1 Topic

How to perform Random Forest and Boosting with R and Python mainly, but also with Tanagra and Knime .

This tutorial follows the slideshow devoted to the "<u>Bagging, Random Forest and Boosting</u>". We show the implementation of these methods on a data file. We will follow the same steps as the slideshow i.e. we first describe the construction of a decision tree, we measure the prediction performance, and then we see how ensemble methods can improve the results. Various aspects of these methods will be highlighted: the measure of the variable importance, the influence of the parameters, the influence of the characteristics of the underlying classifier (e.g. controlling the tree size), etc.

As a first step, we will focus on R (rpart, adabag and randomforest packages) and Python (scikit-learn package). We can multiply analyses by programming. Among others, we can evaluate the influence of parameters on the performance. As a second step, we will explore the capabilities of software (Tanagra and Knime) providing turnkey solutions, very simple to implement, more accessible for people which do not like programming.

2 Dataset

We use the « Image Segmentation Data Set » from the UCI Machine Learning repository. The instances were drawn randomly from a database of 7 outdoor images. The images were hand segmented to create a classification for every pixel. There are 210 instances for the training sample, and 2100 instances for the test set.

Rather than manipulate two data files, we have gathered observations in the single data file "**image.txt**", with an additional column "sample" indicating their membership (train or test). Here are some rows and columns of the dataset. REGION.TYPE is the target attribute.

REGION.TYPE	EXGREEN.MEA	VALUE.MEAN	SATURATION.MEAN	HUE.MEAN	sample
GRASS	7.1111	18.5556	0.2927	2.7898	train
GRASS	13.2222	18.5556	0.4216	2.3925	train
GRASS	13.7778	17.5556	0.4454	1.8388	train
GRASS	17.2222	18.6667	0.5081	1.9109	test
GRASS	16.4444	19.2222	0.4633	1.9415	test
GRASS	14.5556	17.1111	0.4801	1.9879	test

3 Analysis with R

3.1 Data importation and preparation

We import the « image.txt » data file with the following parameters.

#data importation
setwd("... directory of the data file...")
image_all <- read.table("image.txt",sep="\t",dec=".",header=TRUE)
print(summary(image_all))</pre>

The summary() command provides an overview of the characteristics of the data and allows

to detect eventual anomalies.

REGION_TYPE REC	GION_CENTROID_COL F	REGION_CENTROID_ROW	REGION_PIXEL_COUNT	SHORT_LINE_DENSI	TY_5	
BRICKFACE:330	Min. : 1.0	Min. : 11.0	Min. :9	Min. :0.000	00	
CEMENT :330	1st Qu.: 62.0	1st Qu.: 81.0	1st Qu.:9	1st Qu.:0.000	00	
FOLIAGE :330	Median :121.0	Median :122.0	Median :9	Median :0.000	00	
GRASS :330	Mean :124.9	Mean :123.4	Mean :9	Mean :0.014	33	
PATH :330	3rd Qu.:189.0	3rd Qu.:172.0	3rd Qu.:9	3rd Qu.:0.000	00	
SKY :330	Max. :254.0	Max. :251.0	Max. :9	Max. :0.333	33	
WINDOW :330						
SHORT_LINE_DENS	TTY_2 VEDGE_MEAN	VEDGE_SD	HEDGE_MEAN	HEDGE_SD		
Min. :0.000000) Min. : 0.00	000 Min. : 0.0	000 Min. : 0.00	00 Min. : 0	.0000	
1st Qu.:0.000000) 1st Qu.: 0.72	22 1st Qu.: 0.3	556 1st Qu.: 0.77	78 1st Qu.: 0	.4216	
Median :0.000000) Median : 1.22	22 Median : 0.8	333 Median : 1.44	44 Median: O	.9630	
Mean :0.004714	4 Mean : 1.89	039 Mean : 5.7	093 Mean : 2.42	47 Mean : 8	.2437	
3rd Qu.:0.000000) 3rd Qu.: 2.16	67 3rd Qu.: 1.8	064 3rd Qu.: 2.55	56 3rd Qu.: 2	.1833	
Max. :0.222222	2 Max. :29.22	22 Max. :991.7	184 Max. :44.72	22 Max. :1386	.3292	
INTENSITY_MEAN	RAWRED_MEAN	RAWBLUE_MEAN	RAWGREEN_MEAN	EXRED_MEAN	EXBLUE_MEAN	
INTENSITY_MEAN Min. : 0.000	RAWRED_MEAN Min. : 0.00	RAWBLUE_MEAN Min. : 0.000	RAWGREEN_MEAN Min. : 0.000	EXRED_MEAN Min. :-49.667	EXBLUE_MEAN Min. :-12.444	
INTENSITY_MEAN Min. : 0.000 1st Qu.: 7.296	RAWRED_MEAN Min. : 0.00 1st Qu.: 7.00	RAWBLUE_MEAN Min. : 0.000 1st Qu.: 9.556	RAWGREEN_MEAN Min. : 0.000 1st Qu.: 6.028	EXRED_MEAN Min. :-49.667 1st Qu.:-18.556	EXBLUE_MEAN Min. :-12.444 1st Qu.: 4.139	
INTENSITY_MEAN Min. : 0.000 1st Qu.: 7.296 Median : 21.593	RAWRED_MEAN Min. : 0.00 1st Qu.: 7.00 Median : 19.56	RAWBLUE_MEAN Min. : 0.000 1st Qu.: 9.556 Median : 27.667	RAWGREEN_MEAN Min. : 0.000 1st Qu.: 6.028 Median : 20.333	EXRED_MEAN Min. :-49.667 1st Qu.:-18.556 Median :-10.889	EXBLUE_MEAN Min. :-12.444 1st Qu.: 4.139 Median : 19.667	
INTENSITY_MEAN Min. : 0.000 1st Qu.: 7.296 Median : 21.593 Mean : 37.052	RAWRED_MEAN Min. : 0.00 1st Qu.: 7.00 Median : 19.56 Mean : 32.82	RAWBLUE_MEAN Min. : 0.000 1st Qu.: 9.556 Median : 27.667 Mean : 44.188	RAWGREEN_MEAN Min. : 0.000 1 1st Qu.: 6.028 1 1 Median : 20.333 1 Mean : 34.146 1	EXRED_MEAN Min. :-49.667 1st Qu.:-18.556 Median :-10.889 Mean :-12.691	EXBLUE_MEAN Min. :-12.444 1st Qu.: 4.139 Median : 19.667 Mean : 21.409	
INTENSITY_MEAN Min. : 0.000 1st Qu.: 7.296 Median : 21.593 Mean : 37.052 3rd Qu.: 53.213	RAWRED_MEAN Min. : 0.00 1st Qu.: 7.00 Median : 19.56 Mean : 32.82 3rd Qu.: : 47.33	RAWBLUE_MEAN Min. : 0.000 1st Qu.: 9.556 Median : 27.667 Mean : 44.188 3rd Qu.: : 64.889	RAWGREEN_MEAN Min. : 0.000 1 1st Qu.: 6.028 . . Median : 20.333 . Mean : 34.146 . 3rd Qu.: 46.500 .	EXRED_MEAN Min. :-49.667 1st Qu.:-18.556 Median :-10.889 Mean :-12.691 3rd Qu.: -4.222	EXBLUE_MEAN Min. :-12.444 1st Qu.: 4.139 Median : 19.667 Mean : 21.409 3rd Qu.: 35.778	
INTENSITY_MEAN Min. : 0.000 lst Qu.: 7.296 Median : 21.593 Mean : 37.052 3rd Qu.: 53.213 Max. :143.444	RAWRED_MEAN Min. : 0.00 1st Qu.: 7.00 Median : 19.56 Mean : 32.82 3rd Qu.: : 47.33 Max. : 137.11	RAWBLUE_MEAN Min. : 0.000 1st Qu.: 9.556 Median : 27.667 Mean : 44.188 3rd Qu.: : 64.889 Max. : 150.889	RAWGREEN_MEAN Min. : 0.000 1 1st Qu.: 6.028 1 Median : 20.333 1 Mean : 34.146 1 3rd Qu.: : 46.500 1 Max. : 142.556 1	EXRED_MEAN Min. :-49.667 Ist Qu.:-18.556 Median :-10.889 Mean :-12.691 3rd Qu.: -4.222 Max. : 9.889	EXBLUE_MEAN Min. :-12.444 1st Qu.: 4.139 Median : 19.667 Mean : 21.409 3rd Qu.: 35.778 Max. : 82.000	
INTENSITY_MEAN Min. : 0.000 lst Qu.: 7.296 Median : 21.593 Mean : 37.052 3rd Qu.: 53.213 Max. :143.444	RAWRED_MEANMin.:0.001st Qu.:7.00Median:19.56Mean:32.823rd Qu.:47.33Max.:137.11	RAWBLUE_MEAN Min. : 0.000 1st Qu.: 9.556 Median : 27.667 Mean : 44.188 3rd Qu.: : 64.889 Max. : 150.889	RAWGREEN_MEAN Min. : 0.000 1 1st Qu.: 6.028 . . Median : 20.333 . . Mean : 34.146 . . 3rd Qu.: : 46.500 . . Max. : 142.556 . .	EXRED_MEAN Min. :-49.667 1st Qu.:-18.556 Median :-10.889 Mean :-12.691 3rd Qu.: -4.222 Max. : 9.889	EXBLUE_MEAN Min. :-12.444 1st Qu.: 4.139 Median : 19.667 Mean : 21.409 3rd Qu.: 35.778 Max. : 82.000	
INTENSITY_MEAN Min. : 0.000 lst Qu.: 7.296 Median : 21.593 Mean : 37.052 3rd Qu.: 53.213 Max. :143.444	RAWRED_MEAN Min. : 0.00 1st Qu.: 7.00 Median : 19.56 Mean : 32.82 3rd Qu.: : 47.33 Max. : 137.11	RAWBLUE_MEAN Min. : 0.000 1st Qu.: 9.556 Median : 27.667 Mean : 44.188 3rd Qu.: : 64.889 Max. : : 150.889	RAWGREEN_MEAN Min. : 0.000 1st Qu.: 6.028 Median : 20.333 Mean : 34.146 3rd Qu.: : 46.500 Max. : 142.556 HUE_MEAN : .	EXRED_MEAN Min. :-49.667 1st Qu.:-18.556 Median :-10.889 Mean :-12.691 3rd Qu.: -4.222 Max. : 9.889 sample	EXBLUE_MEAN Min. :-12.444 1st Qu.: 4.139 Median : 19.667 Mean : 21.409 3rd Qu.: 35.778 Max. : 82.000	
INTENSITY_MEAN Min. : 0.000 lst Qu.: 7.296 Median : 21.593 Mean : 37.052 3rd Qu.: 53.213 Max. :143.444 EXGREEN_MEAN Min. :-33.889	RAWRED_MEAN Min. : 0.00 1st Qu.: 7.00 Median : 19.56 Mean : 32.82 3rd Qu.: : 47.33 Max. : 137.11 VALUE_MEAN Min. : 0.00	RAWBLUE_MEAN Min. : 0.000 1st Qu.: 9.556 Median : 27.667 Mean : 44.188 3rd Qu.: : 64.889 Max. : 150.889 SATURATION_MEAN Min. :0.0000	RAWGREEN_MEAN Min. : 0.000 1 1st Qu.: 6.028 . . Median : 20.333 . Mean : 34.146 . 3rd Qu.: : 46.500 . Max. : 142.556 . HUE_MEAN . . .	EXRED_MEAN Min. :-49.667 1st Qu.:-18.556 Median :-10.889 Mean :-12.691 3rd Qu.: -4.222 Max. : 9.889 sample st :2100	EXBLUE_MEAN Min. :-12.444 1st Qu.: 4.139 Median : 19.667 Mean : 21.409 3rd Qu.: 35.778 Max. : 82.000	
INTENSITY_MEAN Min. : 0.000 lst Qu.: 7.296 Median : 21.593 Mean : 37.052 3rd Qu.: 53.213 Max. :143.444 EXGREEN_MEAN Min. :-33.889 lst Qu.:-16.778	RAWRED_MEAN Min. : 0.00 1st Qu.: 7.00 Median : 19.56 Mean : 32.82 3rd Qu.: : 47.33 Max. : 137.11 VALUE_MEAN Min. : 0.00 1st Qu.: : 11.56	RAWBLUE_MEAN Min. : 0.000 1st Qu.: 9.556 Median : 27.667 Mean : 44.188 3rd Qu.: : 64.889 Max. : 150.889 SATURATION_MEAN Min. : Min. : 0.0000 1st Qu.: 0.2842	RAWGREEN_MEAN Min. : 0.000 1st Qu.: 6.028 Median : 20.333 Mean : 34.146 3rd Qu.: : 46.500 Max. : 142.556 HUE_MEAN Min. : -3.044 te 1st Qu.: -2.188 tr< <td>1st Qu.:</td> <td>EXRED_MEAN Min. :-49.667 1st Qu.:-18.556 Median :-10.889 Mean :-12.691 3rd Qu.: -4.222 Max. : 9.889 sample st :2100 ain: 210</td> <td>EXBLUE_MEAN Min. :-12.444 1st Qu.: 4.139 Median : 19.667 Mean : 21.409 3rd Qu.: 35.778 Max. : 82.000</td>	1st Qu.:	EXRED_MEAN Min. :-49.667 1st Qu.:-18.556 Median :-10.889 Mean :-12.691 3rd Qu.: -4.222 Max. : 9.889 sample st :2100 ain: 210	EXBLUE_MEAN Min. :-12.444 1st Qu.: 4.139 Median : 19.667 Mean : 21.409 3rd Qu.: 35.778 Max. : 82.000
INTENSITY_MEAN Min. : 0.000 lst Qu.: 7.296 Median : 21.593 Mean : 37.052 3rd Qu.: 53.213 Max. :143.444 EXGREEN_MEAN Min. :-33.889 lst Qu.:-16.778 Median :-10.889	RAWRED_MEAN Min. : 0.00 1st Qu.: 7.00 Median : 19.56 Mean : 32.82 3rd Qu.: 47.33 Max. :137.11 VALUE_MEAN Min. : 0.00 1st Qu.: 11.56 Median : 28.67	RAWBLUE_MEAN Min. : 0.000 1st Qu.: 9.556 Median : 27.667 Mean : 44.188 3rd Qu.: : 64.889 Max. : 150.889 SATURATION_MEAN Min. : 0.0000 1st Qu.: 0.2842 Median : Median : 0.3748	RAWGREEN_MEAN Min. : 0.000 I 1st Qu.: 6.028 I Median : 20.333 I Mean : 34.146 I 3rd Qu.: : 34.146 I 3rd Qu.: : 142.556 I HUE_MEAN I I 142.556 I HUE_MEAN I : -3.044 te 1st Qu.: : -2.188 tr. Median : -2.051 I	EXRED_MEAN Min. :-49.667 1st Qu.:-18.556 Median :-10.889 Mean :-12.691 3rd Qu.: -4.222 Max. : 9.889 sample st :2100 ain: 210	EXBLUE_MEAN Min. :-12.444 1st Qu.: 4.139 Median : 19.667 Mean : 21.409 3rd Qu.: 35.778 Max. : 82.000	
INTENSITY_MEAN Min. : 0.000 lst Qu.: 7.296 Median : 21.593 Mean : 37.052 3rd Qu.: 53.213 Max. :143.444 EXGREEN_MEAN Min. :-33.889 lst Qu.:-16.778 Median :-10.889 Mean : -8.718	RAWRED_MEAN Min. : 0.00 1st Qu.: 7.00 Median : 19.56 Mean : 32.82 3rd Qu.: 47.33 Max. :137.11 VALUE_MEAN Min. : 0.00 1st Qu.: 11.56 Median : 28.67 Mean : 45.14	RAWBLUE_MEAN Min. : 0.000 1st Qu.: 9.556 Median : 27.667 Mean : 44.188 3rd Qu.: : 64.889 Max. : 150.889 SATURATION_MEAN Min. : Min. : 0.0000 1st Qu.: 0.2842 Median Mean : 0.3748 Mean : 0.4269	RAWGREEN_MEAN Min. : 0.000 I 1st Qu.: 6.028 Median : 20.333 I Mean : 34.146 I 3rd Qu.: 46.500 Max. :142.556 I HUE_MEAN Min. :-3.044 te 1st Qu.:-2.188 tr Median :-2.051 Mean :-1.363	EXRED_MEAN Min. :-49.667 1st Qu.:-18.556 Median :-10.889 Mean :-12.691 3rd Qu.: -4.222 Max. : 9.889 sample st :2100 ain: 210	EXBLUE_MEAN Min. :-12.444 1st Qu.: 4.139 Median : 19.667 Mean : 21.409 3rd Qu.: 35.778 Max. : 82.000	
INTENSITY_MEAN Min. : 0.000 lst Qu.: 7.296 Median : 21.593 Mean : 37.052 3rd Qu.: 53.213 Max. :143.444 EXGREEN_MEAN Min. :-33.889 lst Qu.: -16.778 Median :-10.889 Mean : -8.718 3rd Qu.: -3.222	RAWRED_MEAN Min. : 0.00 1st Qu.: 7.00 Median : 19.56 Mean : 32.82 3rd Qu.: 47.33 Max. : 137.11 VALUE_MEAN Min. : 0.00 1st Qu.: : 11.56 Median : 28.67 Mean : 45.14 3rd Qu.: : : Mid Qu.: : :	RAWBLUE_MEAN Min. : 0.000 1st Qu.: 9.556 Median : 27.667 Mean : 44.188 3rd Qu.: : 64.889 Max. : 150.889 SATURATION_MEAN Min. : Min. : 0.0000 1st Qu.: 0.2842 Median Mean : 0.3748 Mean : 0.4269 3rd Qu.: 0.5401	RAWGREEN_MEAN Min. : 0.000 I 1st Qu.: 6.028 Median : 20.333 I Mean : 34.146 I 3rd Qu.: 46.500 Max. :142.556 I HUE_MEAN Min. :-3.044 te 1st Qu.:-2.188 tr Median :-2.051 Mean :-1.363 3rd Qu.:-1.562	EXRED_MEAN Min. :-49.667 1st Qu.:-18.556 Median :-10.889 Mean :-12.691 3rd Qu.: -4.222 Max. : 9.889 sample st :2100 ain: 210	EXBLUE_MEAN Min. :-12.444 1st Qu.: 4.139 Median : 19.667 Mean : 21.409 3rd Qu.: 35.778 Max. : 82.000	

We note that we have a well balanced dataset (REGION_TYPE).

We subdivide the data into training and test sets using the column "sample". Then, we exclude this last column from the data.frame.

```
#subdivision into training and test sets
image_train <- image_all[image_all$sample=="train",1:20]
image_test <- image_all[image_all$sample=="test",1:20]
print(summary(image_train$REGION_TYPE))
print(summary(image_test$REGION_TYPE))
```

		Ŭ			•			
> pr	int(summ	ary(image	_train\$REGI	ON_TYPE))				
BRIC	VFACE	CEMENT	FOLIAGE	GRASS	PATH	SKY	WINDOW	
	30	30	30	30	30	30	30	
> pr	int(summ	ary(image	_test\$REGIC	N_TYPE))				
BRIC	KFACE	CEMENT	FOLIAGE	GRASS	PATH	SKY	WINDOW	
	300	300	300	300	300	300	300	

We have the following class distribution for each sample:

3.2 Function for performance evaluation

We use the error rate to assess the quality of prediction. We write a function for this purpose. It takes as input the observed target variable and the prediction of a model.

```
#function for performance evaluation
error_rate <- function(yobs,ypred){
    #confusion matrix
    mc <- table(yobs,ypred)
    #error rate = 1 - success rate
    err <- 1.0 - sum(diag(mc))/sum(mc)
    return(err)
}</pre>
```

3.3 Classification tree

We use the "<u>rpart</u>" package for the construction of the classification tree. It is very popular and, important for our context, it is underlying to the ensemble methods packages for R (e.g. adabag). Thus, we can reuse the parameters defined in this section. We will have a consistent view of the results.

3.3.1 Classification tree with the default settings

We fit a first version of the trees with the default settings.

```
#classification tree
library(rpart)
arbre_1 <- rpart(REGION_TYPE ~ ., data = image_train)
print(arbre_1)
```

We obtain a tree with 9 leaves:

30 décembre 2015

```
16) HUE_MEAN>=-1.78935 37 8 BRICKFACE (0.78 0.027 0.027 0 0 0 0.16)
32) EXGREEN_MEAN-7.05555 30 2 BRICKFACE (0.93 0.033 0.033 0 0 0 0) *
33) EXGREEN_MEAN>=-7.05555 7 1 WINDOW (0.14 0 0 0 0 0 0.86) *
17) HUE_MEAN-1.78935 83 54 CEMENT (0.012 0.35 0.35 0 0 0 0.29)
34) EXGREEN_MEAN-10.94445 29 3 CEMENT (0 0.9 0.034 0 0 0 0.069) *
35) EXGREEN_MEAN-10.94445 54 26 FOLIAGE (0.019 0.056 0.52 0 0 0 0.41)
70) HUE_MEAN-2.0828 38 10 FOLIAGE (0 0.026 0.74 0 0 0 0.24)
140) SATURATION_MEAN>=0.50715 25 1 FOLIAGE (0 0 0.96 0 0 0 0.062) *
141) SATURATION_MEAN0.50715 13 5 WINDOW (0 0.077 0.31 0 0 0 0.62) *
71) HUE_MEAN>=-2.0828 16 3 WINDOW (0.062 0.12 0 0 0 0.81) *
9) REGION_CENTROID_ROW>=160.5 30 0 PATH (0 0 0 1 0 0) *
5) EXGREEN_MEAN>=0.8889 30 0 GRASS (0 0 0 1 0 0 0) *
3) INTENSITY_MEAN>=79.037 30 0 SKY (0 0 0 0 0 1 0) *
```

We read carefully the tree:

- the character "*" indicates the terminal nodes (leaves) of the tree;
- there are 9 leaves, thus 9 rules;
- some variables only among the 19 available have been used, some several times (e.g. EXGREEN_MEAN);
- we detail the reading of the node n°34: it contains 29 observations (n), with 3 counter-examples (loss), the conclusion is CEMENT (yval), which corresponds to ≈ 90% ((29-3)/29 = 0.8966) (yprob) of the instances located on this node.

We calculate the prediction of the model on the test sample, and then we compare it with the observed target variable.

```
#prediction on the test set
pred_1 <- predict(arbre_1,newdata=image_test,type="class")</pre>
```

#error rate
print(error_rate(image_test\$REGION_TYPE,pred_1))

The test error rate is **12.85%**.

3.3.2 Decision stump

A <u>decision stump</u> is a one-level decision tree. We have only two leaves if we fit a binary tree. It is not really adapted in our context of multiclass target attribute. But this kind of tree can be useful in the ensemble methods context that we study below, especially for the boosting approach which reduces the bias of the base classifier. Indeed, we note that we obtain an overall linear classifier with the boosting of decision stumps. In this section, we mostly want to identify the parameters that change the behavior of the rpart() procedure.

#decision stump

```
param_stump = rpart.control(cp=0,maxdepth=1,minsplit=2,minbucket=1)
arbre_2 <- rpart(REGION_TYPE ~ ., data = image_train,control=param_stump)
print(arbre_2)</pre>
```

The "control" option enables to set the parameters of the algorithm:

- "cp" acts as pre-pruning parameter during the growing of the tree. A split is accepted only if the relative reduction in the Gini index is greater than "cp". By setting its value to zero, we disable his action.
- "minsplit" indicates the minimal size (number of instances) of a node in order to attempt a split.
- "minbucket" corresponds to the minimum number of observations in any leaf.
- "maxdepth" corresponds to the maximum depth of any node of the final tree, with the root node counted as depth 0. With the value "maxdepth = 1", we define a decision stump (one-level tree).

We obtain the following classification tree...

```
n= 210
node), split, n, loss, yval, (yprob)
          * denotes terminal node
1) root 210 180 BRICKFACE (0.14 0.14 0.14 0.14 0.14 0.14 0.14)
          2) INTENSITY_MEAN< 79.037 180 150 BRICKFACE (0.17 0.17 0.17 0.17 0.17 0.17) *
          3) INTENSITY_MEAN>=79.037 30 0 SKY (0 0 0 0 0 1 0) *
```

which is not really efficient...

```
#prediction and error rate
pred_2 <- predict(arbre_2,newdata=image_test,type="class")
print(error_rate(image_test$REGION_TYPE,pred_2))</pre>
```

... with a test error rate = **71.42%**. Only the class SKY is recognized.

3.3.3 Deeper tree

In this section, we try to learn a very deep tree with a maximum depth of 30 levels (which is the default value). We do not want that the settings about impurity reduction or node size interfere here. We put them to the minimum.

We set the following instructions:

```
#new settings: deeper tree
param_deep = rpart.control(cp=0,maxdepth=30,minsplit=2,minbucket=1)
```

30 décembre 2015

```
arbre_3 <- rpart(REGION_TYPE ~ ., data = image_train,control=param_deep)</pre>
```

#prediction and error rate
pred_3 <- predict(arbre_3,newdata=image_test,type="class")
print(error_rate(image_test\$REGION_TYPE,pred_3))</pre>

We obtain a tree with 21 leaves with a test error rate = **10.42%**. The large tree is better than the first. There is no overfitting. This is not very usual. This suggests that we have not noisy labels. The quality of the learning depends from the number of observations in the learning sample, which is especially determinant with regard to the performance of decision trees.

3.4 Bagging

We use the "<u>adabag</u>" package for the bagging process under R A thorough description of the package and the procedures has been published in Journal of Statistical Software¹.

3.4.1 Bagging with 20 trees (default parameter)

We begin with a bagging with 20 trees. We do not modify the other settings (parameters of the underlying tree learning algorithm).

```
#adabag package
library(adabag)
#bagging
bag_1 <- bagging(REGION_TYPE ~ ., data = image_train, mfinal=20)
#prediction
predbag_1 <- predict(bag_1,newdata = image_test)
#test error rate
```

```
print(error_rate(image_test$REGION_TYPE,predbag_1$class))
```

The **print()** of the object provides many information (e.g. individuals in each bootstrap sample, prediction, class membership probability, etc.) which are difficult to interpret. We will look at the most important elements in the following sections.

We perform the prediction on the test sample. We obtain a prediction object with several properties including the predicted class values (\$class). The test error rate is **8.86%**. This is best result that we obtain up to now.

¹ E. Alfaro, M. Gamez, N. Garcia, « <u>adabag : An R Package for Classification with Boosting and Bagging</u> », in Journal of Statistical Software, 54(2), 2013.

3.4.2 Accessing the trees

The method generates a collection of trees. They are accessible with the property **\$trees** of the result object. We access to the first generated tree.

```
#first tree
print(bag_1$trees[[1]])
We obtain:
n = 210
node), split, n, loss, yval, (yprob)
      * denotes terminal node
 1) root 210 176 CEMENT (0.15 0.16 0.14 0.16 0.12 0.14 0.13)
    2) EXGREEN_MEAN< 0.8889 176 142 CEMENT (0.18 0.19 0.16 0 0.14 0.17 0.15)
      4) INTENSITY_MEAN< 78.16665 146 112 CEMENT (0.21 0.23 0.2 0 0.17 0 0.18)
       8) REGION_CENTROID_ROW< 160.5 121 87 CEMENT (0.26 0.28 0.24 0 0 0 0.22)
        16) HUE_MEAN>=-1.64025 27 1 BRICKFACE (0.96 0 0 0 0 0 0.037) *
        17) HUE_MEAN< -1.64025 94 60 CEMENT (0.053 0.36 0.31 0 0 0.28)
          34) EXGREEN_MEAN< -12.05555 36 7 CEMENT (0.11 0.81 0.028 0 0 0.056)
            68) SATURATION_MEAN< 0.3764 27 0 CEMENT (0 1 0 0 0 0 0) *
            69) SATURATION_MEAN>=0.3764 9 5 BRICKFACE (0.44 0.22 0.11 0 0 0 0.22) *
          35) EXGREEN_MEAN>=-12.05555 58 30 FOLIAGE (0.017 0.086 0.48 0 0 0 0.41)
            70) SATURATION_MEAN>=0.7639 26 3 FOLIAGE (0 0 0.88 0 0 0 0.12) *
            71) SATURATION_MEAN< 0.7639 32 11 WINDOW (0.031 0.16 0.16 0 0 0 0.66)
             142) REGION_CENTROID_ROW>=145.5 8 3 CEMENT (0.12 0.62 0 0 0 0.25) *
             143) REGION_CENTROID_ROW< 145.5 24
                                                5 WINDOW (0 0 0.21 0 0 0 0.79)
               286) REGION_CENTROID_COL< 104.5 8 3 FOLIAGE (0 0 0.62 0 0 0 0.37) *
               287) REGION_CENTROID_COL>=104.5 16 0 WINDOW (0 0 0 0 0 0 1) *
       9) REGION_CENTROID_ROW>=160.5 25 0 PATH (0 0 0 0 1 0 0) *
      5) INTENSITY_MEAN>=78.16665 30 0 SKY (0 0 0 0 0 1 0) *
    3) EXGREEN_MEAN>=0.8889 34 0 GRASS (0 0 0 1 0 0 0) *
```

The bootstrap sample consists of 210 observations (n = 210 in the R output above). But, compared with the learning sample, some instances are repeated, others are absent. For this reason, we get a different tree than with rpart() on the original learning sample, even if the learning algorithm is based on the same default settings (section 3.3.1).

3.4.3 Importance of each variable

It is impossible to analyze all the trees to evaluate the influence of the predictor variables in the modeling. The "variable importance" measurement allows to overcome this drawback. We display them in descending order of importance here:

```
#variable importance
print(sort(bag_1$importance,decreasing=TRUE))
```

We obtain the following results:

INTENSITY_MEAN	EXGREEN_MEAN	HUE_MEAN	REGION_CENTROID_ROW
28.0874825	20.4393368	19.2377527	17.8348773
SATURATION_MEAN	RAWBLUE_MEAN	RAWRED_MEAN	REGION_CENTROID_COL
4.2957024	2.2591761	2.1003289	2.0693125
EXRED_MEAN	EXBLUE_MEAN	HEDGE_MEAN	VEDGE_MEAN
1.6970205	0.9473870	0.6807030	0.3509204
HEDGE_SD	RAWGREEN_MEAN	REGION_PIXEL_COUNT	SHORT_LINE_DENSITY_2
0.000000	0.000000	0.000000	0.000000
SHORT_LINE_DENSITY_5	VALUE_MEAN	VEDGE_SD	
0.000000	0.000000	0.000000	

INTENSITY_MEAN it is the most important variable in the sense that it induces the highest reduction of impurity in the trees where it appears. HEDGE_SD à VEDGE_SD have no influence (importance = 0) because they do not appear in any tree (we detail this comment below, section 3.4.4).

A graphical output is available with the command importanceplot() :

```
#graphical output
importanceplot(bag_1,cex.names=0.5,horiz=TRUE)
```

There is a discrepancy between the first, the following 3 variables, then the others.

3.4.4 Comment about the calculation of the variable importance

I had a doubt about the adabag calculation of the variable importance. Indeed, in accordance with the CART² methodology, rpart proposes a variable important measure that quantifies the influence of a variable, even if it does not appear in the tree. It is based on the surrogate split³ mechanism. I was wondering if adabag does not simply perform a sum of the values provided by rpart. I have therefore developed a bagged model with a single tree that I inspected.

#bagging with one tree bag_seul <- bagging(REGION_TYPE ~ ., data = image_train,mfinal=1) #the tree print(bag_seul\$trees[[1]]) #variable importance print(bag_seul\$importance)

We obtain the following classification tree,

```
n= 210
node), split, n, loss, yval, (yprob)
      * denotes terminal node
  1) root 210 177 BRICKFACE (0.16 0.13 0.15 0.15 0.14 0.13 0.14)
    2) EXGREEN_MEAN< 0.8889 179 146 BRICKFACE (0.18 0.16 0.17 0 0.16 0.16 0.17)
     4) REGION_CENTROID_ROW< 160.5 150 117 BRICKFACE (0.22 0.19 0.21 0 0 0.19 0.2)
       8) INTENSITY_MEAN< 79.037 122 89 BRICKFACE (0.27 0.23 0.25 0 0 0 0.25)
        16) HUE_MEAN>=-1.8422 44 11 BRICKFACE (0.75 0.023 0.068 0 0 0.16)
          32) EXGREEN_MEAN< -7.05555 37 4 BRICKFACE (0.89 0.027 0.081 0 0 0 0) *
          33) EXGREEN_MEAN>=-7.05555 7 0 WINDOW (0 0 0 0 0 0 1) *
        17) HUE_MEAN< -1.8422 78 50 FOLIAGE (0 0.35 0.36 0 0 0.29)
          34) EXGREEN_MEAN< -10.94445 30 4 CEMENT (0 0.87 0.067 0 0 0 0.067) *
          35) EXGREEN_MEAN>=-10.94445 48 22 FOLIAGE (0 0.021 0.54 0 0 0 0.44)
            70) HUE_MEAN< -2.2124 20 0 FOLIAGE (0 0 1 0 0 0 0) *
            71) HUE_MEAN>=-2.2124 28 7 WINDOW (0 0.036 0.21 0 0 0 0.75)
             142) RAWRED_MEAN< 0.7778 9 3 FOLIAGE (0 0 0.67 0 0 0 0.33) *
             143) RAWRED_MEAN>=0.7778 19 1 WINDOW (0 0.053 0 0 0 0.95) *
       9) INTENSITY_MEAN>=79.037 28 0 SKY (0 0 0 0 1 0) *
      5) REGION_CENTROID_ROW>=160.5 29 0 PATH (0 0 0 0 1 0 0) *
    3) EXGREEN_MEAN>=0.8889 31 0 GRASS (0 0 0 1 0 0 0) *
```

The following variables are present: EXGREEN_MEAN, REGION_CENTROID_ROW, INTENSITY_MEAN, HUE_MEAN, RAWRED_MEAN. In the variable importance list, only these

30 décembre 2015

² L. Breiman, J. Friedman, R. Olshen, C. Stone, « Classification and Regression Trees », Wadsworth, 1984.

³ T. Therneau, E. Atkinson, «<u>An Introduction to Recursive Partitioning Using RPART Routines</u> », 2015 ; see section 3.4, page 11.

variables have an importance greater than 0. The most important variable is EXGREEN MEAN because it appears repeatedly, especially at the root of the tree.

HEDGE_MEAN	EXRED_MEAN	EXGREEN_MEAN	EXBLUE_MEAN
0.00000	0.00000	38.471715	0.00000
RAWBLUE_MEAN	INTENSITY_MEAN	HUE_MEAN	HEDGE_SD
0.000000	17.858486	22.219920	0.00000
REGION_CENTROID_ROW	REGION_CENTROID_COL	RAWRED_MEAN	RAWGREEN_MEAN
18.294122	0.00000	3.155757	0.00000
SHORT_LINE_DENSITY_5	SHORT_LINE_DENSITY_2	SATURATION_MEAN	REGION_PIXEL_COUNT
0.00000	0.00000	0.00000	0.00000
	VEDGE_SD	VEDGE_MEAN	VALUE_MEAN
	0.000000	0.00000	0.000000

Obviously, "adabag" takes account only the variables that appear in the trees when it computes the variable importance.

3.4.5 Modifying the tree characteristics

According to the literature, Bagging affects only the variance component of the error, not the bias. Thus, a bagging of decision stumps is not a good idea; by contrast, increasing the size of the base classifications trees would have a positive effect. Let us examine that.

Bagging of decision stumps. We reuse the parameters defined above (section 3.3.2).

```
#bagging of decision stumps
bag_stump <- bagging(REGION_TYPE~.,data=image_train,mfinal=20,control=param_stump)
#prediction
predbag_stump <- predict(bag_stump,newdata = image_test)
#test error rate
print(error_rate(image_test$REGION_TYPE,predbag_stump$class))
```

The idea is disastrous on our dataset with a test error rate = **85.71%**.

Bagging of deep trees. The aim is to reduce the bias of the base classification trees. We hope

that the combination of the classifiers overcompensates the increase in variance.

```
#bagging of large trees
bag_deep <- bagging(REGION_TYPE~.,data=image_train,mfinal=20, control=param_deep)
#prediction
predbag_deep <- predict(bag_deep,newdata = image_test)
#test error rate
print(error_rate(image_test$REGION_TYPE,predbag_deep$class))
```

The test error rate is equal to 6.14%. Of course, we cannot generalize from a single result,

but this kind of behavior is consistent with the theory.

3.4.6 Make varying the number of trees

The number of base classifiers is crucial in the ensemble methods. In our experiment, we try the following number of trees [m = (1, 5, 10, 20, 50, 100, 200)] and we measure the test error rate. Each m is evaluated 20 times in order to have some stability in the results. We then calculate the average of the error rates.

```
#various values of number of trees
m_a_tester <- c(1,5,10,20,50,100,200)
#learning and testing phases
train_test_bag <- function(m){
    bag <- bagging(REGION_TYPE ~ .,data=image_train,mfinal=m,control=param_deep)
    predbag <- predict(bag,newdata = image_test)
    return(error_rate(image_test$REGION_TYPE,predbag$class))
}
#evaluate 20 times each value of m
result <- replicate(20,sapply(m_a_tester,train_test_bag))
#graphical representation of the results
#horizontal axis: m, vertical axis: mean of the errors for each m
plot(m_a_tester,apply(result,1,mean),xlab="m",ylab="Err. rate",type="b")
```

Knowing programming in R becomes significant here!

Starting from m = 50, additional trees do not improve the performance. The error rate would be **5.7%** for m = 50. We must take with caution this value because we used the test set to select the best model. It is not really impartial. It would be more appropriate to use another procedure for the selection of models. Scikit-learn for Python for example uses the crossvalidation to detect the best combination of parameters. Thereafter, we can evaluate the best model identified in this way on the test set (see section 4).

3.5 Random Forest

In certain respects, <u>Random Forest</u> is an improved version of the bagging, where the underlying models are necessarily classification trees. A random disturbance is introduced in the learning process in order to "decorrelate" them. We use "randomForest" library for R. A very large tree is created with the default settings: when maxnodes is not specified, there is no limitation on the size of the tree; nodesize indicates the minimum number of observations into leaves (default value 1).

3.5.1 Random Forest with 20 trees

We fit and evaluate a model with 20 trees.

```
#random forest
library(randomForest)
rf_1 <- randomForest(REGION_TYPE ~ ., data = image_train, ntree = 20)
#prediction
predrf_1 <- predict(rf_1,newdata=image_test,type="class")
#test error rate
print(error_rate(image_test$REGION_TYPE,predrf_1))</pre>
```

The test error rate is **5.05%**.

3.5.2 Out-of-bag (OOB) error rate

Random Forest offers an internal mechanism for the error rate estimation. We do not need an additional dataset or an additional learning process. We have access to the confusion matrix and we can deduce the error rate.

```
# out-of-bag confusion matrix
print(rf_1$confusion)
# out-of-bag error rate
print(1-sum(diag(rf_1$confusion))/sum(rf_1$confusion))
```

We have **10.3%**. The out-of-bag error clearly overestimates the error on our dataset. We did well to use a separate test sample for our example.

3.5.3 Accessing to trees

We can access to the underlying trees.

```
#access to the first tree
print(getTree(rf_1,1))
```

The presentation is not intuitive:

	left daughter	right daughter	split var	split point	status	prediction
1	2	3	11	69.22220	1	0
2	4	5	19	0.91940	1	0
3	0	0	0	0.00000	-1	6
4	6	7	8	0.63890	1	0
5	0	0	0	0.00000	-1	4
6	8	9	11	5.11115	1	0
7	10	11	2	159.50000	1	0
8	12	13	11	0.11110	1	0
9	14	15	10	7.40740	1	0
10	16	17	13	23.05555	1	0
11	0	0	0	0.00000	-1	5
12	18	19	14	-0.77780	1	0
13	0	0	0	0.00000	-1	7
14	0	0	0	0.00000	-1	1
15	0	0	0	0.00000	-1	7
16	20	21	19	-1.85465	1	0
17	0	0	0	0.00000	-1	2
18	0	0	0	0.00000	-1	3
19	0	0	0	0.00000	-1	7
20	22	23	2	145.50000	1	0
21	24	25	18	0.38770	1	0
22	26	27	10	14.74075	1	0
23	28	29	12	7.55555	1	0
24	0	0	0	0.00000	-1	3
25	30	31	6	1.61110	1	0
26	32	33	7	0.10740	1	0
27	34	35	19	-2.19505	1	0
28	0	0	0	0.00000	-1	7
29	0	0	0	0.00000	-1	2
30	0	0	0	0.00000	-1	1
31	36	37	11	12.05555	1	0
32	0	0	0	0.00000	-1	7
33	0	0	0	0.00000	-1	3
34	0	0	0	0.00000	-1	3
35	38	39	17	28.55555	1	0
36	0	0	0	0.00000	-1	7
37	0	0	0	0.00000	-1	1
38	0	0	0	0.00000	-1	7
39	0	0	0	0.00000	-1	2

The nodes are numbered, splitting variable is identified by its number, an intermediate node corresponds to a status equal to 1, a leaf has a status equal to -1, the predicted class number is indicated in the prediction column.

3.5.4 Variable importance

The calculation of the variable importance is consistent with the bagging. In addition, the "randomForest" package indicates the number of occurrence of variables, knowing that a variable may be present multiple times in a tree.

```
#occurrence of variables
print(data.frame(cbind(colnames(image_train)[2:20],varUsed(rf_1))))
#variable importance
varImpPlot(rf_1)
```

REGION_PIXEL_COUNT is included in no tree despite the random selection mechanism....

	X1	X2
1	REGION_CENTROID_COL	27
2	REGION_CENTROID_ROW	33
3	REGION_PIXEL_COUNT	0
4	SHORT_LINE_DENSITY_5	7
5	SHORT_LINE_DENSITY_2	2
6	VEDGE_MEAN	19
7	VEDGE_SD	20
8	HEDGE_MEAN	25
9	HEDGE_SD	22
10	INTENSITY_MEAN	27
11	RAWRED_MEAN	27
12	RAWBLUE_MEAN	21
13	RAWGREEN_MEAN	24
14	EXRED_MEAN	23
15	EXBLUE_MEAN	16
16	EXGREEN_MEAN	33
17	VALUE_MEAN	14
18	SATURATION_MEAN	28
19	HUE_MEAN	45

... its importance is logically null.

HUE_MEAN is the most relevant. This is not the case in the bagging where INTENSITY_MEAN seems to be the most relevant one (section 3.4.3).

3.5.5 Tree number

We reiterate the experimentation to identify the "optimal" number of trees. Compared to

"adabag", "randomForest" is very quick.

```
# number of trees to try
m_a_tester <- c(1,5,10,20,50,100,200)
#training and testing phase
train_test_rf <- function(m){
    rf <- randomForest(REGION_TYPE ~ .,data=image_train,ntree=m)
    predrf <- predict(rf,newdata = image_test)
    return(error_rate(image_test$REGION_TYPE,predrf))
}
#evaluate 20 times for each value of m
result <- replicate(20,sapply(m_a_tester,train_test_rf))
#graphical representation
plot(m_a_tester,apply(result,1,mean),xlab="m",ylab="Err. rate",type="b")</pre>
```

Starting from m = 100 trees, the error decreases very slowly, but seems still decrease. There is no overfitting phenomenon when we add trees.

With m = 200, the test error rate is **4.25%**. But, again, because the test sample is used in order to detect the best model, the test error rate must be considered with caution.

3.6 Boosting

We use again the "adabag" package in order to implement boosting with R. The process is the same as the previous sections. The variable importance takes into account the weight of the classifiers here. The real issues are the setting of the underlying tree and the number of trees. Indeed, the boosting may be subject to overfitting.

3.6.1 Boosting with 20 trees (default settings for the trees)

```
#boosting
bo_1 <- boosting(REGION_TYPE ~ ., data = image_train,mfinal=20, boos=FALSE)
#prediction
predbo_1 <- predict(bo_1,newdata = image_test)
#test error rate
print(error_rate(image_test$REGION_TYPE,predbo_1$class))
```

The test error rate is **5.67%**. This result is better than any bagging we have tried. It is similar than the Random Forest with 20 trees (5.05%).

The option "boos = FALSE" plays an important role. It indicates that we are using the original version AdaBoost based on the weighting of all individuals. If it is equal to TRUE, the algorithm relies on a random sampling with replacement, but with unequal probability proportional to the weights. The result is not deterministic in this case.

3.6.2 Depth of the trees

Boosting with decision stumps. We use the SAMME algorithm here (coeflearn = 'Zhu'), more adapted to the multiclass problem.

This is not at all convincing with a test error rate = **61.6%**. Boosting allows to reduce bias, but

in our context of a target attribute with 7 values, it is not efficient.

Boosting with deep trees. Let us see if, as for the bagging, the increase in the size of the tree

influences positively the performance.

Here too, this solution is not convincing with a test error rate equal to **10.4%**. We are facing a overfitting problem when the underlying model is too complex, in accordance with the machine learning literature.

3.6.3 Tree number

We reiterate the experimentation on the number of trees.

```
#number of trees
m_a_tester <- c(1,5,10,20,50,100,200)
#function for training and testing
train_test_boosting <- function(m){
    bo <- boosting(REGION_TYPE ~ .,data=image_train,mfinal=m,coeflearn='Zhu')
    predbo <- predict(bo,newdata = image_test)
    return(error_rate(image_test$REGION_TYPE,predbo$class))
}</pre>
```

```
#evaluate 20 times for each value of m
result <- replicate(20,sapply(m_a_tester,train_test_boosting))
#graphical representation
plot(m_a_tester,apply(result,1,mean),xlab="m",ylab="Err. rate",type="b")</pre>
```

We obtain the following graphical representation:

Starting from m = 50, the decreasing of the error rate is small. But there is not an overfitting phenomenon when we increase m (until m = 200 in any case).

4 Analysis with Python

In this section, we want to show the implementation of the different techniques in Python (<u>scikit-learn</u> package, version 0.17), without trying to reproduce all of the experiments that have been conducted under R. We presented the package "scikit-learn" in a previous tutorial⁴. This second document allows us to go further.

4.1 Data importation and preparation

We import the data file "image.txt" and we verify the shape of the table object.

```
#change the default directory
import os
os.chdir("... your directory ...")
#import the data file using the pandas library
```

```
<sup>4</sup> Tanagra, "<u>Python - Machine Learning with scikit-learn (slides)</u>", December 2015.
```

30 décembre 2015

import pandas image_all = pandas.read_table("image.txt",sep="\t",header=0,decimal= ".") #shape of the table print(image_all.shape) # (2310, 21)

We use the "<u>pandas</u>" package for the importation. "image_all" is an object of the DataFrame class⁵, very similar to the R class⁶. We have a tabular data with 2310 rows and 21 columns.

We exploit the column "sample" in order to subdivide the dataset into training and test sets.

We extract Numpy matrices and vectors that we use with scikit-learn procedures thereafter.

We extract the training set,

```
#training sample - select the instances
image_train = image_all[image_all["sample"]=="train"]
#remove the column 'sample'
image_train = image_train.iloc[:,0:20]
#checking
print(image_train.shape) # (210, 20)
#transformation into numpy matrix
d_train = image_train.as_matrix()
#vector for the target attribute
y_app = d_train[:,0]
#matrix for the predictive attributes
X_app = d_train[:,1:20]
```

The predictive variables and the target are divided in two different objects: **X_app** is a matrix with 210 rows and 19 columns; **y_app** is a vector with 210 values.

We proceed the same for the test set.

```
#test
image_test = (image_all[image_all["sample"]=="test"]).iloc[:,0:20]
print(image_test.shape)  # (2100, 20)
y_test = image_test.as_matrix()[:,0]
X_test = image_test.as_matrix()[:,1:20]
```

4.2 Function for performance evaluation

As for R, we define a function which calculates the error rate on the test sample. It is very generic because we use only the "scikit-learn" package. The signatures of the functions are the same regardless of the used machine learning algorithm.

⁵ pandas 0.17.1 documentation - <u>http://pandas.pydata.org/pandas-docs/stable/index.html</u>

⁶ See the comparison: <u>http://pandas.pydata.org/pandas-docs/stable/comparison_with_r.html</u>

The function takes as input: the model developed from the learning sample; for the test sample, the vector of the variable target and the matrix of predictive variables. We use the **metrics** module from the scikit-learn package to calculate the accuracy rate. The error rate is the complementary to one of the accuracy rate.

```
#module for the evaluation of the classifiers
from sklearn import metrics
#function for the performance evaluation
def error_rate(modele,y_test,x_test):
    #prediction
    y_pred = modele.predict(x_test)
    #error rate = 1 - accuracy rate (success rate)
    err = 1.0 - metrics.accuracy_score(y_test,y_pred)
    #return
    return err
#end fonction
```

4.3 Classification tree

4.3.1 Instantiation and settings

The process is always the same with scikit-learn, at least in the supervised learning task:

```
#Decision tree - importation of the class
from sklearn.tree import DecisionTreeClassifier
```

```
#instantiation
dtree = DecisionTreeClassifier()
```

```
#print the settings of the algorithm
print(dtree)
```

We import the class related to the method that we instantiate (by calling its constructor).

We therefore get an object that we fit on the training set. The display of the instantiated

object allows to visualize the algorithm's parameters and their default values.

```
DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=None,
    max_features=None, max_leaf_nodes=None, min_samples_leaf=1,
    min_samples_split=2, min_weight_fraction_leaf=0.0,
    presort=False, random_state=None, splitter='best')
```

3 parameters get our attention: max_depth = None, there is no limit to the depth of the tree (if we want a "decision stump", we set max_depth = 1, the root is at the level 0); min_samples_split = 2, a node is split if it contains at least 2 observations; min_samples_leaf = 1, any leaves of the tree must contain at least 1 instance.

With such parameters, we will get a very deep tree.

4.3.2 Learning phase

We fit the model on the learning set:

```
#learning
dtree.fit(x_app,y_app)
```

The operation is apparently OK, but no message was sent. When I wanted to display the tree, I realized that the operation is not easy.

4.3.3 Visualization of the classification tree

There is no default text display with **print()**. The simplest way to visualize the tree seems to generate a file that can be transformed into graphic with the **GraphViz** software⁷. Therefore, we must first download and install this tool⁸.

With the following commands, we generate the "tree.dot" file.

```
#generation of the output -> .dot format
from sklearn import tree
tree.export_graphviz(dtree,out_file="tree.dot",feature_names=image_train.columns[1:20])
```

We load "tree.dot" into a text editor, we observe a not very legible description.

```
digraph Tree {
node [shape=box] ;
0 [label="EXGREEN_MEAN <= 0.8889\ngini = 0.8571\nsamples = 210\nvalue = [30, 30,
30, 30, 30, 30]\nclass = R"] ;
1 [label="REGION_CENTROID_ROW <= 160.5\ngini = 0.8333\nsamples = 180\nvalue = [30,
30, 30, 0, 30, 30, 30]\nclass = R"] ;
0 -> 1 [labeldistance=2.5, labelangle=45, headlabel="True"] ;
...
```

The file is converted with Graphviz using the following command (launched in a DOS command prompt),

dot -Tpng tree.dot -o tree.png

« **dot** » is the name of the executable file. A "**tree.png**" file has been generated. We can visualize it with any graphic software that supports PNG format.

 ⁷ <u>http://scikit-learn.org/stable/modules/generated/sklearn.tree.export_graphviz.html</u>
 ⁸ http://www.graphviz.org/Download_windows.php

It is so large that its reading is not really interesting. The main information here is that it is possible to get a graphical representation of the tree with a little extra effort.

4.3.4 Variable importance

We can get the importance of variables. Scikit-learn includes only the variables that appear explicitly in the tree.

```
#importance of variables - 0 when the variable does not appear into the tree
imp = {"VarName":image_train.columns[1:],"Importance":dtree.feature_importances_}
print(pandas.DataFrame(imp))
```

We put the results in a data frame structure in order to be able to match each variable name (obtained by using the columns property of the training set) with its importance (feature_importances_).

	Importance	VarName
0	0.026058	REGION_CENTROID_COL
1	0.169000	REGION_CENTROID_ROW
2	0.00000	REGION_PIXEL_COUNT

3	0.000000	SHORT_LINE_DENSITY_5
4	0.000000	SHORT_LINE_DENSITY_2
5	0.019665	VEDGE_MEAN
6	0.000000	VEDGE_SD
7	0.000000	HEDGE_MEAN
8	0.000000	HEDGE_SD
9	0.000000	INTENSITY_MEAN
10	0.189911	RAWRED_MEAN
11	0.000000	RAWBLUE_MEAN
12	0.000000	RAWGREEN_MEAN
13	0.000000	EXRED_MEAN
14	0.000000	EXBLUE_MEAN
15	0.282588	EXGREEN_MEAN
16	0.000000	VALUE_MEAN
17	0.097552	SATURATION_MEAN
18	0.215226	HUE_MEAN

4.3.5 Prediction and evaluation

We use the **error_rate** function defined above (section 4.2) to measure the performance.

```
#error rate
print(error_rate(dtree,y_test,X_test))
```

The test error rate is 10.38%, similar to the deep tree with R's rpart (10.42%).

4.4 Bagging of classification trees

4.4.1 Train and test

Instantiation. Bagging is a meta-classifier that can take as input any learning algorithm under scikit-learn. As a first step, we develop a bagging of 20 deep trees, equivalent to that carried out under R (section 3.4.5).

You must first import the class BaggingClassifier, and then instantiate it with as a parameter

the desired underlying algorithm, a DecisionTreeClassifier in our case.

```
#class bagging
from sklearn.ensemble import BaggingClassifier
```

```
#instantiation
baggingTree = BaggingClassifier(DecisionTreeClassifier(),n_estimators=20)
print(baggingTree)
```

The print command displays both the characteristics of the meta-classifier (in blue), and

those of the base (in purple) algorithm.

```
BaggingClassifier(base_estimator=DecisionTreeClassifier(class_weight=None,
criterion='gini', max_depth=None,
```

30 décembre 2015

```
max_features=None, max_leaf_nodes=None, min_samples_leaf=1,
min_samples_split=2, min_weight_fraction_leaf=0.0,
presort=False, random_state=None, splitter='best'),
bootstrap=True, bootstrap_features=False, max_features=1.0,
max_samples=1.0, n_estimators=20, n_jobs=1, oob_score=False,
random_state=None, verbose=0, warm_start=False)
```

We note a very interesting option. It is possible to make calculations in parallel using the 'n_jobs' option, in order to take advantage of the possibilities of multi-core processors for example. On very large databases, the gain in speed is significant.

Train and test. We fit the model on the training set and we evaluate it on the test set.

```
#training
baggingTree.fit(X_app,y_app)
#test
```

```
print(error_rate(baggingTree,y_test,X_test))
```

The test error rate is 5.85%, slightly better than that of R (6.14%, section 3.4.5).

4.4.2 Tree number

We can also program in Python. In this section, we try to reproduce the detection of the

"best" number of trees for the bagging.

```
#train-test function for a given m
def train_test_bagging(m,X_app,y_app,X_test,y_test):
    #instantiation
    bag = BaggingClassifier(DecisionTreeClassifier(),n_estimators=m)
   #fit the model
    bag.fit(X_app,y_app)
   #prediction and calculation of the error rate
    return error_rate(bag,y_test,X_test)
#end train-test
#values of m to evaluate
m_a_tester = [1, 5, 10, 20, 50, 100, 200]
#initialization of the matrix for the results
import numpy
result = numpy.zeros(shape=(1,7))
#repeat 20 times the experiment for m
for expe in range(20):
   #evaluate each value of m
    res = [train_test_bagging(m,X_app,y_app,X_test,y_test) for m in m_a_tester]
   #the vector with 7 values is transformed in a matrix (1, 7)
```

```
res = numpy.asarray(res).reshape(1,7)
#add a new row in the matrix
result = numpy.append(result,res,axis=0)
#
#
#remove the first row
result = numpy.delete(result,0,axis=0)
#calculate the average of error rate for each m
mresult = numpy.mean(result,axis=0)
print(mresult)
```

There is a double loop: repeat 20 times the experience for each value of m, perform the analysis for different values of m.

Here are the mean of the error rate for each value of m.

[0.11340476 0.07761905 0.0632619 0.05878571 0.05764286 0.05711905 0.05769048]

We create a graphical representation...

```
#graphical tool
import matplotlib.pyplot as plt
```

```
#label of the axes
plt.xlabel("m")
plt.ylabel("Err. Rate")
plt.plot(m_a_tester,mresult,linewidth=2)
```

... we have,

4.4.3 Grid search

By reading the documentation, I realized that scikit-learn proposes a tool for testing the effectiveness of different parameters values. The main interest is that it proceeds by cross-validation to evaluate the quality of the combination of parameters. Thus, our test sample

keeps its impartiality status since it is not used to detect the best configuration, but only to measure the error rate of the latter.

In what follows, for the same values of m of the previous section, we ask to Python to measure the success rate by cross-validation. Then we use the test sample in order to measure the error rate of the best configuration highlighted by the tool.

```
# detecting the "optimal" number of trees
# using the grid search tool
from sklearn.grid_search import GridSearchCV
```

```
# the parameters to make vary
# the name of the parameter must be explicit
# we enumerate the values to try
parametres = [{"n_estimators":[1,5,10,20,50,100,200]}]
```

```
# instantiate the classifier
bag = BaggingClassifier(DecisionTreeClassifier())
```

```
#instantiation of the gris search tool
#the metric used is the accuracy rate (error rate = 1 - accuracy rate)
grid_bag = GridSearchCV(estimator=bag,param_grid=parametres,scoring="accuracy")
```

```
#launching the exploration
grille_bag = grid_bag.fit(X_app,y_app)
```

```
#print the results
print(grille_bag.grid_scores_)
```

Despite the amount of calculations, the procedure is very fast. We obtain the following

outputs:

```
[mean: 0.81905, std: 0.02935, params: {'n_estimators': 1}, mean: 0.88571, std:
0.04666, params: {'n_estimators': 5}, mean: 0.88095, std: 0.00673, params:
{'n_estimators': 10}, mean: 0.89048, std: 0.03750, params: {'n_estimators': 20},
mean: 0.90000, std: 0.05084, params: {'n_estimators': 50}, mean: 0.91429, std:
0.04206, params: {'n_estimators': 100}, mean: 0.90000, std: 0.05084, params:
{'n_estimators': 200}]
```

For m = 1, the accuracy rate in cross-validation is 81.90%; for m = 5, we have 88.57%, etc.

We can directly identify the best configuration:

```
#best score
print(grille_bag.best_score_) # 0.91428
#parameter for the best score
print(grille_bag.best_params_) # {'n_estimators' : 100}
```

The solution with m = 100 trees is the most effective. When we apply this solution on the test sample...

#valuation of the best solution on the test set
print(error_rate(grille_bag,y_test,X_test))

... we obtain the error rate 5.71%, better (very slightly) than our first configuration with m =

20 trees (section Erreur ! Source du renvoi introuvable.).

4.4.4 Bagging with other base classifier

The bagging is generic under scikit-learn, we can pass any base classifier. For instance, if we want to perform a bagging of linear discriminant analysis (LDA), we will proceed as follows:

```
#import the discriminant analysis class
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
#instantiation
bag_lda = BaggingClassifier(LinearDiscriminantAnalysis(),n_estimators=20)
print(bag_lda)
#learning process
bag_lda.fit(X_app,y_app)
#evaluation
print(error_rate(bag_lda,y_test,X_test))
```

The tool sends a warning about the collinearity between the variables, but it still continue the learning process. The test error rate is **10.43%**. In comparison, if we perform a single instance of the LDA, the error rate is **9.57%**. So it is technically possible to make a bagging of any base classifier. But the gain is really convincing that when it is slightly biased and has a high variance, which is not really the case of the linear discriminant analysis.

4.5 Random Forest

Scikit-learn includes also the Random Forest method. We perform a simple analysis with 20

trees.

```
# RandomForest class
from sklearn.ensemble import RandomForestClassifier
# instantiation
rf = RandomForestClassifier(n_estimators=20)
# training phase
rf.fit(X_app,y_app)
# test error rate
print(error_rate(rf,y_test,X_test))
# importance of variables...
print(rf.feature_importances_)
```

```
# with their names
imp = {"VarName":image_train.columns[1:],"Importance":rf.feature_importances_}
print(pandas.DataFrame(imp))
```

The test error rate is **4.9%**, here are the importance of the variables:

	Importance	VarName
0	0.026045	REGION_CENTROID_COL
1	0.138857	REGION_CENTROID_ROW
2	0.000000	REGION_PIXEL_COUNT
3	0.001765	SHORT_LINE_DENSITY_5
4	0.001373	SHORT_LINE_DENSITY_2
5	0.018827	VEDGE_MEAN
6	0.018828	VEDGE_SD
7	0.033337	HEDGE_MEAN
8	0.025444	HEDGE_SD
9	0.082932	INTENSITY_MEAN
10	0.073985	RAWRED_MEAN
11	0.103093	RAWBLUE_MEAN
12	0.043970	RAWGREEN_MEAN
13	0.037872	EXRED_MEAN
14	0.039667	EXBLUE_MEAN
15	0.082905	EXGREEN_MEAN
16	0.044985	VALUE_MEAN
17	0.085668	SATURATION_MEAN
18	0.140448	HUE_MEAN

In trying to find the "optimal" number of trees with the GridSearchCV tool, it appears that **m** = **100** is the best solution with a test error rate of **4.76%**. The gain, compared with m = 20, is negligible for Random Forest.

4.6 Boosting

We proceed also simply for boosting, specifying a decision tree as a base classifier. **Note:** a decision stump is used by default if the option "base_estimator" is omitted.

print(ab)

```
# training phase
ab.fit(X_app,y_app)
# test error rate
print(error_rate(ab,y_test,X_test))
```

The test error rate is **8.9%**.

5 Analysis with other tools

The interest of R and Python is that we have the ability to write programs. The possibilities of analysis are strongly increased. We had noticed that in the two previous sections. But know how to program requires a time of training which is sometimes not available for practitioners of data mining. The tools that we present in this section allow to reproduce our overall process, without having to write a single line of code. Some users appreciate to this characteristic.

5.1 Analysis with Tanagra

Various ensemble methods are available into Tanagra: bagging, arcing (<u>Breiman, 1998</u>), boosting, and also ensemble techniques which allow to take into account the misclassification costs (Cost Sensitive Bagging, MultiCost)⁹.

The underlying base classifier can be any learning algorithm. We seen previously that both bagging and boosting may be defined theoretically with any type of learning algorithm even if, in practice, a classification tree is the most commonly used.

Random Forest it is not defined as such. It corresponds to a bagging with a special induction tree algorithm (RndTree)¹⁰ where the tree is built as large as possible, with the particular variable selection process when splitting the nodes.

5.1.1 Data importation and preparation

Importing the data file. We load the data file « **image.xlsx** » into Excel. We select the data range and we click on the menu COMPLEMENTS / TANAGRA / EXECUTE (ADD-INS / TANAGRA / EXECUTE in English) installed with the "tanagra.xla" add-in for Excel^{11,12}.

⁹ Tanagra, "<u>Cost-sensitive learning - Comparison of tools</u>", March 2009.

¹⁰ Tanagra, "<u>Random Forest</u>", November 2008.

¹¹ Tanagra, "<u>Tanagra add-in for Excel 2010 - 64-bit version</u>", December 2011.

¹² Tanagra, "<u>Tanagra add-in for Office 2007 and Office 2010</u>", August 2010.

C	.	(°° -) =				in	nage.xlsx -	Micros	oft Excel					-		×	
	Accueil	Insertion	Mise	en page	Form	ules	Données	Révis	ion A	ffichage	Dévelo	ppeur	Complér	ments	- 0	-	×
	Sipina *																
	Tanagra 👻																
	Everute	Tanadra															
Co	unmandes de me		2			_											
	About			6		\rightarrow										_	
	02311	•	<u> </u>	Ĵx	test												÷
	A	B	C	D	E	F	G	Н	1	J	К	L	M	N	0		-
1	REGION_TYPE	REGION_CRE	GION_C RE	EGION_F SI	HORT_LI SH	HORT_LI	VEDGE_M \	EDGE_SI	HEDGE_M	HEDGE_S	INTENSIT'	RAVRED	RAVELUE	RAVGRE	EXRED_	/ EXE	
2	BRICKFACE	140	125	9	0	0	0.2778	0.063	0.6667	0.3111	6.1852	7.3333	7.6667	3.5556	3.444	ł	
3	BRICKFACE	188	133	9	0	0	0.3333	0.2667	0.5	0.0778	6.6667	8.3333	7.7778	3.8889		j	
4	BRICKFACE	105	139	9	0	0	0.2778	0.1074	0.8333	0.5222	6.111	7.5556	1.2222	3.5556	4.333	1	
0	BRICKFACE	34	137	9	0		0.5	0.1667	0.0000	0.4741	5.8519	1.1118	5.4444	3.3333	5.7778	F	
- 7	DDICKEACE		10	3	0	J _	0.7222	0.5741	0.0003	0.4236	6.03r	r	7.0007	3.4444	2.000		
- 6	PRICKEACE	Evecute	Tanagr	a									¥ 20001	14 6660	1222	, , .	
9	BRICKFACE	Execute	ranagi	u									1444	12 4444	2 888	<u>.</u>	
10	BRICKFACE	-											1 1111	12 8889	2.000		
11	BRICKEACE	_					6.0						7778	15 8889	-0.222	, .	
12	BRICKFACE		ataset i	range (ır	ncluding t	the nam	ne of the	attribut	es firs	trow):			4	2.2222	4.888		
13	BRICKFACE	- r										7	1.1111	17.5556	-5.333	3	
14	BRICKFACE		\$A\$1:	\$0\$231.	1						-		3333	3,7778	4,666	7	
15	BRICKFACE										_	-	5556	16,3333	-1.444	۰ I	
16	BRICKFACE	-										1	2222	13.6667	-4.222		
17	BRICKFACE	-						OK		Car	ncel		2222	3.7778	4.555	\$	
18	BRICKFACE											1	3333	3.3333	4.222	2	
19	BRICKFACE											_	3889	13.1111	2.777	3	
20	BRICKFACE												2222	3.6667	3.222	2	
21	BRICKFACE	229	124	9	0	0	0.8889	0.0741	0.8889	0.3407	5.8889	7.1111	7.1111	3.4444	3.666	1	
22	BRICKFACE	22	116	9	0	0	0.3889	0.1074	0.3333	0.1333	5.6296	6.7778	7	3.1111	3.444	ŧ.	
23	BRICKFACE	121	60	9	0	0	2.2778	2.3296	2.8889	2.8741	26.7407	24.6667	35.2222	20.3333	-6.222	2 2	
24	BRICKFACE	33	149	9	0	0	0.5556	0.2519	0.7222	0.1519	5.4444	4.1111	8.6667	3.5556	-	ł	
25	BRICKFACE	80	95	9	0	0	1.2222	1.0074	0.9444	0.5519	21.4074	21.3333	26.6667	16.2222	-0.222	2 1	
26	BRICKFACE	96	84	9	0	0	1.5	1.2778	1.6111	2.2852	23.8519	23.5556	30	18	-0.888		
27	BRICKFACE	145	102	9	0	0	0.8889	0.6074	2.6111	1.4852	23.0741	22.1111	29.7778	17.3333	-2.888)	
28	BRICKFACE	18	138	9	0	0	0.8889	0.563	0.8333	0.3	5.7407	7.3333	6.5556	3.3333	4.777	3	
29	BRICKFACE	138	133	9	0	0	0.6667	0.4444	1.1667	0.2111	6.4444	7.7778	7.8889	3.6667		ł	
30	BRICKFACE	121	113	9	0	0	1.7222	1.5296	2.9444	1.5296	20.2593	20	25.4444	15.3333	-0.777		
31	BRICKFACE	95	57	9	0	0	1.8333	3.4111	2.111	1.7185	26.2963	24.6667	34.4444	19.7778	-4.888	1 2	
32	SKY	140	25	9	0	0	1	1.4667	1.1111	0.1185	128	117.7778	142.3333	123.8889	-30.666		
33	SKY	142	33	9	0	0	0.5	0.6236	0.5	0.3496	10.5926	96.7778	128.6667	106.3333	-41.444		
34	SKY OKY	66	41	9	0	0	0.6111	0.3277	0.3889	0.3277	109.7037	35.111	128.8889	105.1111	-43.777		
35	SKT	165	39	9	0	0	1.0550	0.4741	0.0000	0.4/41	33.4074	79	118	100 4444	-43.222		
35	OK I	124	20	9	0	0	1.0556	0.4307	10550	0.7528	120 4444	119 2222	142 0000	120.9999	-37 600		-
14		e /	7.8					0.700	10056	4	1/1 4444		147 0003				
	a a								-	•							
Pr	et 🔝		Moyenr	ne : 24.63	314422	Nb (no	n vides) : 4	8531	Somme : 1	1081148.7	- HE ()	E 60 9	6 🕞 –			t	.:

We click on the OK button. Tanagra is automatically launched and the dataset is imported.

TANAGRA 1.4.50 - [Dat	aset (tan5734.txt)]					_	. 🗆	Х
💇 <u>F</u> ile <u>D</u> iagram Comp	onent <u>W</u> indow	<u>H</u> el	р					_ 8 ×
🗅 📽 🖪 🏭								
Analysis								^
Dataset (tan5734.t	xt)		Data 21 attri 2310 e	ibute(s) xample(s)	otion	}		
				Attribute	Category	Informations		
			REGIO	N_TYPE	Discrete	7 values		
			REGIO	N_CENTROID_COL	Continue	-		
			REGIO	N_CENTROID_ROW	Continue			
			REGIO	N PIXEL COUNT	Continue			*
			Com	ponents				
Data visualization	Statist	ics		Nonparametric	statistics	Instan	ce selec	tion
Feature construction	Feature se	lecti	on	Regressi	on	Facto	rial analy	/sis
PLS	Cluster	ring		Spv learn	ing	Meta-	spv learn	ing
Spv learning assessment	Scori	ng		Associati	ion			
🖉 Continuous select exa	mples 🌂 Recove	er exa	amples	🖉 Samı	pling		🖉 🖉	atified san
Discrete select examp	les 🥂 🦧 Rule-ba	ased	selectio	n 🗾 🗡 Sele	ct first ex	amples		
<								>
								_

Subdivision into training and test sets. We use the DISCRETE SELECT EXAMPLES component in order to subdivide the dataset according to the "sample" column. We insert it into the diagram, then we click on the PARAMETERS menu.

30 décembre 2015

TANAGRA 1.4.50 - [Datas	set (tan5734.txt)]					- 1		×
💇 File Diagram Compo	onent Window H	elp					-	ъ×
								n. n.
Analusis								
Dataset (tap5734 ty	+)		D	ataset (tan57	34.txt)			
Discrete select	examples 1			Paramete	rs			
	Parameters	hatabase : C:\Us	ers\Ricco	\AppData\Loo	al\Temp\tan5/	34.txt		
ľ.	Function			Results				
	Execute		1					
	view	nload	Info	rmation				
		Attribute-value exa	mples se	election				1
		Parameters						
		Attribute :	sampl	e 🔶		~		~
Data visualization	Statistics	Value :	train			\sim		
Feature construction	Feature selec							
PLS	Clustering							
Spv learning assessment	Scoring							
🖉 Continuous select exam	iples 🌂 Recover e			ОК	Cancel	Hel	D	mplin
🖉 Discrete select example	es 🧹 🍂 Rule-based			een se exan	ipres.			
<								>

"sample = train" corresponds to the training sample, with 210 instances.

Role of the variables. With the DEFINE STATUS component, we set REGION_TYPE as target attribute, the other ones (with the exception of "sample") as input attributes.

5.1.2 Classification tree

Learning phase. We insert the C4.5 component (SPV LEARNING tab) after DEFINE STATUS 1.

We click on the VIEW menu to visualize the results.

We obtain a classification tree with 11 leaves (11 decision rules):

- REGION_CENTROID_ROW < 160.5000
 - O RAWGREEN_MEAN < 72.5000</p>
 - RAWBLUE_MEAN < 40.1666</p>
 - HUE_MEAN < -1.7894</p>
 - REGION_CENTROID_ROW < 145.5000
 - HUE_MEAN < -2.0896
 - SATURATION_MEAN < 0.4972 then REGION_TYPE = WINDOW
 - (77.78 % of 9 examples)
 - SATURATION_MEAN >= 0.4972 then REGION_TYPE = FOLIAGE (92.59 % of 27 examples)
 - HUE_MEAN >= -2.0896 then REGION_TYPE = WINDOW (100.00 % of 13 examples)
 - REGION_CENTROID_ROW >= 145.5000 then REGION_TYPE = CEMENT (57.14 % of 7 examples)
 HUE_MEAN >= -1.7894
 - HUE_MEAN < -0.2855 then REGION_TYPE = BRICKFACE (93.55 % of 31 examples)
 - HUE_MEAN >= -0.2855 then REGION_TYPE = WINDOW (83.33 % of 6 examples)
 - RAWBLUE_MEAN >= 40.1666

- HEDGE_SD < 9.4025 then REGION_TYPE = CEMENT (100.00 % of 23 examples)
- HEDGE_SD >= 9.4025 then REGION_TYPE = FOLIAGE (60.00 % of 5 examples)
- RAWGREEN_MEAN >= 72.5000 then REGION_TYPE = SKY (100.00 % of 30 examples)

- REGION_CENTROID_ROW >= 160.5000
 - INTENSITY_MEAN < 25.9444 then REGION_TYPE = GRASS (100.00 % of 29 examples)
 - O INTENSITY_MEAN >= 25.9444 then REGION_TYPE = PATH (100.00 % of 30 examples)

Evaluation. To calculate the error rate on the set sample, we insert again the DEFINE STATUS component. We set REGION_TYPE as target, the prediction of the classifier (available for all the instances) PRED_SPVINSTANCE_1 as input.

Then, we add the TEST component (SPV LEARNING ASSESSMENT tab) which calculates the confusion matrix and the error rate on the unselected instances i.e. the test set.

💇 TANAGRA 1.4.50 - [Test	1]								-		×	
Tile Diagram Compo	onent <u>W</u> indow <u>H</u> elp									- 8	×	
D 📽 🖪 🏭												
Analy	ysis					0.1162					^	
🖃 🎹 Dataset (tan883F.t	kt)											
🖶 煮 Discrete select	examples 1		BDICKEACE	SKV	FOLIAGE	CEMENT	WINDOW	DATH	CRASS	Sum		
🖃 🚼 Define statu	ıs 1	PDIOKEAOE	270	JK1 0	TOLIAGE	2	40	- Alli	000035	200	_	
🖻 🕨 Supervis	ed Learning 1 (C4.5)	DRICKFACE	2/9	200	0	3	10	0	0	300		
🖻 🚮 Defin	e status 2	5NT	0	300	244	0	26	0	0	300		
	est 1	FULIAGE	3	1	264	6	26	0	0	300		
		CEMENT	2	0	19	249	27	0	3	300		
		WINDOW	7	0	64	36	193	0	0	300		
(PATH	0	0	4	3	0	291	2	300		
		GRASS	0	0	0	0	16	4	280	300		
		Sum	291	301	351	297	280	295	285	2100	¥	
		<								>		
			Co	mponents								
Data visualization	Statistics	Nonpara	metric statis	tics	Instance sel	ection	Feature of	construction				
Feature selection	Regression	Fact	orial analysis		PLS		Clu	stering				
Spv learning	Meta-spv learning	Spv lear	ning assessm	ent 🖊	Scoring	8	Asso	ciation				
Bias-variance decompos	sition 🔄 🖉 Hosmer Lemesho	ow Test	? Test									
? Bootstrap	Leave-One-Out		? Train-te	st								
Cross-validation	🚟 Logistic Regressi	on Residuals										

We click on the VIEW menu. The test error rate is **11.62%**.

5.1.3 Bagging

To perform a bagging of C4.5 algorithm, we must proceed in two stages. First, we add the meta learner BAGGING (META-SPV LEARNING tab) into the diagram.

Second, we put the component C4.5 (SPV LEARNING ALGORITHM) into the BAGGING 1.

We can set the parameter of the bagging (contextual menu PARAMETERS, mainly the number of replications, default 25) or the underlying learning algorithm (contextual menu SUPERVISED PARAMETERS: minimal number of instance on the leaves and the confidence level for the calculation of the pessimistic error for the post pruning of C4.5).

Note: Like for scikit-learn, it is possible to perform a bagging with any base classifier. We have seen above that this is not always appropriate (e.g. bagging of linear discriminant analysis, section 4.4.4).

Again, we add the DEFINE STATUS component to compare the REGION_TYPE (target) and the prediction of the model (PRED_BAGGING_1, input). Then, we use the TEST component to calculate the error rate which is equal to **6.18%**.

5.1.4 Boosting

The component BOOSTING is available into the META-SPV LEARNING tab. It implements the ADABOOST.M1 approach. I think that I shall make improve it soon in such a way that it also incorporates the SAMME approach, a more natural method for multi-class problems.

Here also, we proceed in two stages to insert the method into the diagram (BOOSTING first + C4.5 second). We compare the REGION_TYPE and the prediction PRED_BOOSTING_1. The test error rate is **5%**.

💇 TANAGRA 1.4.50 - [Test	3]											-		×
💇 <u>F</u> ile <u>D</u> iagram Compo	onent <u>W</u> indow <u>H</u> elp												-	đх
D 📽 🖪 ដ										_				
Analu	sis													
Datasat (tap882E tat)		E	Error rate 0.0500											
Discrete select	examples 1	Valu	Values prediction Confusion matrix											
📄 🚰 Define statu	s 1	Value	Recall	1-Precision		BRICKFACE	SKY	FOLIAGE	CEMENT	WINDOW	PATH	GRASS	Sum	
🖃 🕩 Supervis	ed Learning 1 (C4.5)	BRICKFACE	0.9833	0.0232	BRICKFACE	295	0	0	3	2	0	0		300
🖻 🙀 Defin	e status 2	SKY	1.0000	0.0000	SKY	0	300	0	0	0	0	0		300
P T	est 1	FOLIAGE	0.9000	0.0940	FOLIAGE	2	0	270	7	21	0	0		300
Bagging	1 (C4.5)	CEMENT	0.9400	0.0990	CEMENT	2	0	3	282	10	3	0		300
⊟-tia Defin	🖻 🚰 Define status 3		0.8567	0.1138	WINDOW	3	0	22	18	257	0	0		300
Boosting	1 (C4 5)	PATH	0.9800	0.0200	PATH	0	0	3	3	0	294	0		300
- Ta Defin	e status 4	GRASS	0.9900	0.0000	GRASS	0	0	0	0	0	3	297		300
	est 3				Sum	302	300	298	313	290	300	297	2	100
														~
					Compor	nents								
Data visualization	Statistics	Nonparam	etric st	atistics	Instance se	stance selection Feature construction			on I	Feature selection				
Regression	Factorial analysis		PLS		Cluster	ring	Spv learning			Meta-spv learning				
Spv learning assessment	Scoring	Asso	ociation											
¹ / ₁₊₂ ×Binary logistic regression	in 🕅 C-PLS		Å,	CS-MC4		Ena De	ecision List		<u>اية</u> ا	inear discri	ninant analy	sis 🔒 👔	Nultinor	nial Lo
BVM	🧟 C-RT		L 🕅	C-SVC		-f <mark>aa</mark> ID	3		1 1+8** L	.og-Reg TRIR	LS	0200	Naive ba	yes
€45 C4.5	Acs CS-CRT		1 K	CVM		Ľ- K	NN		30-7	Multilayer perceptron			Naive ba	yes co
<														>

5.1.5 Random Forest

To instantiate the Random Forest, we use the BAGGING component to which we associate the RND TREE learning algorithm (SPV LEARNING tab).

TANAGRA 1.4.50 - [Test	4]											-		×
The Diagram Compo	onent <u>W</u> indow <u>H</u> elp												- 8	×
🗅 🚅 🔚 🏭														
Analys	sis						Res	ults						^
□ □ Dataset (tan883F.tx	pred_Bagging_2													
Discrete select	examples 1 s 1	E	Error rate 0.0548											<u> </u>
Supervise	ed Learning 1 (C4.5)	Value	es predi	iction				Co	nfusion mat	rix				
🖻 🙀 Defin	e status 2	Value	Recall	1-Precision		BRICKFACE	SKY	FOLIAGE	CEMENT	WINDOW	PATH	GRASS	Sum	
	est 1	BRICKFACE	0.9400	0.0276	BRICKFACE	282	0	0	10	8	0	0	300	
🗎 🕨 Bagging 1	1 (C4.5)	SKY	1.0000	0.0000	SKY	0	300	0	0	0	0	0	300	
E 1 Define	e status 3	FOLIAGE	0.9100	0.1049	FOLIAGE	2	0	273	6	19	0	0	300	
	1 (CA 5)	CEMENT	0.9400	0.0990	CEMENT	2	0	0	282	14	2	0	300	
Dosting	e status 4	WINDOW	0.8467	0.1419	WINDOW	2	0	32	12	254	0	0	300	
	est 3	PATH	0.9900	0.0067	PATH	0	0	0	3	0	297	0	300	
Bagging 2	2 (Rnd Tree)	GRASS	0.9900	0.0000	GRASS	2	0	0	0	1	0	297	300	
🗄 🚼 Defin	e status 5				Sum	290	300	305	313	296	299	297	2100	
	est 4													
														-
					Compo	nents								
Data visualization	Statistics	Nonparan	netric s	tatistics	Instance	selection	Featu	re construct	tion	Feature sel	ection			
Regression	Factorial analysis		PLS		Clustering Spv learning Meta-spv learning									
Spv learning assessment	Scoring	Ass	ociatio	n										
🕍 Linear discriminant anal	lysis 🕺 👖 👫 Multinomial Log	gistic Regress	ion 🐝	PLS-DA		} ⊳ ⊧	Radial basis	function	1 1	SVM				
Log-Reg TRIRLS	Naive bayes		1.00	PLS-LDA		<u>é</u> ,	Rnd Tree							
Multilayer perceptron	🕻 Naive bayes co	ntinuous	2	Prototype-1	NN		Rule Induct	ion						
<														>

The test error rate is **5.48%** by comparing REGION_TYPE and PRED_BAGGING_2.

Note: Out of sheer curiosity, I perform a simple learning with RND TREE, the test error rate is 16.14%. This suggests that the proportion of relevant variables is high in the base. The random disturbance does not penalize the learning process. A boosting of RND TREE leads to a test error rate of 5.05%.

5.2 Analysis with Knime

The ENSEMBLE LEARNING package for <u>Knime</u> incorporates generic components for Bagging and Boosting. We must install the library first. These components can use any base classifier, like Python/Scikit-learn or Tanagra.

5.2.1 Data importation and preparation

Knime can directly read XLSX files. We use the XLS READER component. With the NOMINAL VALUE ROW FILTER component, we filter the dataset according to the "sample" column to

define the test ("sample = test") and learning ("sample = train") samples. COLUMN FILTER allows to remove the column "sample" for the rest of the study.

5.2.2 Boosting with Knime

Boosting is built in the form of loop in Knime. META-NODES allows to summarize the operations, both for the learning and the prediction phase (Boosting Learner and Boosting Predictor). But I preferred to define the steps manually. Indeed, the process may seem confusing at first. However once we have understood the reasoning, the sequence of the tools into the diagram is pedagogically very interesting.

The sequence below define a Boosting of decision trees. The BOOSTING LEARNER LOOP START component starts the boosting loop boosting from the training set. It is connected to a DECISION TREE LEARNER learning algorithm tool, but also to a predictive DECISION TREE PREDICTOR tool. Indeed, the errors of prediction for the step (t) allows to set the weights of individuals to the step (t + 1). BOOSTING LEARNER LOOP END closes the loop and allows to move to the next iteration.

In term of parameters:

- for DECISION TREE LEARNER, we specify the target attribute REGION_TYPE ;
- for BOOSTING LEARNER LOOP END, we specify the target attribute [REGION_TYPE], the prediction of the boosting process [Prediction(REGION_TYPE)], and the number of iterations (25, so that the result would comparable with that of Tanagra).

5.2.3 Evaluation on the test sample

Two treatments are necessary at this stage: use the meta-classifier to calculate the prediction on the sample test, then compare the observed class values with the predicted class values to form the confusion matrix and calculate the test error rate.

A new loop defines the prediction on the test sample. The BOOSTING PREDICTOR LOOP START tool takes as input the boosting learner loop. It is connected to a DECISION TREE PREDICTOR, which also takes input test data.

We can clearly see the idea. For the prediction, we must activate all the trees and make them vote (a weighted voting for boosting).

BOOSTING PREDICTOR LOOP END closes the loop.

Then we insert the SCORER tool into the diagram. It compares REGION_TYPE and Prediction(REGION TYPE). Here is the diagram as a whole.

The test error rate reported by SCORER is **4.90%**.

🛕 Confusio		×								
<u>F</u> ile <u>H</u> ilite										
REGION_T	BRICKFACE	SKY	FOLIAGE	CEMENT	WINDOW	PATH	GRASS			
BRICKFACE	289	0	0	7	4	0	0	1		
SKY	0	300	0	0	0	0	0			
FOLIAGE	2	0	276	7	15	0	0			
CEMENT	1	0	0	286	10	3	0			
WINDOW	1	0	26	17	256	0	0			
PATH	0	0	0	7	0	293	0			
GRASS	0	0	0	2	0	1	297			
Correct dassified: 1 997 Wrong dassified: 103										
	Accuracy:	95,095 %		Error: 4,905 %						
Cohen's kappa (κ) 0,943										

Knime always offers interesting solutions. The hard part is understanding the logical layout of the components. But once we understand the ideas, the pattern seems clear.

6 Conclusion

The first objective of this tutorial is to provide a practical touch to course material dedicated to the ensemble techniques that I have written <u>lately</u>. I compare the specific libraries for R and Python, but also the tools provided by Tanagra and Knime. In the end, at least as regards the "image" dataset, these approaches are particularly effective. This is also somewhat true in general. Random Forest and Boosting often offer the best results in the challenges.

7 References

Package "<u>adabag</u>" for R.

Package "<u>randomForest</u>" for R.

Scikit-learn ensemble methods for Python.