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1 Topic 

Description of two alternative approaches to the PCA (Principal Component Analysis) available into 

Tanagra: Principal Factor Analysis and Harris Component Analysis (non-iterative algorithms). 

Comparison with the tools from SAS, R (package PSYCH) and SPSS. 

PCA (Principal Component Analysis)1 is a dimension reduction technique which enables to obtain a 

synthetic description of a set of quantitative variables. It produces latent variables called principal 

components (or factors) which are linear combinations of the original variables. The number of 

useful components is much lower than to the number of original variables because these last ones 

are (more or less) correlated. PCA enables also to reveal the internal structure of the data because 

the components are constructed in a manner as to explain optimally the variance of the data. 

PFA (Principal Factor Analysis)2 is often confused with PCA. There has been significant controversy 

about the equivalence or otherwise of the two techniques. One of the point of view which enables to 

distinguish them is to consider that the factors from the PCA account the maximal amount of 

variance of the available variables, while those from PFA account only the common variance in the 

data. The latter seems more appropriate if the goal of the analysis is to produce latent variables 

which highlight the underlying relation between the original variables. The influence of the variables 

which are not related to the other should be excluded. 

They are thus different due to the nature of the information they make use. But the nuance is not 

obvious. Especially as they are often grouped in the same tool into some popular software (e.g. 

“PROC FACTOR” into SAS; “ANALYZE / DATA REDUCTION / FACTOR” into SPSS; etc.). In addition, their 

outputs and their interpretation are very similar. 

In this tutorial, we present three approaches: Principal Component Analysis – PCA; non iterative 

Principal Factor Analysis - PFA; non iterative Harris Component Analysis - Harris. We highlight the 

differences by comparing the matrix (correlation matrix for the PCA) used for the diagonalization 

process. We detail the steps of the calculations using a program for R. We check our results by 

comparing them to those of SAS (PROC FACTOR). Thereafter, we implement these methods with 

Tanagra, with R using the PSYCH package, and with SPSS. 

2 Dataset 

The “beer_rnd.xls” data file describes what influences a consumer’s choice behavior when he is 

shopping for beer. The dataset comes from the Dr. Wuensch SPSS-Data Page3. Consumers (n = 99) 

rate on a scale of 0-100 how important he considers each of seven qualities when deciding whether 

or not to buy the six pack:  low COST of the six pack, high SIZE of the bottle (volume), high percentage 

of ALCOHOL in the beer, the REPUTATION of the brand, the COLOR of the beer, nice AROMA of the 

beer, and good TASTE of the beer. 

                                                           
1 http://en.wikipedia.org/wiki/Principal_component_analysis 

2 http://en.wikipedia.org/wiki/Factor_analysis 

3 Dr Karl Wuensch’s SPSS-Data Page, http://core.ecu.edu/psyc/wuenschk/spss/spss-Data.htm 

http://en.wikipedia.org/wiki/Principal_component_analysis
http://en.wikipedia.org/wiki/Factor_analysis
http://core.ecu.edu/psyc/wuenschk/spss/spss-Data.htm
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We have already processed a version of this dataset previously4. But, to make difficult the analysis, 

we add 7 randomly generated variables (rnd1…rnd7). Thus, we have p = 14 variables in our dataset. 

Our aim is to check the ability of the various approaches to extract the useful information i.e. their 

ability to detect the relation between the variables knowing that there are noisy variables (generated 

randomly) in the database5. 

Below, we show the first 5 instances of the data file. 

 

3 Steps for completing factor analysis using R 

In this section, we detail the calculations for each approach using a program for R. 

First, we import the “beer_rnd.txt” data file (text file format) and we display the first 5 instances. 

 

3.1 Principal component analysis (PCA) 

The correlation matrix (p x p) is the starting point of the PCA. Under R, we obtain this matrix with the 

cor() function. 

 beer.cor <- cor(beer.data) 

 print(round(beer.cor,2)) 

The matrix displays the correlation between each pair of variables (Figure 1). By rearranging it wisely, 

we observe groups of variables: 

 (COST, SIZE and ALCOHOL) are highly correlated. They characterize the consumers which want to 

drink a lot of alcohol in cheap way. 

 The second group consists of (COLOR, AROMA and TASTE). It corresponds to the consumers 

which are sensitive to the quality of the beer. 

 REPUTAT is moderately negatively correlated to this second group i.e. the consumers sensitive to 

(COLOR, AROMA and TASTE) are not sensitive to the reputation. 

                                                           
4 http://data-mining-tutorials.blogspot.fr/2013/01/new-features-for-pca-in-tanagra.html 

5 “Noise” variable is not really the appropriate term in the factor analysis context. These are variables which are not 

related to the others. It does not mean that they are not interesting. 

cost size alcohol reputat color aroma taste rnd1 rnd2 rnd3 rnd4 rnd5 rnd6 rnd7

10 15 20 85 40 30 50 40 80 65 25 90 45 40

100 70 50 30 75 60 80 70 55 45 25 95 95 60

65 30 35 80 80 60 90 45 90 65 90 20 95 35

0 0 20 30 80 90 100 85 30 45 85 40 80 5

10 25 10 100 50 40 60 20 5 25 25 20 25 80

http://data-mining-tutorials.blogspot.fr/2013/01/new-features-for-pca-in-tanagra.html
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 The random variables (rnd1…rnd7) are not correlated to any other variables of the dataset. This 

is not surprising. 

Of course, the correlation of a variable with itself is 1. We observe it in the main diagonal of the 

correlation matrix. The PCA process makes use of this information when it diagonalizes the matrix. It 

treats all the variation of the variables by giving them the same importance. 

 

Figure 1 – Correlation matrix 

Eigenvalues. We use the following commands to diagonalize the correlation matrix and display the 

eigenvalues: 

#eigenvalues and eigenvectors of the correlation matrix 

eig.pca <- eigen(beer.cor) 

#print 

print eigenvalues 

print("eigenvalues") 

print(eig.pca$values) 

#screeplot 

plot(1:14,eig.pca$values,type="b") 

abline(a=1,b=0) 

The results are consistent with those of SAS (PROC FACTOR6) (Figure 2). SAS shows that we used the 

full variability of the variables, i.e. we perform a PCA, by mentioning "Prior Communality Estimates: 

ONE" in the eigenvalues table. 

The determination of the right number of component is a difficult problem. According to the Kaiser-

Guttman rule, we select 5 components here (even 6 because the 6-th eigenvalue is equal to 0.9927). 

This is not surprising. At least 7 variables among 14 are generated orthogonally. We need a large 

                                                           
6 We use the following command: 

proc factor data = mesdata.beer_rnd 

method=principal 

score 

nfactors=3; 

run; 

cost size alcohol reputat color aroma taste rnd1 rnd2 rnd3 rnd4 rnd5 rnd6 rnd7

cost 1 0.88 0.88 -0.17 0.32 -0.03 0.05 0.17 -0.05 0.03 0.10 0.00 -0.02 -0.06

size 0.88 1 0.82 -0.06 0.01 -0.29 -0.31 0.21 -0.04 0.06 -0.02 -0.04 0.00 -0.03

alcohol 0.88 0.82 1 -0.36 0.40 0.10 0.06 0.18 -0.03 0.09 0.08 0.00 -0.08 -0.08

reputat -0.17 -0.06 -0.36 1 -0.52 -0.52 -0.63 0.05 0.05 -0.10 -0.15 0.04 -0.05 0.09

color 0.32 0.01 0.40 -0.52 1 0.82 0.80 -0.01 0.11 0.06 0.25 0.02 -0.09 0.05

aroma -0.03 -0.29 0.10 -0.52 0.82 1 0.87 -0.05 0.07 0.04 0.15 0.04 -0.05 -0.01

taste 0.05 -0.31 0.06 -0.63 0.80 0.87 1 -0.08 0.03 0.00 0.21 -0.01 0.03 -0.04

rnd1 0.17 0.21 0.18 0.05 -0.01 -0.05 -0.08 1 0.07 -0.04 -0.11 0.19 0.10 -0.04

rnd2 -0.05 -0.04 -0.03 0.05 0.11 0.07 0.03 0.07 1 -0.01 0.06 0.07 0.06 0.07

rnd3 0.03 0.06 0.09 -0.10 0.06 0.04 0.00 -0.04 -0.01 1 0.16 -0.07 0.07 0.01

rnd4 0.10 -0.02 0.08 -0.15 0.25 0.15 0.21 -0.11 0.06 0.16 1 0.09 -0.02 0.07

rnd5 0.00 -0.04 0.00 0.04 0.02 0.04 -0.01 0.19 0.07 -0.07 0.09 1 -0.08 0.01

rnd6 -0.02 0.00 -0.08 -0.05 -0.09 -0.05 0.03 0.10 0.06 0.07 -0.02 -0.08 1 -0.02

rnd7 -0.06 -0.03 -0.08 0.09 0.05 -0.01 -0.04 -0.04 0.07 0.01 0.07 0.01 -0.02 1
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number of components if we want to take into account all the observed variance of the variables. 

But, this choice is not really appropriate if we want to highlight the relations between the variables 

(the shared variance). The influence of the 7 variables generated randomly must be neglected. 

 

Figure 2 – Eigenvalues – Principal Component Analysis 

The solution is quite different if we consider the scree plot. The suggested solution is two factors if 

we take the components before the elbow into the graphical representation (3 factors if we include 

the elbow in the selection). That is rather a good solution in view of the correlation matrix above 

(Figure 1), where we had detected groups of variables. 

 Loadings or Factor pattern. This table describes the correlation of the variables with the factors. 

These values are useful for the interpretation. In practice, we obtain them by multiplying the 

eigenvectors with the square root of the eigenvalues. 

#correlation of the variables with the factors 

loadings.pca <- matrix(0,nrow=nrow(beer.cor),ncol=3) 

for (j in 1:3){ 

  loadings.pca[,j] <- sqrt(eig.pca$values[j])*eig.pca$vectors[,j] 

} 

print("loadings for the 3 first factors") 

rownames(loadings.pca) <- colnames(beer.data) 

print(round(loadings.pca,5)) 
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We found on the two first factors the groups detected above into the correlation matrix. On the first 

one, (color, aroma and taste) are highly correlated, and are moderately negatively correlated to 

(reputation). On the second factor, we observe that cost, size and alcohol are correlated. 

By choosing adequately the right number of factors, the random variables have no influence of the 

reading of the results in this context. If we include the third factor in the analysis (eigenvalue = 1.268; 

9% o f the total variance), the situation becomes difficult. We must interpret the correlation of RND1 

and RND5 with this factor. Of course, we know that there is no relevant information here. 

 
Figure 3 – Factor pattern - PCA 

Communalities. This table shows the proportion of the variance in each variable that is accounted for 

on the extracted factors. We obtain these values by computing the square of the loadings and by 

summing them. 

#communalities for the three first factors 

comm.pca <- apply(loadings.pca,1,function(x){sum(x^2)}) 

print("communalities for the 3 first factors") 

names(comm.pca) <- colnames(beer.data) 

print(round(comm.pca,5)) 

All the original variables (not randomly generated) are well accounted for on the three first factors. 

 

(R) (SAS)

(R)

(SAS)



Tutorial – Case Studies  R.R. 

5 février 2013  Page 6 

Factor scores – 1. This tables provides the coefficients which enables to calculate the coordinates of 

the individuals on the factors. Because we can apply them to standardized variables, these 

coefficients indicate also the relative importance of the variable for the determination of the factor. 

We obtain these coefficients by multiplying the inverse of the correlation matrix with the loadings. 

#inversion of the correlation matrix 

inv.beer.cor <- solve(beer.cor) 

# factor scores 

fscores.pca <- inv.beer.cor%*%loadings.pca 

print(round(fscores.pca,5)) 

We have the same values, but in negative direction for some factors. This does not influence the 

interpretation of the results. 

 

By applying these coefficients on the learning sample, we obtain the coordinates (scores) of the 

instances for each factor. They are standardized in order to obtain a unit variance for SAS and SPSS. 

Factor scores – 2. Another way to compute the scores is to obtain a variance equal to the eigenvalue 

of the factor. We have this kind of behavior in Tanagra and some R procedures (princomp, prcomp, 

etc.). To obtain the appropriate coefficients, we multiply the preceding ones by the square root of 

the eigenvalues: 

#factor scores – 2nd version 

for (j in 1:3){ 

  fscores.pca[,j] <- sqrt(eig.pca$values[j])*fscores.pca[,j] 

} 

print(fscores.pca) 

The factor scores are the same as those of Tanagra now. 

 

(R) (SAS)
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Factor scores – Contributions to the factors. The factor scores coefficients enable to compute the 

coordinates of the individuals. But we can use them also for the interpretation of the factors. Indeed, 

because they are applied on standardized variables, the coefficients are comparable. Thus, we can 

detect the variables which have the most influence on each factor. 

Starting from the table of factor scores, the contribution to the factor of a variable, for each factor, is 

the ratio between the squared factor scores and their sum. For instance, the coefficient of “cost” for 

the first factor is 0.14669; its squared is 0.02152. When we divide this value by the sum of the 

squared factor scores coefficient for the first factor, we obtain 0.02152/0.29528 = 7.287%. This is the 

relative contribution of the variable for the determination of the factor. We apply the same process 

to all the variables on the two first factors of the PCA. 

Factor1 Factor2 Factor1 Factor2 Factor1 Factor2

cost 0.14669 0.2913 0.02152 0.08486 0.07287 0.23714

size 0.06313 0.33898 0.00399 0.11491 0.01350 0.32112

alcohol 0.17374 0.27252 0.03019 0.07427 0.10223 0.20755

reputat -0.21757 0.04091 0.04734 0.00167 0.16031 0.00468

color 0.26799 -0.06503 0.07182 0.00423 0.24322 0.01182

aroma 0.23146 -0.17733 0.05357 0.03145 0.18143 0.08788

taste 0.23854 -0.17843 0.05690 0.03184 0.19270 0.08897

rnd1 0.00541 0.10832 0.00003 0.01173 0.00010 0.03279

rnd2 0.01251 -0.03057 0.00016 0.00093 0.00053 0.00261

rnd3 0.03503 0.01645 0.00123 0.00027 0.00416 0.00076

rnd4 0.0901 -0.03078 0.00812 0.00095 0.02749 0.00265

rnd5 0.00402 -0.00191 0.00002 0.00000 0.00005 0.00001

rnd6 -0.01393 -0.00488 0.00019 0.00002 0.00066 0.00007

rnd7 -0.01490 -0.02650 0.00022 0.00070 0.00075 0.00196

Total 0.29528 0.35783 CTR(rnd) 3.37% 4.08%

Standardized Scoring 

Coefficients
ContributionsSquared Coefficients

 

The interpretation is consistent with those of the loadings. The sum of the contributions of the RND 

variables is negligible on the two first factors (3.37% for Factor 1; 4.08% for Factor 2). 

Conclusion. These results of PCA are well-known in the literature. We recall them in order to better 

understand the results of the methods presented below. 

(R) (TANAGRA)
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3.2 Principal Factor Analysis (PFA) 

The principal factor analysis (common factor analysis, principal axis factoring7) tries to identify latent 

variables which enable to structure and summarize the initial variables of the dataset. The approach 

deals exclusively with the shared variance between the variables. 

The starting point is always the correlation matrix. But, for each variable, we replace 1 (the 

correlation of the variable with itself i.e. a variable is fully explained by itself) by the proportion of 

the variance explained by the others. Concretely, we use the coefficient of determination Rj² of the 

regression of the variable Xj on the (p-1) others. This is called "prior communalities" or "initial 

estimates of communalities". 

Thus, we diagonalize the matrix F (Figure 4) in non-iterative principal factor analysis. 

 

Figure 4 – Matrix F for Principal Factor Analysis 

The groups of variables are the same. But we note that (cost,…, taste) can be explained by the others, 

unlike (rnd1,.., rnd7) e.g. for the regression of "cost" on (size, alcohol, ..., rnd7), we have R² = 0.96; 

R²(size / cost,alcohol, …, rnd7) = 0.94; …; R²(rnd1/cost, alcohol, …) = 0.14; etc. 

We do not need to perform explicitly ‘p = 14’ regressions to obtain these coefficients. We can 

compute them from the inverse (C-1) of the correlation matrix (C). 

  
    

 

   
   

Where     
    is the jth value on the diagonal of the matrix C-1. 

The quantity        
  

 

   
   is called “uniqueness”. It corresponds to the unexplained variance of 

Xj. If its value is high (near 1), the variable is not related to the others. 

We detail below the calculation of the main diagonal (the prior communalities) of the matrix F for 

principal factor analysis. 

First we calculate the inverse of the correlation matrix. 

 

                                                           
7 http://en.wikipedia.org/wiki/Principal_factor_analysis#Types_of_factoring 

cost size alcohol reputat color aroma taste rnd1 rnd2 rnd3 rnd4 rnd5 rnd6 rnd7

cost 0.96 0.88 0.88 -0.17 0.32 -0.03 0.05 0.17 -0.05 0.03 0.10 0.00 -0.02 -0.06

size 0.88 0.94 0.82 -0.06 0.01 -0.29 -0.31 0.21 -0.04 0.06 -0.02 -0.04 0.00 -0.03

alcohol 0.88 0.82 0.91 -0.36 0.40 0.10 0.06 0.18 -0.03 0.09 0.08 0.00 -0.08 -0.08

reputat -0.17 -0.06 -0.36 0.77 -0.52 -0.52 -0.63 0.05 0.05 -0.10 -0.15 0.04 -0.05 0.09

color 0.32 0.01 0.40 -0.52 0.85 0.82 0.80 -0.01 0.11 0.06 0.25 0.02 -0.09 0.05

aroma -0.03 -0.29 0.10 -0.52 0.82 0.89 0.87 -0.05 0.07 0.04 0.15 0.04 -0.05 -0.01

taste 0.05 -0.31 0.06 -0.63 0.80 0.87 0.95 -0.08 0.03 0.00 0.21 -0.01 0.03 -0.04

rnd1 0.17 0.21 0.18 0.05 -0.01 -0.05 -0.08 0.14 0.07 -0.04 -0.11 0.19 0.10 -0.04

rnd2 -0.05 -0.04 -0.03 0.05 0.11 0.07 0.03 0.07 0.08 -0.01 0.06 0.07 0.06 0.07

rnd3 0.03 0.06 0.09 -0.10 0.06 0.04 0.00 -0.04 -0.01 0.07 0.16 -0.07 0.07 0.01

rnd4 0.10 -0.02 0.08 -0.15 0.25 0.15 0.21 -0.11 0.06 0.16 0.14 0.09 -0.02 0.07

rnd5 0.00 -0.04 0.00 0.04 0.02 0.04 -0.01 0.19 0.07 -0.07 0.09 0.11 -0.08 0.01

rnd6 -0.02 0.00 -0.08 -0.05 -0.09 -0.05 0.03 0.10 0.06 0.07 -0.02 -0.08 0.10 -0.02

rnd7 -0.06 -0.03 -0.08 0.09 0.05 -0.01 -0.04 -0.04 0.07 0.01 0.07 0.01 -0.02 0.09

http://en.wikipedia.org/wiki/Principal_factor_analysis#Types_of_factoring
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Figure 5 - Inverse of the correlation matrix 

For ‘cost’, we obtain the uniqueness as follow       
 

     
     ; and then the prior 

communality      
             . We use the following commands under R. 

#uniqueness 

d2 <- 1/diag(inv.beer.cor) 

print(d2) 

#prior communalities 

init.comm <- 1-d2 

print(init.comm) 

The obtained values are: 

 

We insert these values into the main diagonal of the correlation matrix C to obtain the matrix F: 

#new version of the correlation matrix 

beer.cor.pfa <- beer.cor 

#replace the values of the main diagonal 

diag(beer.cor.pfa) <- init.comm 

#the trace of the matrix F 

print(sum(diag(beer.cor.pfa))) 

cost size alcohol reputat color aroma taste rnd1 rnd2 rnd3 rnd4 rnd5 rnd6 rnd7

cost 25.67 -17.54 -10.39 -7.39 -0.55 9.10 -18.10 0.62 0.91 0.06 -0.74 -1.00 0.10 0.38

size -17.54 17.82 1.77 4.62 0.86 -5.00 12.72 -0.54 -0.66 -0.01 0.57 0.87 -0.40 -0.51

alcohol -10.39 1.77 11.41 4.48 -2.84 -4.04 8.98 -0.48 -0.17 -0.04 0.27 0.30 0.29 0.37

reputat -7.39 4.62 4.48 4.39 -0.88 -2.60 7.21 -0.33 -0.31 0.15 0.23 0.28 0.06 -0.07

color -0.55 0.86 -2.84 -0.88 6.82 -2.73 -3.15 0.13 -0.43 -0.13 -0.34 0.02 0.25 -0.63

aroma 9.10 -5.00 -4.04 -2.60 -2.73 8.83 -8.91 0.09 0.31 -0.20 0.11 -0.51 0.18 0.22

taste -18.10 12.72 8.98 7.21 -3.15 -8.91 20.11 -0.48 -0.39 0.41 0.29 0.92 -0.50 0.14

rnd1 0.62 -0.54 -0.48 -0.33 0.13 0.09 -0.48 1.16 -0.05 0.04 0.11 -0.25 -0.15 0.03

rnd2 0.91 -0.66 -0.17 -0.31 -0.43 0.31 -0.39 -0.05 1.09 0.03 -0.08 -0.08 -0.08 -0.01

rnd3 0.06 -0.01 -0.04 0.15 -0.13 -0.20 0.41 0.04 0.03 1.08 -0.18 0.09 -0.11 0.00

rnd4 -0.74 0.57 0.27 0.23 -0.34 0.11 0.29 0.11 -0.08 -0.18 1.17 -0.11 0.00 -0.06

rnd5 -1.00 0.87 0.30 0.28 0.02 -0.51 0.92 -0.25 -0.08 0.09 -0.11 1.13 0.07 -0.01

rnd6 0.10 -0.40 0.29 0.06 0.25 0.18 -0.50 -0.15 -0.08 -0.11 0.00 0.07 1.11 0.01

rnd7 0.38 -0.51 0.37 -0.07 -0.63 0.22 0.14 0.03 -0.01 0.00 -0.06 -0.01 0.01 1.10

Inverse of the correlation matrix
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Thus, the values of the matrix F are defined as follow: 

     
            

   
         

  

The trace of the matrix is    
  

 
   7.0137. This is the total amount of information that we want to 

decompose in the principal factor analysis process. 

Eigenvalues. We diagonalize the matrix F to obtain the eigenvalues8.  

#eigenvalues 

eig.pfa <- eigen(beer.cor.pfa) 

print("eigenvalues") 

print(eig.pfa$values) 

#screeplot 

plot(1:14,eig.pfa$values,type="b") 

Of course, we obtain the same values with SAS. 

 

Some eigenvalues are negative. This is not surprising. Contrary to the correlation matrix C, F is not 

semi-definite positive. Up to the 4th one, the factors explain the shared variance because the sum of 

the eigenvalues does not exceed the matrix trace. From the 5th one, the intrinsic variance of the 

variables influences the factors. So, it is necessary to subtract eigenvalues (from the 10th factor) in 

order that the sum of all the eigenvalues is equal to the matrix trace (the total amount of information 

that we want analyze). 

                                                           
8 With SAS, we set the following commands (the option “priors = smc” is essential): 

proc factor data = mesdata.beer_rnd 

method=principal 

priors=smc 

msa 

nfactors=2 

score; 

run; 
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Clearly, selecting two factors is the right solution on our dataset. The gap between the 2nd 

eigenvalue and the 3rd one is very high in the scree plot. The first two factors explain 84.92% of the 

shared variance between the variables. This result was not as obvious for the principal component 

analysis (we hesitated between 2 and 3 factors; Figure 2). 

Loadings or Factor pattern. Again, we calculate the loadings for the first two factors. 

#loadings 

loadings.pfa <- matrix(0,nrow=nrow(beer.cor.pfa),ncol=2) 

for (j in 1:2){ 

  loadings.pfa[,j] <- sqrt(abs(eig.pfa$values[j]))*eig.pfa$vectors[,j] 

} 

rownames(loadings.pfa) <- colnames(beer.data) 

print(round(loadings.pfa,5)) 

 

Figure 6 - "Loadings" – Principal Factor Analysis 

Loadings ≠ corrélation. Unlike the principal component analysis, the loadings do not correspond to 

the correlations between the variables and the factors in the principal factor analysis. These are 

rather the standardized coefficients of the regression of the factors on the variables9. Fortunately, 

the reading of the loadings is similar in practice. They enable to interpret the factors.  

Communalities. The communalities allow to compare the amount of information reproduced for 

each variable on the selected factors with the amount of information initially workable (the shared 

variance for each variable). 

#prior and estimated communalities for the 2 first factors 

comm.pfa <- apply(loadings.pfa,1,function(x){sum(x^2)}) 

names(comm.pfa) <- colnames(beer.data) 

print(round(cbind(init.comm,comm.pfa),5)) 

The quality of the representation for the "real" variables (cost,..., taste) is good on the two first 

factors. These factors are enough to understand the relations between the variables. 

                                                           
9 Voir http://www.yorku.ca/ptryfos/f1400.pdf 

(R) (SAS)

http://www.yorku.ca/ptryfos/f1400.pdf
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Figure 7 – Initial and estimated communalities - PFA 

We note that the sum of the two first eigenvalues is equal to the sum of the estimated 

communalities of the variables. 

 

Factor scores. Again, the factor scores coefficients allow the calculation the coordinates of the 

individuals. 

#factor scores 

print("factor scores") 

fscores.pfa <- inv.beer.cor%*%loadings.pfa 

print(round(fscores.pfa,5)) 

Our results are consistent with those of SAS. 

 

Contributions of the variables “rnd”. When we calculate the contribution of the variables RND on 

the factors, we note that they are considerably lowered (0.30% vs. 3.37 for the PCA for the 1st factor; 

0.13% vs. 4.08% for the 2nd one). This is one of the main benefits of the PFA against the PCA in our 

context. The influence of the variables which are not related to the others is reduced. 

(R) (SAS)
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Factor1 Factor2 Factor1 Factor2 Factor1 Factor2

cost -0.07718 0.64741 0.00596 0.41914 0.00998 0.56830

size 0.21226 0.16184 0.04505 0.02619 0.07546 0.03551

alcohol 0.38278 0.04766 0.14652 0.00227 0.24541 0.00308

reputat -0.04399 -0.08779 0.00194 0.00771 0.00324 0.01045

color 0.13617 -0.05404 0.01854 0.00292 0.03106 0.00396

aroma 0.12122 0.00764 0.01469 0.00006 0.02461 0.00008

taste 0.60210 -0.52755 0.36252 0.27831 0.60719 0.37735

rnd1 -0.01887 0.01700 0.00036 0.00029 0.00060 0.00039

rnd2 0.00141 0.00859 0.00000 0.00007 0.00000 0.00010

rnd3 0.02208 -0.00835 0.00049 0.00007 0.00082 0.00009

rnd4 0.02009 -0.01793 0.00040 0.00032 0.00068 0.00044

rnd5 0.02016 -0.00531 0.00041 0.00003 0.00068 0.00004

rnd6 -0.00542 0.01042 0.00003 0.00011 0.00005 0.00015

rnd7 0.01165 -0.00673 0.00014 0.00005 0.00023 0.00006

Total 0.59705 0.73753 CTR(rnd) 0.30% 0.13%

Squared Coefficients ContributionsStandardized Scoring Coefficients

 

Accuracy of the factors. The factors have a theoretical unit variance. But because we work on a 

sample, we have no guarantee to obtain the unit variance on the dataset. The computed variances of 

the factors indicate their reliability. A sample variance near to 1 is desirable. 

For the two first factors, we obtain theses variance by summing the product between the factor 

scores coefficients and the loadings. We use the following program for R: 

#variance of the scores 

vscores <- numeric(2) 

for (j in 1:2){ 

 vscores[j] <- sum(fscores.pfa[,j]*loadings.pfa[,j]) 

} 

print(round(vscores,5)) 

We obtain for R and SAS: 

 
SAS calls these values "squared multiple correlations of the variables with each factors" because they 

correspond also to the squared correlations between the theoretical latent variable defined on the 

population and the factors estimated on the sample.  

A high value reveals a good reliability of the factor (≥ 0.7 according to some references).  We observe 

that we can have confident in the two first factors from the PFA on our dataset.  

If we compute the first 5 factors, we note that starting from the third factor, the results are not really 

convincing.  Obviously, two factors is the right solution for our dataset. 

(R)

(SAS)
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Figure 8 - Variance of the 5 first factors - PFA 

3.3 An iterative approach for Principal Factor Analysis 

There is an iterative method for the principal factor analysis. We specify the number of factors used 

for the analysis. The previous approach is the first step of the algorithm. Then, we replace the initial 

communalities with the estimated communalities in the matrix F. We compute again the factors. The 

process is stopped when estimated communalities is stable (SAS) or when we reach a certain number 

of iterations (SPSS). 

Sometimes, the estimated communality of a variable can exceed 1 is some circumstances. This is the 

"Heywood problem". That means that there are inconsistencies in the process. There are many 

reasons for that, among other things because we have selected a wrong number of factors10. 

3.4 Harris principal factor analysis (Harris) 

The Harris' approach works also on a modified version of the correlation matrix. We are concerned 

with the shared variance also. We increase the correlations between the variables when they (either 

or both) are highly related to the others. In concrete terms, we start from the matrix F for the 

principal factor analysis (Figure 1), we weight the values with the uniqueness of the variables: 

    
   

      
 

For our dataset, the computed matrix H is (Figure 9): 

 

Figure 9 - Matrix H for Harris Principal Factor Analysis 

For instance, the correlation between cost and size is rather high: 0.88. In addition, the proportion of 

the variance of cost (size) explained by the other varibles is R²cost = 0.961 (R²size=0.944). Both are 

                                                           
10 See http://v8doc.sas.com/sashtml/stat/chap26/sect21.htm 

cost size alcohol reputat color aroma taste rnd1 rnd2 rnd3 rnd4 rnd5 rnd6 rnd7

cost 24.67 18.79 15.01 -1.86 4.24 -0.42 1.23 0.91 -0.27 0.17 0.55 -0.01 -0.12 -0.33

size 18.79 16.82 11.74 -0.54 0.16 -3.59 -5.82 0.94 -0.16 0.26 -0.10 -0.17 0.00 -0.12

alcohol 15.01 11.74 10.41 -2.55 3.51 0.98 0.85 0.66 -0.10 0.32 0.28 0.00 -0.28 -0.29

reputat -1.86 -0.54 -2.55 3.39 -2.87 -3.25 -5.89 0.12 0.12 -0.21 -0.34 0.09 -0.10 0.20

color 4.24 0.16 3.51 -2.87 5.82 6.39 9.42 -0.04 0.29 0.17 0.69 0.07 -0.23 0.15

aroma -0.42 -3.59 0.98 -3.25 6.39 7.83 11.54 -0.14 0.21 0.13 0.49 0.12 -0.16 -0.04

taste 1.23 -5.82 0.85 -5.89 9.42 11.54 19.11 -0.40 0.16 -0.02 1.00 -0.06 0.13 -0.19

rnd1 0.91 0.94 0.66 0.12 -0.04 -0.14 -0.40 0.16 0.08 -0.05 -0.12 0.21 0.12 -0.04

rnd2 -0.27 -0.16 -0.10 0.12 0.29 0.21 0.16 0.08 0.09 -0.01 0.07 0.07 0.06 0.08

rnd3 0.17 0.26 0.32 -0.21 0.17 0.13 -0.02 -0.05 -0.01 0.08 0.18 -0.08 0.08 0.02

rnd4 0.55 -0.10 0.28 -0.34 0.69 0.49 1.00 -0.12 0.07 0.18 0.17 0.10 -0.02 0.08

rnd5 -0.01 -0.17 0.00 0.09 0.07 0.12 -0.06 0.21 0.07 -0.08 0.10 0.13 -0.09 0.01

rnd6 -0.12 0.00 -0.28 -0.10 -0.23 -0.16 0.13 0.12 0.06 0.08 -0.02 -0.09 0.11 -0.02

rnd7 -0.33 -0.12 -0.29 0.20 0.15 -0.04 -0.19 -0.04 0.08 0.02 0.08 0.01 -0.02 0.10

http://www.ats.ucla.edu/stat/sas/output/factor.htm
http://pic.dhe.ibm.com/infocenter/spssstat/v21r0m0/index.jsp?topic=%2Fcom.ibm.spss.statistics.help%2Falg_factors_axis.htm
http://v8doc.sas.com/sashtml/stat/chap26/sect21.htm


Tutorial – Case Studies  R.R. 

5 février 2013  Page 15 

highly related to the other variables. We calculate the uniqueness: ucost = 0.039 and usize = 0.056. 

Thus, the relation between ‘cost’ and ‘size’ is more intense in the matrix H: 

           
    

            
       

We observe the same groups as above in the matrix H. But here, the discrepancy between the values 

is higher, especially the values of relations between the original variables compared with those of 

relations with and between variables generated randomly. The analysis should exploit this property 

during the calculation of the factors. 

For R, we use the formulas available online (SPSS, “Image (Kaiser, 1963)”; SAS, “Harris, 1962”)11 : 

#see SPSS and SAS online documentation 

S <- matrix(0,nrow=nrow(beer.cor),ncol=ncol(beer.cor)) 

diag(S) <- sqrt(1/diag(inv.beer.cor)) 

inv.S <- solve(S) 

beer.cor.harris <- beer.cor 

diag(beer.cor.harris) <- init.comm 

beer.cor.harris <- inv.S%*%beer.cor.harris%*%inv.S 

print("matrix to diagonalize") 

print(round(beer.cor.harris,2)) 

print("trace of the matrix") 

print(sum(diag(beer.cor.harris))) 

The trace of the matrix is [Tr(H) = 88.87841]. 

 

Eigenvalues. We diagonalize H: 

                                                           
11 We submit the following commands under SAS: 

proc factor data = mesdata.beer_rnd 

method=harris 

msa 

nfactors=2 

score; 

run; 

http://publib.boulder.ibm.com/infocenter/spssstat/v20r0m0/index.jsp?topic=%2Fcom.ibm.spss.statistics.help%2Falg_factor_kaiser.htm
http://v8doc.sas.com/sashtml/stat/chap26/sect6.htm#factorproc
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#diagonalization 

Eig.harris <- eigen(beer.cor.harris) 

print("eigenvalues") 

print(eig.harris$values) 

Here also, we know why we can obtain negative eigenvalues (see section 3.2). The most interesting 

information is that the gap between the 2nd and the 3rd eigenvalues is really high. Undoubtedly, the 

choice of two factors is the right solution for our dataset. We dispose of 95.52% of the available 

information (shared between the variables) on the two first factors [(50.078 + 34.815) / 88.878 = 

0.9552]. 

 

Loadings or Factor pattern. This table is again used for the interpretation of the factors. The formula 

is slightly modified because we must take into account the uniqueness     of the variables: 

#loadings 

loadings.harris <- matrix(0,nrow=nrow(beer.cor.harris),ncol=2) 

for (j in 1:2){ 

loadings.harris[,j] <- sqrt(eig.harris$values[j])*eig.harris$vectors[,j]*sqrt(d2) 

} 

print("loadings for the 2 first factors") 

rownames(loadings.harris) <- colnames(beer.data) 

print(round(loadings.harris,5))  

The two groups of the variables are strongly highlighted with the Harris approach. Definitely, the 

randomly generated variables (RND) are not relevant. 

The association of the variables with the factors is more clear, without need to rotate the factors (we 

will see below the factor rotation techniques, section 4). 
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Unweighted variance. The weighted variance corresponds to the eigenvalue. SAS provides also the 

unweighted variance. This is the sum of the squared values of the loadings. Here, we obtain 2.81752 

and 3.09661 for the first and the second factor. 

 
We can calculate easily these values with R. 

#unweighted variance explained 

unweighted.var.harris <- apply(loadings.harris,2,function(x){sum(x^2)}) 

print(round(unweighted.var.harris,5)) 

Communalities. We add up the squared values of loadings per variable on the selected factors to 

obtain the communalities. 

#communalities 

print("communalities for the 2 first factors") 

comm.harris <- apply(loadings.harris,1,function(x){sum(x^2)}) 

print(round(cbind(init.comm,comm.harris),5)) 

We can compare these values with the initial communalities to evaluate the quality of representation 

of each variable. 

(R) (SAS)
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Factor scores. The factor scores are computed like for the principal factor analysis. 

#factor scores 

print("factor scores") 

fscores.harris <- inv.beer.cor%*%loadings.harris 

print(round(fscores.harris,5)) 

#variance of the scores 

vscores.harris <- numeric(2) 

for (j in 1:2){ 

 vscores.harris[j] <- sum(fscores.harris[,j]*loadings.harris[,j]) 

} 

print(round(vscores.harris,5)) 

R and SAS are also consistent here. 

 

Contribution of the variables to the factors. The factor scores coefficients allows to obtain the 

relative influence of the variables on the factors. 

(R) (SAS)
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We observe that the influence of the randomly generated variables (RND) on the first two factors is 

near zero. This is the desirable result that we expect since the beginning of this tutorial. 

Factor1 Factor2 Factor1 Factor2 Factor1 Factor2

cost 0.48598 0.06864 0.23618 0.00471 0.60948 0.01174

size 0.32709 -0.12206 0.10699 0.01490 0.27610 0.03714

alcohol 0.20506 0.04992 0.04205 0.00249 0.10851 0.00621

reputat -0.01627 -0.0794 0.00026 0.00630 0.00068 0.01572

color 0.03359 0.16588 0.00113 0.02752 0.00291 0.06859

aroma -0.01521 0.22503 0.00023 0.05064 0.00060 0.12623

taste -0.02527 0.54272 0.00064 0.29454 0.00165 0.73422

rnd1 0.00434 -0.00224 0.00002 0.00001 0.00005 0.00001

rnd2 -0.00091 0.00147 0.00000 0.00000 0.00000 0.00001

rnd3 0.00123 0.00083 0.00000 0.00000 0.00000 0.00000

rnd4 0.00142 0.00715 0.00000 0.00005 0.00001 0.00013

rnd5 -0.00028 0.00025 0.00000 0.00000 0.00000 0.00000

rnd6 -0.00065 -0.00041 0.00000 0.00000 0.00000 0.00000

rnd7 -0.00119 -0.00088 0.00000 0.00000 0.00000 0.00000

Total 0.38750 0.40117 CTR(rnd) 0.01% 0.01%

Standardized Scoring Coefficients Squared Coefficients Contributions

 

3.5 Comparison of the three approaches 

The tables of loadings and contributions are the tools that we use to compare the approaches 

studied in this paper. We observe that they provide similar results (Figure 10). 

 
Figure 10 – Comparison of methods - "Loadings" – Unrotated factors 

Perhaps, Harris is the more interesting in our context because the contribution of the RND variables 

is near zero on the selected factors (the two first ones). The groups are immediately identified. 

However, as we will see in the following section, all the methods are equivalent after the factor 

rotation process. 

4 Factor analysis with Tanagra 

The principal factor analysis and the Harris approach described above are implemented in Tanagra 

1.4.47. In this section, we show how to use them on the "beer_rnd.xls" dataset. Of course, the results 

Factor1 Factor2 Factor1 Factor2 Factor1 Factor2

cost 0.49678 0.81407 cost 0.52442 0.80117 cost 0.96686 0.09576

size 0.21378 0.94733 size 0.24043 0.93787 size 0.93749 -0.2453

alcohol 0.58837 0.7616 alcohol 0.60493 0.73065 alcohol 0.91821 0.15672

reputat -0.73682 0.11434 reputat -0.69728 0.13038 reputat -0.18924 -0.64742

color 0.90757 -0.18174 color 0.88243 -0.20296 color 0.25172 0.87165

aroma 0.78387 -0.49557 aroma 0.76236 -0.51145 aroma -0.08793 0.91231

taste 0.80783 -0.49864 taste 0.80095 -0.52573 taste -0.06418 0.96662

rnd1 0.01831 0.30272 rnd1 0.02232 0.20878 rnd1 0.1909 -0.069

rnd2 0.04235 -0.08543 rnd2 0.0293 -0.06015 rnd2 -0.04254 0.04813

rnd3 0.11864 0.04597 rnd3 0.08501 0.03166 rnd3 0.05841 0.02748

rnd4 0.30514 -0.08602 rnd4 0.22796 -0.06342 rnd4 0.06224 0.21959

rnd5 0.01361 -0.00533 rnd5 0.00843 -0.00856 rnd5 -0.01283 0.00801

rnd6 -0.04716 -0.01364 rnd6 -0.03627 -0.01181 rnd6 -0.02993 -0.01323

rnd7 -0.05046 -0.07406 rnd7 -0.04059 -0.04624 rnd7 -0.05548 -0.02875

Factor Pattern - HarrisFactor Pattern - PCA Factor Pattern - PFA
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are strictly identical to those R and SAS. Tanagra stands appart from the others by the formatting of 

the reports. We use also the VARIMAX12 orthogonal rotation in this section. 

4.1 Importing the dataset 

We use the add-in “tanagra.xla” to send the dataset from the Excel spreadsheet to Tanagra13. 

 

Tanagra is launched and the dataset loaded. We have n = 99 instances and p = 14 variables. 

 

                                                           
12 http://data-mining-tutorials.blogspot.fr/2009/12/varimax-rotation-in-principal-component.html 

13 http://data-mining-tutorials.blogspot.fr/2010/08/tanagra-add-in-for-office-2007-and.html 

http://data-mining-tutorials.blogspot.fr/2009/12/varimax-rotation-in-principal-component.html
http://data-mining-tutorials.blogspot.fr/2010/08/tanagra-add-in-for-office-2007-and.html
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To start the analysis, we must define the role of the variables. We add the DEFINE STATUS 

component into the diagram. We set all the variables as INPUT. 

 

4.2 Principal component analysis and VARIMAX rotation 

4.2.1 Principal component analysis 

We insert the tool PRINCIPAL COMPONENT ANALYSIS (Factorial Analysis tab) to perform the PCA. We 

click on the contextual menu PARAMETERS to set the settings. 

 

(1)

(2)

(3)
(4)

(5)

(6)
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Here are the selected options for our study: 

1. We select 2 factors. 

2. We perform a PCA based on the correlation matrix.  

3. The MSA (measure of sampling adequacy of Kaiser-Mayer-Olkin) and the Bartlett’s test for 

sphericity are computed. 

4. The correlation matrix and the partial correlation matrix are displayed. 

5. The reproduced correlations by the selected factors of PCA and the residuals are displayed. 

6. The variables are sorted according to the loadings into the table. It enables to better identify the 

group of variables. It is especially useful when the number of variables is large. 

We confirm these settings. We obtain the results by clicking on the VIEW menu.  

 

Eigenvalues. The table of eigenvalues shows also the proportion of explained variance by the factors. 
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Scree plot. The scree plot shows the decreasing of the eigenvalues according to the number of the 

factors. Tanagra provides also the cumulative fraction of total variance explained by the factors. 

These plots are useful for the selection of the factors to retain for the interpretation of the results. 

Here, the choice of two factors seems the most appropriate. 

 

Other tools for the detection of the right number of factors. Tanagra incorporates other tools for 

the determination of the right number of factors. Clearly, the Kaiser-Guttman rule (selecting the 

factors for which the corresponding eigenvalue is higher to 1) is not appropriate here. It leads us to 

retain 5 or 6 factors. 

The Karlis-Saporta-Spinaki test (A) is better, among other things, because it takes into account the 

sample size (n), the number of variables (p), and the ratio p/n. It recommends two factors for our 

dataset. 
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The broken-stick test (B) (Legendre) detects also two relevant factors14. 

 

Bartlett’s test of sphericity. It enables to check the existence of at least one factor. Its main 

drawback is that it is always significant when the dataset size (n) increases. 

 

MSA - Measure of Sampling Adequacy (KMO index). The MSA indicates the redundancy between 

the variables, advertising the possibility to obtain an efficient factorization. Here, the global value is 

not really good (MSA = 0.491). But, it corresponds mainly to the existence of the variables generated 

randomly into the dataset. That does not mean that we cannot obtain interesting results in the PCA. 

 

                                                           
14 See http://data-mining-tutorials.blogspot.fr/2013/01/choosing-number-of-components-in-pca.html ; and 

http://data-mining-tutorials.blogspot.fr/2013/01/new-features-for-pca-in-tanagra.html 

(A)

(B)

(Tanagra)

(SAS)

http://data-mining-tutorials.blogspot.fr/2013/01/choosing-number-of-components-in-pca.html
http://data-mining-tutorials.blogspot.fr/2013/01/new-features-for-pca-in-tanagra.html
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Factor loadings. The variables can be sorted according to the absolute value of the loadings in 

Tanagra. The variables with loadings higher than 0.5 are sorted in decreasing order for the first 

factor. Then, for the remaining variables, those for which the loadings are higher than 0.5 for the 

second factor are sorted. Etc. The goal is to distinguish the group of variables associated to the 

factors. For our dataset, we observe that (color, taste, aroma and reputat) are related to the first 

factor; (alcohol, size and cost) to the second factor15. 

 

Factor scores. The factor scores coefficient enables to compute the coordinates of the individuals. 

 

According to the French school of principal component analysis, the variance of the scores 

corresponds to the eigenvalue associated to the factor (this variance is 1 for the other tools). Tanagra 

uses the original order of the variables in this table. 

                                                           
15 The correlation is highlighted in light red if the absolute value is higher than 0.5, dark red if it is higher than 0.7. 



Tutorial – Case Studies  R.R. 

5 février 2013  Page 26 

Correlation matrix. Tanagra can display the correlation matrix. To better identify the group of 

variables, they are sorted in the same way that the "Factor Loadings" table. The cell is highlighted if 

the absolute value of the correlation is higher than 0.5 (darker color if higher than 0.7). 

 

Partial correlation matrix. The partial correlation measures the association between a pair of 

variables, by removing the influence of the (p-2) other variables of the dataset. For instance, the 

correlation between "color" and "taste" seems high (r = 0.80487). When we remove the influence of 

the other variables, we note that the correlation is not really high ultimately (partial r = 0.26931). 

 

Original, reproduced and residual correlations. This table shows the ability of the PCA to reproduce 

the correlations between the variables using the selected factors.  

We observe: (1) the correlation obtained from the correlation matrix underlying the PCA; (2) the 

correlation reproduced by the selected factors, obtained from the factor loadings; (3) the difference 

between the measured correlation and the reproduced correlation. 

Here, Tanagra highlights the high correlation which are well reproduced i.e. the measured correlation 

is higher than ‘0.5’ in absolute value, the residual correlation is lower than ‘0.05’ in absolute value. 
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The reproduced correlation is obtained from the factor loadings. We detail the calculations for 

"color" and "aroma". 

 

The measured correlation is 0.82324. Using the factor loadings table, we calculate: 

Factor Loadings [Communality Estimates]

Attribute

- Corr. % (Tot. %) Corr. % (Tot. %)

color -0.90757 82 % (82 %) -0.18174 3 % (86 %) corr. 0.82324

taste -0.80783 65 % (65 %) -0.49864 25 % (90 %)

aroma -0.78387 61 % (61 %) -0.49557 25 % (86 %) axis 1 0.71142

reputat 0.73682 54 % (54 %) 0.11434 1 % (56 %) axis 2 0.09006

alcohol -0.58837 35 % (35 %) 0.7616 58 % (93 %)

size -0.21378 5 % (5 %) 0.94733 90 % (94 %)

cost -0.49678 25 % (25 %) 0.81407 66 % (91 %) reprod. corr. 0.80148

rnd1 -0.01831 0 % (0 %) 0.30272 9 % (9 %)

rnd4 -0.30514 9 % (9 %) -0.08602 1 % (10 %) residual corr. 0.02176

rnd2 -0.04235 0 % (0 %) -0.08543 1 % (1 %)

rnd7 0.05046 0 % (0 %) -0.07406 1 % (1 %)

rnd3 -0.11864 1 % (1 %) 0.04597 0 % (2 %)

rnd6 0.04716 0 % (0 %) -0.01364 0 % (0 %)

rnd5 -0.01361 0 % (0 %) -0.00533 0 % (0 %)

Var. Expl. 3.38656 24 % (24 %) 2.79466 20 % (44 %)

Axis_1 Axis_2
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Cor. Reproduced (color, aroma) = (-0.90757 x -0.78387) + (-0.18174 x -0.49557) = 0.80148 

We calculate the difference to obtain the residual: 

Cor. Residual (color, aroma) = 0.82324 – 0.80148 = 0.02176 

We note that if we include all the factors (14) in our analysis, the original correlation is perfectly 

reproduced by the PCA for all pairs of variables. 

4.2.2 VARIMAX rotation based on two factors 

The VARIMAX approach rotates the factors in order to obtain stronger associations between each 

variable and one of the selected factors. The goal is to make easier the interpretation of the results. 

The factors remain orthogonal. 

We insert the FACTOR ROTATION tool (FACTORIAL ANALYSIS tab) into the diagram. We set the 

following settings: (1) we deal with two factors from the PCA; (2) we use the VARIMAX approach16; 

(3) the variables are sorted according to their loadings in the results table. 

 

We confirm these options and we click on the VIEW menu. 

                                                           
16 http://en.wikipedia.org/wiki/Varimax_rotation 

(1)

(2)

(3)

http://en.wikipedia.org/wiki/Varimax_rotation
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Tanagra shows the loadings after and before the rotation. We observe that the global variance 

explained by the selected factors is almost the same. But we have not the same repartition (3.30199 

vs. 3.38656 for the 1st factor; 2.87923 vs. 2.79466 for the 2nd). 

We note above all that the association of each original variable of the dataset (cost,…, taste) with 

one of the factors is very strong. The interpretation of the result becomes easier. The results are 

comparable to those of the Harris approach described in the previous section. 

4.3 Principal factor analysis and varimax rotation 

Principal factor analysis. We insert the PRINCIPAL FACTOR ANALYSIS tool into the diagram 

(FACTORIAL ANALYSIS tab). We set the following parameters (menu PARAMETERS). 

 

We confirm and we click on the VIEW menu to obtain the results. 

Compared to the PCA, some distinctive features can be noted. Into the loadings table, Tanagra 

displays the initial (prior) and the estimated communalities for the selected factors. 
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The variance of the scores in the "factor scores" coefficients table enables to check the reliability of 

the factors. As we mentioned above, it corresponds to the squared multiple correlation of the 

variables with the factors. Tanagra shows also the mean and the variance used for the 

standardization of the variables when we want to apply the coefficients for the calculation of the 

coordinates of new instances. 

 

VARIMAX rotation. The VARIMAX rotation enables also to rotate the factors in principal factor 

analysis. We deactivate the sorting of the variables in order to compare the results of Tanagra with 

those of SAS17. 

                                                           
17 proc factor data = mesdata.beer_rnd method=principal priors=smc nfactors=2 

rotate=varimax; 

run; 
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Figure 11 - "Loadings" after the varimax rotation – Principal Factor Analysis 

4.4 Harris Component Analysis and varimax rotation 

Harris approach. We add the HARRIS COMPONENT ANALYSIS tool (Factorial Analysis tab) into the 

diagram. We select 2 factors for the analysis. The scree plot and the plot of the cumulative variance 

show clearly that the selection of 2 factors is the right solution. 

 

Into the loadings table, Tanagra displays the unweighted variance into the last row of the table for 

each factor. 

(SAS)
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Varimax rotation. The association of the variables with one of the two factors is already strong for 

the Harris Analysis. Thus, the varimax rotation does not really modify the loadings. 

 

(SAS)
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Both SAS and Tanagra provide the same results. But because SAS sorts the factors according to the 

unweighted variance, the first factor for SAS18 corresponds to the 2nd of Tanagra and vice versa. 

4.5 Comparison of the approaches after varimax rotation 

All the methods provide very similar results after factor rotation (Figure 12). 

 

Figure 12 - "Loadings" of the approaches after VARIMAX rotation 

This is probably the reason for which the principal component analysis (PCA) remains the most 

popular method in the case studies, even if it seem to suffer some theoretical restrictions for the 

analysis of the relations between the variables (it treat all the variance and not the shared variance).  

But the main pitfall of PCA is the choice of the number of factors. We saw that this is not obvious 

when we have noisy variables in the dataset. If we select 3 factors in our study (this choice is possible 

if we consider the scree plot), the results provided by PCA become less readable. 

5 Analysis under R with the PSYCH package 

The principal component analysis is available in numerous packages for R. This is less true for the 

principal factor analysis and the Harris approach. But, as we seen above, we can program them if it is 

necessary. I have look around on the net. I found the PSYCH19 package which can perform the 

principal factor analysis. 

                                                           
18 proc factor data = mesdata.beer_rnd 
method=harris 

msa 

nfactors=2 

score 

rotate=varimax; 

run; 

19 http://cran.r-project.org/web/packages/psych/index.html 

Attribute Attribute Attribute

- Corr. Corr. - Corr. Corr. - Corr. Corr.

cost 0.15221 0.94145 cost 0.06685 -0.9552 cost 0.96053 0.14618

size -0.16016 0.95785 size -0.24774 -0.93596 size 0.94904 -0.19594

alcohol 0.25684 0.92749 alcohol 0.17154 -0.93294 alcohol 0.90876 0.20452

reputat -0.72537 -0.17266 reputat -0.67226 0.22641 reputat -0.15513 -0.65643

color 0.90893 0.1748 color 0.86929 -0.2534 color 0.2058 0.88362

aroma 0.91303 -0.16252 aroma 0.915 0.07447 aroma -0.13551 0.90646

taste 0.93638 -0.1563 taste 0.95565 0.0681 taste -0.11463 0.96194

rnd1 -0.09747 0.28718 rnd1 -0.08239 -0.19314 rnd1 0.19424 -0.05892

rnd2 0.0715 -0.06308 rnd2 0.05493 0.03821 rnd2 -0.045 0.04584

rnd3 0.09246 0.0874 rnd3 0.05876 -0.06911 rnd3 0.05689 0.03049

rnd4 0.31501 0.0357 rnd4 0.22992 -0.05587 rnd4 0.05067 0.22254

rnd5 0.01461 0.00021 rnd5 0.01154 0.00335 rnd5 -0.01323 0.00733

rnd6 -0.03851 -0.03045 rnd6 -0.02589 0.028 rnd6 -0.0292 -0.01478

rnd7 -0.01872 -0.08764 rnd7 -0.01287 0.06017 rnd7 -0.0539 -0.03161

Var. Expl. 3.30199 2.87923 Var. Expl. 3.12045 2.83554 Unw.Var.Exp. 2.79655 3.11758

Rotated Factor Loadings - PFA Rotated Factor Loadings - Harris

Axis_1 Axis_2Axis_1 Axis_2

Rotated Factor Loadings - PCA

Axis_1 Axis_2

http://cran.r-project.org/web/packages/psych/index.html
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5.1 Principal component analysis 

We can perform the principal component analysis with many tools under R (e.g. princomp or prcomp 

from the STAT package). Here, we use the principal() procedure from the PSYCH package. 

#load the libraries 

library(psych) 

library(GPArotation) 

#PCA 

pca.unrotated <- principal(beer.data, nfactors=2, rotate="none") 

print(pca.unrotated$loadings[,]) 

We obtain the same loadings as SAS or Tanagra: 

 

When we perform the VARIMAX rotation 

#PCA + varimax 

pca.rotated <- principal(beer.data, nfactors=2, rotate="varimax") 

print(pca.rotated$loadings[,]) 

The results are also consistent (Erreur ! Source du renvoi introuvable.): 

 

5.2 Principal factor analysis 

The fa() procedure enables to launch the principal factor analysis. We must set the option 

“max.iter=1” to perform the non iterative approach.  
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#Non-iterative PFA (principal factor analysis) 

pfa.unrotated <- fa(beer.data,nfactors=2,rotate="none",SMC=T,fm="pa",max.iter=1) 

print(pfa.unrotated$loadings[,]) 

We obtain the following loadings, consistent with those of SAS and Tanagra: 

 

We modify the option “rotate” in order to perform the VARIMAX rotation. 

#PFA + varimax 

pfa.varimax <- fa(beer.data,nfactors=2,rotate="varimax",SMC=T,fm="pa",max.iter=1) 

print(pfa.varimax$loadings[,]) 

Here also, the results are consistent (Erreur ! Source du renvoi introuvable.) : 

 

5.3 Harris approach 

I have not found a package which implements the Harris approach. It does not matter. We saw above 

(section 3.4) that we can write a program for R which enables to perform the approach on a dataset. 

This is one of the main attractive features of R. 

6 Principal factor analysis with SPSS 

We use the French version of SPSS (12.0.1) in this section. After we import the dataset, we activate 

the menu ANALYSE / FACTORISATION / ANALYSE FACTORIELLE. A dialog box enables to set the 

parameters of the study. 
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We specify the variables for the analysis.  

 

We choose the factorial method by clicking on the "Extraction" button. 

 

(a)

(b)
(c)
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We select the principal factor analysis (a) with 2 factors (b), by limiting the number of iterations to 1 

(c). This last option is important. By default, such as the fa() procedure of the PSYCH package, SPSS 

performs the iterative approach. When we set ‘iterations = 1’, we obtain the same results as Tanagra 

and SAS. 

Then, we select the “Facteurs” button. We ask the displaying of the factor score coefficients. 

 

Last, we ask the varimax factor rotation. 

 

We confirm these options. We click on the OK button to launch the analysis. 
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SPSS generates a report which describes the results of the analysis. 

Initial and estimated communalities. The quality of the representation is obtained by comparing the 

initial and the estimated communalities (in comparison, see Figure 7). 

 

Loadings (Factor Pattern) before and after rotation. Then, we have the loadings, before [a] (see 

Figure 6) and after [b] (see Figure 11) the varimax factor rotation. 

 

Factor Scores. SPSS provides the factor scores coefficients after the factor rotation. We compare 

here the results of SPSS with those of Tanagra. 

Not surprisingly, we have exactly the same values. We have also the same results with SAS. 

(a) (b)
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Variance and covariance of the factors. As we say previously, the factors have theoretically a unit 

variance. But, the observed variance is not equal to 1. The discrepancy between the observed 

variance and the theoretical variance is an indication about the reliability of the factor. In a similar 

process, the factors have theoretically a null covariance. But the covariance measured on the sample 

can be slightly different to zero. SPSS provides the observed covariance matrix of the factors. 

 

Here, the variances of the selected factors are near to 1. In addition, their covariance is near to 0. 

These factors are relevant. 

Variance and covariance when selecting 5 factors. When we perform the same analysis by setting 5 

factors (see SAS, Figure 8), we note that starting from the third factor: the variance becomes largely 

different than 1; the covariance with the other factors becomes largely different than 0. 

 

The last 3 factors are clearly unstable. They do not correspond to relevant information from the data. 

(Tanagra) (SPSS)
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7 Conclusion 

In this tutorial, we present various factor analysis approaches. They differ in the matrix used for the 

diagonalization process. The principal component analysis uses the standard correlation matrix; the 

principal factor analysis replaces the main diagonal of the correlation matrix with the proportion of 

the variance explained by the others for each variables; the Harris component analysis intensifies the 

correlation with the uniqueness of the variables. 

Despite these differences, we note that they provide similar results on our dataset. The PCA in 

particular is enough for performing the analysis the relations of the variables, even if there are many 

noisy variables (a half of the variables in our dataset). In this context, the main challenge is to 

determine the adequate number of factors to retain in the analysis. 

These methods fall within the same framework into Tanagra. Thus, we can apply the factor rotation 

tool (FACTOR ROTATION) to any approaches. We can also apply the tools based on a resampling 

scheme for the detection of the right number of factors (BOOTSTRAP EIGENVALUES, PARALLEL 

ANALYSIS20). 

                                                           
20 http://data-mining-tutorials.blogspot.fr/2013/01/choosing-number-of-components-in-pca.html 

http://data-mining-tutorials.blogspot.fr/2013/01/choosing-number-of-components-in-pca.html

