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1 Topic 

Comparison of the calculation times of various tools during the logistic regression analysis. 

The programming of fast and reliable tools is a constant challenge for a computer scientist. In the 

data mining context, this leads to a better capacity to handle large datasets. When we build the final 

model that we want to deploy, the quickness is not really important. But in the exploratory phase 

where we search the best model, it is decisive. It improves our chance to obtain the best model 

simply because we can try more configurations. 

I have tried many solutions to improve the calculation times of the logistic regression. In fact, I think 

the performance rests heavily on the optimization algorithm used. The source code of Tanagra shows 

that I have greatly hesitated. Some studies have helped me about the right choice1. 

Several tools propose the logistic regression. It is interesting to compare their calculation times and 

memory occupation. I have already studied this kind of comparison in the past2. The novelty here is 

that I use a new operating system (64 bit version of Windows 7), and some tools are especially 

intended for this system. The calculating capabilities are greatly improved for these tools. For this 

reason, I have increased the dataset size. Moreover, to make more difficult the variable selection 

process, I added predictive attributes that are correlated to the original descriptors, but not to the 

class attribute. They have not to be selected in the final model. 

In this paper, in addition to Tanagra 1.4.14 (32 bit), we use R 2.13.2 (64 bit), Knime 2.4.2 (64 bit), 

Orange 2.0b (build 15 oct2011, 32 bit) and Weka 3.7.5 (64 bit). 

2 Dataset 

Choosing the appropriate dataset for an experiment is always difficult. The specific properties of the 

dataset must not interfere with the tools characteristics. The risk is to obtain biased results. This is 

one of the reasons why I use often the same datasets of which I know the specificities. 

“Waveform3” is one of my favorite datasets, partly because we can generate as instances as we 

want. We can also add descriptors which are generated randomly, or descriptors which are 

correlated to the existing ones. So, we can study the tools behavior on a potentially infinite dataset. 

We have transformed the waveform dataset in a binary problem by dropping the instances 

corresponding to the last class value in this tutorial. Indeed, the standard logistic regression can 

handle only binary problems. Below, we describe the R program we used to generate the dataset. 

2.1 Waveform 

We use the R source code available online to generate the original waveform dataset4. It generates a 

dataset with "n" instances, the class attribute with 3 values, and the 21 original descriptors. 

                                                           
1 T.P. Minka, « A comparison of numerical optimizers for logistic regression », 2007. 

2 Tanagra tutorial, « Logistic regression – Software comparison », december 2008. 

3 http://archive.ics.uci.edu/ml/datasets/Waveform+Database+Generator+%28Version+1%29 

4 T. Hastie, R. Tibshirani, J. Friedman, « The elements of statistical learning », Springer, 2009. 

http://research.microsoft.com/en-us/um/people/minka/papers/logreg/minka-logreg.pdf
http://data-mining-tutorials.blogspot.com/2008/12/logistic-regression-software-comparison.html
http://archive.ics.uci.edu/ml/datasets/Waveform+Database+Generator+%28Version+1%29
http://www-stat.stanford.edu/~tibs/ElemStatLearn/
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#from http://www-stat.stanford.edu/~tibs/ElemStatLearn/data.html 

waveform <- function(n) 

{ 

  class <- as.numeric(cut(runif(n), c(0, 1/3, 2/3, 1))) 

  h <- function(xoff) 

    pmax(6 - abs(seq(21) - 11 + xoff), 0) 

  x <- rbind(h(0), h(-4), h(4)) 

  x1 <- x[c(1, 1, 2),  ][class,  ] 

  x2 <- x[c(2, 3, 3),  ][class,  ] 

  u <- runif(n) 

  data.frame(x = I(u * x1 + (1 - u) * x2 + rnorm(n * 21)), y = class) 

} 

2.2 “Binary” waveform 

To transform the waveform problem in a binary one, we use the following strategy: we generate 

more instances than needed first, then we remove the instances corresponding to the third class 

value. If we obtain more rows than needed, we truncate the dataset. It is not a problem because the 

order of the instances is not correlated to the class value. 

#modify waveform in a binary problem by removing 

#the instances for the third class value 

waveform.binary <- function(n){ 

  tmp <- waveform(trunc(1.75*n)) 

  output <- subset(tmp, tmp$y != 3) 

  if (nrow(output) > n){ 

    output <- output[1:n,] 

  } 

  output$y <- factor(output$y) 

  levels(output$y) <- c("A","B") 

  return(output) 

} 

2.3 Adding the “random” descriptors 

We add random descriptors to the original dataset. They should not be selected during the feature 

selection process. To obtain credible descriptors, they are created according a Gaussian distribution 

using the characteristics of the 21 original attributes (mean, standard deviation). 

#add K random attributes 

add.rnd <- function(wave.data, K = 1){ 

 n <- nrow(wave.data) 

 new.wave <- wave.data 

 for (k in 1:K){ 

  colref <- trunc(runif(1,min=1,max=22)) 

  newcol <- rnorm(n,mean=mean(wave.data$x[,colref]),sd=sd(wave.data$x[,colref])) 

  new.wave <- cbind(new.wave,newcol) 

  names(new.wave)[ncol(new.wave)] <- paste("rnd",k,sep="_") 

 } 

 return(new.wave) 

} 
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2.4 Adding the “correlated” descriptors 

To boost the difficulty, we add correlated attributes to the dataset i.e. we select randomly one the 

original attributes and we add a noise. When the noise is weak, the correlation between the 

attributes is strong. We observe that these new descriptors are generated in such a way that they are 

correlated to the original descriptors, but not to the class attribute. They must be discarded during 

the variable selection process. 

#add L correlated attributes 

add.correlated <- function(wave.data,L = 1, noise=1){ 

 n <- nrow(wave.data) 

 new.wave <- wave.data 

 for (l in 1:L){ 

  colref <- trunc(runif(1,min=1,max=22)) 

  newcol <- wave.data$x[,colref] + rnorm(n,0,sd=sd(wave.data$x[,colref])*noise) 

  new.wave <- cbind(new.wave,newcol) 

  names(new.wave)[ncol(new.wave)] <- paste("cor",l,sep="_") 

 } 

 return(new.wave) 

} 

2.5 Main program for generating the dataset  

The following program is used for generating the dataset. We set the following settings: n = 300,000 

instances, 21 original descriptors (V), the binary class attribute (Y), 50 descriptors generated 

randomly (rnd), 50 correlated descriptors (cor). The values are rounded to the third decimal. 

Of course, the reader can generate a dataset with other characteristics (n, rnd, cor) according to their 

context and their goal. 

#function for rounding numeric columns 

myround <- function(x){ 

  if (is.factor(x)==T){ 

  return(x) 

  } else 

  { 

  return(round(x,3)) 

  } 

} 

 

#generate n instances with K rnd attributes and L correlated attributes 

generate.binary <- function(n,K=1,L=1,noise=1){ 

  tmp <- waveform.binary(n) 

  tmp <- add.rnd(tmp,K) 

  tmp <- add.correlated(tmp,L,noise) 

  output <- 

cbind(as.data.frame(matrix(tmp$x,nrow(tmp),21)),subset(tmp,select=-x)) 

  output <- as.data.frame(lapply(output,myround)) 

  return(output) 

} 
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#generate and save a dataset 

dataset.size <- 300000 #number of instances 

nb.rnd <- 50 #number of random variables 

nb.cor <- 50 #number of correlated variables 

noise.level <- 1 #noise for correlated variables 

data.wave <- generate.binary(dataset.size,nb.rnd,nb.cor,noise.level) 

summary(data.wave) 

 

#writting the data.frame into a file (tab delimited file format) 

write.table(data.wave,file="wavebin.txt",quote=F,sep="\t",row.names=F) 

3 Logistic regression with Tanagra 

We use the wavebin.txt data file for our experiment. Because some tools start automatically the 

learning process when we define the diagram, we use a small dataset with n = 300 instances for the 

screenshots (wavebin_small.txt). 

3.1 Tanagra 

We click on the FILE / NEW menu to create a new diagram. We import the dataset.  

 

We check that the values are correctly imported. We have 300,000 rows and 122 columns. 
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We specify the target attribute (Y) and the input ones (the others). 

 

We add the BINARY LOGISTIC REGRESSION (SPV LEARNING tab) into the diagram. We launch the 

process by clicking on the VIEW contextual menu. The obtained deviance is D = 65738.10. This is the 

reference value that we use to check the optimization quality of the various tools. 
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For the variable selection, we add the FORWARD LOGIT (FEATURE SELECTION tab) component to the 

diagram. We use the default settings. 
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3.2 R software 

We use the following program under R. The calculation times are measured with the system.time(.) 

command. 

#data importation 

system.time(wave <- 

read.table(file="wavebin.txt",sep="\t",dec=".",header=T)) 

 

#creating the model 

system.time(model <- glm(y ~ ., data = wave, family=binomial)) 

print(model) 

 

#variable selection 

library(MASS) 

model.default <- glm(y ~ 1, data = wave, family=binomial) 

duree <- system.time(model.forward <- 

stepAIC(model.default,scope=list(lower=as.formula(model.default),upper=as.f

ormula(model)),direction="forward",k=log(nrow(wave)))) 

print(model.forward) 

3.3 Knime 

We define the following project under Knime. We have the learning process on the dataset (1), and 

the variable selection process using the wrapper approach (2)5.  

 

3.4 Weka 

We use the Explorer mode under Weka. After the data importation, we launch the Logistic procedure 

with the following settings. 

                                                           
5 Tanagra tutorial, « Wrapper for feature selection (continuation) », april 2010. 

(1)

(2)

http://data-mining-tutorials.blogspot.com/2010/04/wrapper-for-feature-selection.html
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3.5 Orange 

We use the following schema under Orange. We note that the variable selection procedure is 

incorporated into the Logistic Regression component. 

 



Didacticiel - Études de cas   R.R. 

10 février 2012  Page 9 

3.6 Performances comparison 

We detail the results into the table below. We note that all tools obtain the same deviance D = 

65738.15. The quality of the model is the same whatever the tool used. This is a positive result for all 

the tools. 

Tool (x bit) 

Calculation time (seconds) Memory occupation (GB) 

Importation 
Learning 

phase 

After the 

data 

importation 

Max during 

the learning 

process 

Gap 

Tanagra 1.4.41 (32) 96 74 0.15 0.37 0.22 

R 2.13.2 (64) 51 171 0.57 2.29 1.72 

Knime 2.4.2 (64) 34 192 2.95 3.84 0.89 

Weka 3.5.7 (64) 63 300 2.1 2.41 0.31 

Orange 2.0b (32) 151 - 1.27 - - 

3.6.1 Calculation time 

We use the values provided by the tools if they exist. Otherwise, we use a chronometer. Of course, 

we obtain approximate values, but when the gap between the performances is high, a precise value 

is not important. 

Tanagra is really faster compared with the other tools. As I said above, I took a lot of time to improve 

the program. But I think that the other reason is the optimization algorithm used. The Minka's work 

referenced above was a considerable help. 

R and Knime are also very fast. They work in a 64 bit mode. 

Knime can store the dataset on the disc when the memory occupation is too high 

(http://tech.knime.org/faq - see « Memory Policy »). This feature is useful when we handle a large 

dataset. But on the other hand, the calculation time becomes slower. To make the comparison 

possible, we use the option "Keep all in memory" in our experiment. If we use the default option, the 

calculation time for the learning phase is twofold (about 7 minutes). 

On our small dataset (300 instances), Orange works properly. When we select the large dataset 

(300,000 instances), the data file is imported, but the following error message appears when the 

logistic regression begins. 

                                                           
6 For the 1.4.42 and posterior versions, the importation time is higher (about 11 seconds) because Tanagra checks 

now the missing values. 

http://tech.knime.org/faq
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I thought first that that we can overcome this problem by modifying the settings (as for Java JRE). 

But, the problem seems more difficult (http://orange.biolab.si/forum/viewtopic.php?f=4&t=1369). 

3.6.2 Memory occupation 

We measure the memory occupation by using the Windows task manager. We keep the maximum 

value reached during the learning phase. This is rather a handcrafted process, but this is the most 

reliable. Indeed, some tools removed the unused structure after the building of the model, the 

memory occupation measured after the learning phase is not really accurate. 

The "gap" column computes the gap between the memory occupation before the learning and the 

max reached during the model construction. An interesting idea for instance is to measure the 

changes when we modify the number of instances and/or the number of descriptors. 

The global memory occupation gives the ability of the tool to handle large database... when they 

handle all the instances into main memory. About Knime for instance, when we use the default 

option (the tables are written to disc), the used memory is really small (about 0.38 GB). It reinforces 

its ability to operate on large databases. 

Last, about Tanagra, the memory occupation seems really small because it stores the values in single 

precision. We do not need a high performance for the storage of the values. Conversely, all the 

calculations are made in double precision to obtain as accurate results as the other tools. 

4 Variable selection 

The tools used different algorithms for the variable selection. Thus, the calculation times are not 

comparable in the absolute. They rest on the number of logistic regression learning performed 

during the search i.e. the number of times where we try to optimize the log-likelihood. This 

operation is the most time-consuming. 

Let “p” the number of candidate variables. 

Tanagra uses the Score test for the forward approach, and the Wald test for the backward approach. 

The search is performed in a linear time O(p) i.e. in the worst case, we perform "p" logistic regression 

learning. For the forward approach, we begin with the simplest models. The algorithm is faster. 

Although the simplicity of the method, we observe that none of the irrelevant descriptors ("rnd" or 

"cor") are incorporated into the final model with Tanagra. 

R avec stepAIC optimizes the Akaike (AIC) criterion. According the forward search, we try all the 

regression with 1 predictor. We perform "p" logistic regression learning process. Then, we select the 

http://orange.biolab.si/forum/viewtopic.php?f=4&t=1369


Didacticiel - Études de cas   R.R. 

10 février 2012  Page 11 

best one. We try to add a second variable. So, we perform "p-1" regressions. The algorithm is 

quadratic O(p²). The calculation time is heavily impacted. 

Knime provides the wrapper approach with the backward search strategy. In our project, we 

optimize the error rate computed on a separate test set. The algorithm is also quadratic, but because 

we start with the complete model, the calculation time becomes prohibitive. On our small dataset 

(300 instances), it works fine. After a long time, we cut off the calculations on the large dataset 

(300,000 instances). Obviously, this kind of approach is only tractable with a very fast learning 

algorithm such as naive bayes classifier7. 

Weka, as Knime, does not incorporate a variable selection procedure especially intended to the 

logistic regression. Among the possible approaches, we can use the CFS filtering algorithm8. But, it is 

based on a criterion (the correlation) which is not directly related to the logistic regression 

characteristics. This is the reason for which we do not include this procedure in our experiment. 

Orange incorporates the bidirectional variable selection approach (stepwise) in the logistic 

regression. It works fine on our small dataset. On the large dataset, the calculation is not possible. 

Finally, we report here the results for Tanagra and R (stepAIC). 

Tool (Approach) 

Selected descriptors 

Calculation time # 

variables 

Of which 

« rnd » 

Of which 

« cor » 

Tanagra (Forward) 18 0 0 9’ 30’’ 

R (Forward, StepAIC) 18 0 0 4h 54’ 00’’ 

As we said above, the calculation time is not really relevant here because the tools do not rest on 

identical algorithms. We note however that they exclude the irrelevant descriptors "rnd" and "cor". 

Especially for the second type of descriptors, this is a really good result. 

5 Conclusion 

The reader can adjust the dataset characteristics (more or less instances and /or descriptors). The 

conclusions will be more relevant according to its context. 

About the performances, Tanagra seems very fast compared with the other tools. The main reason is 

that I really worked on the optimization of this method (like for decision tree algorithm)9. The results 

are less outstanding for other approaches such as SVM10 (Support vector machine). There is still work 

to do.... This is also good news. 

                                                           
7 Tanagra tutorial, « Wrapper fo feature selection (continued) », april 2010. 

8 Tanagra tutorial, « Filter methods for feature selection », october 2010. 

9 Tanagra tutorial, « Decision tree and large dataset (continuation) », october 2011. 

10 Tanagra tutorial, « Implementing SVM on large dataset », july 2010. 

http://data-mining-tutorials.blogspot.com/2010/04/wrapper-for-feature-selection.html
http://data-mining-tutorials.blogspot.com/2010/10/filter-methods-for-feature-selection.html
http://data-mining-tutorials.blogspot.com/2011/10/decision-tree-and-large-dataset-follow.html
http://data-mining-tutorials.blogspot.com/2009/07/implementing-svm-on-large-dataset.html

