUE
elapsed send receive node 1 node 2 node 3
14.18 3.10 -0.02 10.69 10.77 10.85

There is no real improvement compared to the parlLapply approach. | would say that the

“foreach...%dopar%” loop is simply an alternative to parallelization of tasks.

4 Conclusion

In this tutorial, we have presented different solutions from the "parallel" package under R to
parallelize calculations. The goal is to maximize the utilization of the multicore processors

capabilities. The system works well. This is a very important result. However, the processing time is

27 octobre 2013 Page 10

Case studies

R.R.

disappointing on the dataset that we studied, mainly because the need to duplicate and transfer the

data to the calculation engines. The memory occupation becomes also a problem in this context.

For example, for WAVE2M dataset with n = 2,000,000 observations and p = 21 variables, the
execution time is 59 seconds in sequential mode. It is 56 sec. in parallel mode: with 40 seconds for

the processing on each rscript and 15 seconds for the data transfer. Each rscript occupies almost 1

GB in memory. This is really a bottleneck to the use of this solution for the mining large dataset.

Fichier Options Affichage 7

Applications | Processus |5ervices I Performance | Mise en réseau I Uﬁlisateurs|

Rscript.exe Maison
Rscript.exe Maison
Rscript.exe Maison

Maison

Maison
Maison
Maison
Maison
Maison
Maison
Maison
Maison
Maison
Maison
Maison
Maison

Mom de limage MNom du...

25
25
25
oo
oo
oo
oo
oo
[iv}
[iv}
[iv}
14}
[ilv}
[ilv}
[ilv}
v}

<|. 1

Proce... Mémoire (jeu...

1065 268 K
1168 316 K
1000024 K

Description [
R for Windows front-end
R for Windows front-end
R for Windows front-end

r

['&i‘ Afficher les processus de tous les utilisateurs

Arréter le processus

F B

Processus: 77 UC utilisée : 94% Mémuoire physique: 82 %

Nevertheless, the "parallel" package tools allow to go further than the utilization of the multicore

processors capabilities. It is possible to distribute the calculations on remote machines. This opens up

other perspectives. The memory occupation is no longer a problem in this context because the

dataset is duplicated on the remote machines. There is material to do interesting things in one of our

upcoming tutorials...

27 octobre 2013

Page 11

