
Tanagra Data Mining Ricco Rakotomalala

30 décembre 2015 Page 1/40

1 Topic

How to perform Random Forest and Boosting with R and Python mainly, but also with

Tanagra and Knime .

This tutorial follows the slideshow devoted to the "Bagging, Random Forest and Boosting".

We show the implementation of these methods on a data file. We will follow the same steps

as the slideshow i.e. we first describe the construction of a decision tree, we measure the

prediction performance, and then we see how ensemble methods can improve the results.

Various aspects of these methods will be highlighted: the measure of the variable

importance, the influence of the parameters, the influence of the characteristics of the

underlying classifier (e.g. controlling the tree size), etc.

As a first step, we will focus on R (rpart, adabag and randomforest packages) and Python

(scikit-learn package). We can multiply analyses by programming. Among others, we can

evaluate the influence of parameters on the performance. As a second step, we will explore

the capabilities of software (Tanagra and Knime) providing turnkey solutions, very simple to

implement, more accessible for people which do not like programming.

2 Dataset

We use the « Image Segmentation Data Set » from the UCI Machine Learning repository. The

instances were drawn randomly from a database of 7 outdoor images. The images were

hand segmented to create a classification for every pixel. There are 210 instances for the

training sample, and 2100 instances for the test set.

Rather than manipulate two data files, we have gathered observations in the single data file

"image.txt", with an additional column "sample" indicating their membership (train or test).

Here are some rows and columns of the dataset. REGION.TYPE is the target attribute.

http://data-mining-tutorials.blogspot.fr/2015/12/bagging-random-forest-boosting-slides.html
https://archive.ics.uci.edu/ml/datasets/Image+Segmentation

Tanagra Data Mining Ricco Rakotomalala

30 décembre 2015 Page 2/40

3 Analysis with R

3.1 Data importation and preparation

We import the « image.txt » data file with the following parameters.

#data importation

setwd("… directory of the data file…")

image_all <- read.table("image.txt",sep="\t",dec=".",header=TRUE)

print(summary(image_all))

The summary() command provides an overview of the characteristics of the data and allows

to detect eventual anomalies.

 REGION_TYPE REGION_CENTROID_COL REGION_CENTROID_ROW REGION_PIXEL_COUNT SHORT_LINE_DENSITY_5

 BRICKFACE:330 Min. : 1.0 Min. : 11.0 Min. :9 Min. :0.00000

 CEMENT :330 1st Qu.: 62.0 1st Qu.: 81.0 1st Qu.:9 1st Qu.:0.00000

 FOLIAGE :330 Median :121.0 Median :122.0 Median :9 Median :0.00000

 GRASS :330 Mean :124.9 Mean :123.4 Mean :9 Mean :0.01433

 PATH :330 3rd Qu.:189.0 3rd Qu.:172.0 3rd Qu.:9 3rd Qu.:0.00000

 SKY :330 Max. :254.0 Max. :251.0 Max. :9 Max. :0.33333

 WINDOW :330

 SHORT_LINE_DENSITY_2 VEDGE_MEAN VEDGE_SD HEDGE_MEAN HEDGE_SD

 Min. :0.000000 Min. : 0.0000 Min. : 0.0000 Min. : 0.0000 Min. : 0.0000

 1st Qu.:0.000000 1st Qu.: 0.7222 1st Qu.: 0.3556 1st Qu.: 0.7778 1st Qu.: 0.4216

 Median :0.000000 Median : 1.2222 Median : 0.8333 Median : 1.4444 Median : 0.9630

 Mean :0.004714 Mean : 1.8939 Mean : 5.7093 Mean : 2.4247 Mean : 8.2437

 3rd Qu.:0.000000 3rd Qu.: 2.1667 3rd Qu.: 1.8064 3rd Qu.: 2.5556 3rd Qu.: 2.1833

 Max. :0.222222 Max. :29.2222 Max. :991.7184 Max. :44.7222 Max. :1386.3292

 INTENSITY_MEAN RAWRED_MEAN RAWBLUE_MEAN RAWGREEN_MEAN EXRED_MEAN EXBLUE_MEAN

 Min. : 0.000 Min. : 0.00 Min. : 0.000 Min. : 0.000 Min. :-49.667 Min. :-12.444

 1st Qu.: 7.296 1st Qu.: 7.00 1st Qu.: 9.556 1st Qu.: 6.028 1st Qu.:-18.556 1st Qu.: 4.139

 Median : 21.593 Median : 19.56 Median : 27.667 Median : 20.333 Median :-10.889 Median : 19.667

 Mean : 37.052 Mean : 32.82 Mean : 44.188 Mean : 34.146 Mean :-12.691 Mean : 21.409

 3rd Qu.: 53.213 3rd Qu.: 47.33 3rd Qu.: 64.889 3rd Qu.: 46.500 3rd Qu.: -4.222 3rd Qu.: 35.778

 Max. :143.444 Max. :137.11 Max. :150.889 Max. :142.556 Max. : 9.889 Max. : 82.000

 EXGREEN_MEAN VALUE_MEAN SATURATION_MEAN HUE_MEAN sample

 Min. :-33.889 Min. : 0.00 Min. :0.0000 Min. :-3.044 test :2100

 1st Qu.:-16.778 1st Qu.: 11.56 1st Qu.:0.2842 1st Qu.:-2.188 train: 210

 Median :-10.889 Median : 28.67 Median :0.3748 Median :-2.051

 Mean : -8.718 Mean : 45.14 Mean :0.4269 Mean :-1.363

 3rd Qu.: -3.222 3rd Qu.: 64.89 3rd Qu.:0.5401 3rd Qu.:-1.562

 Max. : 24.667 Max. :150.89 Max. :1.0000 Max. : 2.913

We note that we have a well balanced dataset (REGION_TYPE).

We subdivide the data into training and test sets using the column “sample”. Then, we

exclude this last column from the data.frame.

#subdivision into training and test sets

image_train <- image_all[image_all$sample=="train",1:20]

image_test <- image_all[image_all$sample=="test",1:20]

print(summary(image_train$REGION_TYPE))

print(summary(image_test$REGION_TYPE))

Tanagra Data Mining Ricco Rakotomalala

30 décembre 2015 Page 3/40

We have the following class distribution for each sample:

> print(summary(image_train$REGION_TYPE))

BRICKFACE CEMENT FOLIAGE GRASS PATH SKY WINDOW

 30 30 30 30 30 30 30

> print(summary(image_test$REGION_TYPE))

BRICKFACE CEMENT FOLIAGE GRASS PATH SKY WINDOW

 300 300 300 300 300 300 300

3.2 Function for performance evaluation

We use the error rate to assess the quality of prediction. We write a function for this

purpose. It takes as input the observed target variable and the prediction of a model.

#function for performance evaluation

error_rate <- function(yobs,ypred){

 #confusion matrix

 mc <- table(yobs,ypred)

 #error rate = 1 - success rate

 err <- 1.0 - sum(diag(mc))/sum(mc)

 return(err)

}

3.3 Classification tree

We use the “rpart” package for the construction of the classification tree. It is very popular

and, important for our context, it is underlying to the ensemble methods packages for R (e.g.

adabag). Thus, we can reuse the parameters defined in this section. We will have a

consistent view of the results.

3.3.1 Classification tree with the default settings

We fit a first version of the trees with the default settings.

#classification tree

library(rpart)

arbre_1 <- rpart(REGION_TYPE ~ ., data = image_train)

print(arbre_1)

We obtain a tree with 9 leaves:

n= 210

node), split, n, loss, yval, (yprob)

 * denotes terminal node

 1) root 210 180 BRICKFACE (0.14 0.14 0.14 0.14 0.14 0.14 0.14)

 2) INTENSITY_MEAN< 79.037 180 150 BRICKFACE (0.17 0.17 0.17 0.17 0.17 0 0.17)

 4) EXGREEN_MEAN< 0.8889 150 120 BRICKFACE (0.2 0.2 0.2 0 0.2 0 0.2)

 8) REGION_CENTROID_ROW< 160.5 120 90 BRICKFACE (0.25 0.25 0.25 0 0 0 0.25)

https://cran.r-project.org/web/packages/rpart/index.html

Tanagra Data Mining Ricco Rakotomalala

30 décembre 2015 Page 4/40

 16) HUE_MEAN>=-1.78935 37 8 BRICKFACE (0.78 0.027 0.027 0 0 0 0.16)

 32) EXGREEN_MEAN< -7.05555 30 2 BRICKFACE (0.93 0.033 0.033 0 0 0 0) *

 33) EXGREEN_MEAN>=-7.05555 7 1 WINDOW (0.14 0 0 0 0 0 0.86) *

 17) HUE_MEAN< -1.78935 83 54 CEMENT (0.012 0.35 0.35 0 0 0 0.29)

 34) EXGREEN_MEAN< -10.94445 29 3 CEMENT (0 0.9 0.034 0 0 0 0.069) *

 35) EXGREEN_MEAN>=-10.94445 54 26 FOLIAGE (0.019 0.056 0.52 0 0 0 0.41)

 70) HUE_MEAN< -2.0828 38 10 FOLIAGE (0 0.026 0.74 0 0 0 0.24)

 140) SATURATION_MEAN>=0.50715 25 1 FOLIAGE (0 0 0.96 0 0 0 0.04) *

 141) SATURATION_MEAN< 0.50715 13 5 WINDOW (0 0.077 0.31 0 0 0 0.62) *

 71) HUE_MEAN>=-2.0828 16 3 WINDOW (0.062 0.12 0 0 0 0 0.81) *

 9) REGION_CENTROID_ROW>=160.5 30 0 PATH (0 0 0 0 1 0 0) *

 5) EXGREEN_MEAN>=0.8889 30 0 GRASS (0 0 0 1 0 0 0) *

 3) INTENSITY_MEAN>=79.037 30 0 SKY (0 0 0 0 0 1 0) *

We read carefully the tree:

 the character ”*” indicates the terminal nodes (leaves) of the tree;

 there are 9 leaves, thus 9 rules;

 some variables only among the 19 available have been used, some several times (e.g.

EXGREEN_MEAN);

 we detail the reading of the node n°34: it contains 29 observations (n), with 3

counter-examples (loss), the conclusion is CEMENT (yval), which corresponds to ≈

90% ((29-3)/29 = 0.8966) (yprob) of the instances located on this node.

We calculate the prediction of the model on the test sample, and then we compare it with

the observed target variable.

#prediction on the test set

pred_1 <- predict(arbre_1,newdata=image_test,type="class")

#error rate

print(error_rate(image_test$REGION_TYPE,pred_1))

The test error rate is 12.85%.

3.3.2 Decision stump

A decision stump is a one-level decision tree. We have only two leaves if we fit a binary tree.

It is not really adapted in our context of multiclass target attribute. But this kind of tree can

be useful in the ensemble methods context that we study below, especially for the boosting

approach which reduces the bias of the base classifier. Indeed, we note that we obtain an

overall linear classifier with the boosting of decision stumps. In this section, we mostly want

to identify the parameters that change the behavior of the rpart() procedure.

https://en.wikipedia.org/wiki/Decision_stump

Tanagra Data Mining Ricco Rakotomalala

30 décembre 2015 Page 5/40

#decision stump

param_stump = rpart.control(cp=0,maxdepth=1,minsplit=2,minbucket=1)

arbre_2 <- rpart(REGION_TYPE ~ ., data = image_train,control=param_stump)

print(arbre_2)

The “control” option enables to set the parameters of the algorithm:

 “cp” acts as pre-pruning parameter during the growing of the tree. A split is accepted

only if the relative reduction in the Gini index is greater than "cp". By setting its value

to zero, we disable his action.

 “minsplit” indicates the minimal size (number of instances) of a node in order to

attempt a split.

 “minbucket” corresponds to the minimum number of observations in any leaf.

 “maxdepth” corresponds to the maximum depth of any node of the final tree, with

the root node counted as depth 0. With the value “maxdepth = 1”, we define a

decision stump (one-level tree).

We obtain the following classification tree…

n= 210

node), split, n, loss, yval, (yprob)

 * denotes terminal node

1) root 210 180 BRICKFACE (0.14 0.14 0.14 0.14 0.14 0.14 0.14)

 2) INTENSITY_MEAN< 79.037 180 150 BRICKFACE (0.17 0.17 0.17 0.17 0.17 0 0.17) *

 3) INTENSITY_MEAN>=79.037 30 0 SKY (0 0 0 0 0 1 0) *

which is not really efficient…

#prediction and error rate

pred_2 <- predict(arbre_2,newdata=image_test,type="class")

print(error_rate(image_test$REGION_TYPE,pred_2))

… with a test error rate = 71.42%. Only the class SKY is recognized.

3.3.3 Deeper tree

In this section, we try to learn a very deep tree with a maximum depth of 30 levels (which is

the default value). We do not want that the settings about impurity reduction or node size

interfere here. We put them to the minimum.

We set the following instructions:

#new settings: deeper tree

param_deep = rpart.control(cp=0,maxdepth=30,minsplit=2,minbucket=1)

Tanagra Data Mining Ricco Rakotomalala

30 décembre 2015 Page 6/40

arbre_3 <- rpart(REGION_TYPE ~ ., data = image_train,control=param_deep)

#prediction and error rate

pred_3 <- predict(arbre_3,newdata=image_test,type="class")

print(error_rate(image_test$REGION_TYPE,pred_3))

We obtain a tree with 21 leaves with a test error rate = 10.42%. The large tree is better than

the first. There is no overfitting. This is not very usual. This suggests that we have not noisy

labels. The quality of the learning depends from the number of observations in the learning

sample, which is especially determinant with regard to the performance of decision trees.

3.4 Bagging

We use the “adabag” package for the bagging process under R A thorough description of the

package and the procedures has been published in Journal of Statistical Software1.

3.4.1 Bagging with 20 trees (default parameter)

We begin with a bagging with 20 trees. We do not modify the other settings (parameters of

the underlying tree learning algorithm).

#adabag package

library(adabag)

#bagging

bag_1 <- bagging(REGION_TYPE ~ ., data = image_train, mfinal=20)

#prediction

predbag_1 <- predict(bag_1,newdata = image_test)

#test error rate

print(error_rate(image_test$REGION_TYPE,predbag_1$class))

The print() of the object provides many information (e.g. individuals in each bootstrap

sample, prediction, class membership probability, etc.) which are difficult to interpret. We

will look at the most important elements in the following sections.

We perform the prediction on the test sample. We obtain a prediction object with several

properties including the predicted class values ($class). The test error rate is 8.86%. This is

best result that we obtain up to now.

1
 E. Alfaro, M. Gamez, N. Garcia, « adabag : An R Package for Classification with Boosting and Bagging », in

Journal of Statistical Software, 54(2), 2013.

https://cran.r-project.org/web/packages/adabag/adabag.pdf
http://www.jstatsoft.org/article/view/v054i02

Tanagra Data Mining Ricco Rakotomalala

30 décembre 2015 Page 7/40

3.4.2 Accessing the trees

The method generates a collection of trees. They are accessible with the property $trees of

the result object. We access to the first generated tree.

#first tree

print(bag_1$trees[[1]])

We obtain:

n= 210

node), split, n, loss, yval, (yprob)

 * denotes terminal node

 1) root 210 176 CEMENT (0.15 0.16 0.14 0.16 0.12 0.14 0.13)

 2) EXGREEN_MEAN< 0.8889 176 142 CEMENT (0.18 0.19 0.16 0 0.14 0.17 0.15)

 4) INTENSITY_MEAN< 78.16665 146 112 CEMENT (0.21 0.23 0.2 0 0.17 0 0.18)

 8) REGION_CENTROID_ROW< 160.5 121 87 CEMENT (0.26 0.28 0.24 0 0 0 0.22)

 16) HUE_MEAN>=-1.64025 27 1 BRICKFACE (0.96 0 0 0 0 0 0.037) *

 17) HUE_MEAN< -1.64025 94 60 CEMENT (0.053 0.36 0.31 0 0 0 0.28)

 34) EXGREEN_MEAN< -12.05555 36 7 CEMENT (0.11 0.81 0.028 0 0 0 0.056)

 68) SATURATION_MEAN< 0.3764 27 0 CEMENT (0 1 0 0 0 0 0) *

 69) SATURATION_MEAN>=0.3764 9 5 BRICKFACE (0.44 0.22 0.11 0 0 0 0.22) *

 35) EXGREEN_MEAN>=-12.05555 58 30 FOLIAGE (0.017 0.086 0.48 0 0 0 0.41)

 70) SATURATION_MEAN>=0.7639 26 3 FOLIAGE (0 0 0.88 0 0 0 0.12) *

 71) SATURATION_MEAN< 0.7639 32 11 WINDOW (0.031 0.16 0.16 0 0 0 0.66)

 142) REGION_CENTROID_ROW>=145.5 8 3 CEMENT (0.12 0.62 0 0 0 0 0.25) *

 143) REGION_CENTROID_ROW< 145.5 24 5 WINDOW (0 0 0.21 0 0 0 0.79)

 286) REGION_CENTROID_COL< 104.5 8 3 FOLIAGE (0 0 0.62 0 0 0 0.37) *

 287) REGION_CENTROID_COL>=104.5 16 0 WINDOW (0 0 0 0 0 0 1) *

 9) REGION_CENTROID_ROW>=160.5 25 0 PATH (0 0 0 0 1 0 0) *

 5) INTENSITY_MEAN>=78.16665 30 0 SKY (0 0 0 0 0 1 0) *

 3) EXGREEN_MEAN>=0.8889 34 0 GRASS (0 0 0 1 0 0 0) *

The bootstrap sample consists of 210 observations (n = 210 in the R output above). But,

compared with the learning sample, some instances are repeated, others are absent. For this

reason, we get a different tree than with rpart() on the original learning sample, even if the

learning algorithm is based on the same default settings (section 3.3.1).

3.4.3 Importance of each variable

It is impossible to analyze all the trees to evaluate the influence of the predictor variables in

the modeling. The "variable importance" measurement allows to overcome this drawback.

We display them in descending order of importance here:

#variable importance

print(sort(bag_1$importance,decreasing=TRUE))

Tanagra Data Mining Ricco Rakotomalala

30 décembre 2015 Page 8/40

We obtain the following results:

 INTENSITY_MEAN EXGREEN_MEAN HUE_MEAN REGION_CENTROID_ROW

 28.0874825 20.4393368 19.2377527 17.8348773

 SATURATION_MEAN RAWBLUE_MEAN RAWRED_MEAN REGION_CENTROID_COL

 4.2957024 2.2591761 2.1003289 2.0693125

 EXRED_MEAN EXBLUE_MEAN HEDGE_MEAN VEDGE_MEAN

 1.6970205 0.9473870 0.6807030 0.3509204

 HEDGE_SD RAWGREEN_MEAN REGION_PIXEL_COUNT SHORT_LINE_DENSITY_2

 0.0000000 0.0000000 0.0000000 0.0000000

SHORT_LINE_DENSITY_5 VALUE_MEAN VEDGE_SD

 0.0000000 0.0000000 0.0000000

INTENSITY_MEAN it is the most important variable in the sense that it induces the highest

reduction of impurity in the trees where it appears. HEDGE_SD à VEDGE_SD have no

influence (importance = 0) because they do not appear in any tree (we detail this comment

below, section 3.4.4).

A graphical output is available with the command importanceplot() :

#graphical output

importanceplot(bag_1,cex.names=0.5,horiz=TRUE)

There is a discrepancy between the first, the following 3 variables, then the others.

Tanagra Data Mining Ricco Rakotomalala

30 décembre 2015 Page 9/40

3.4.4 Comment about the calculation of the variable importance

I had a doubt about the adabag calculation of the variable importance. Indeed, in

accordance with the CART2 methodology, rpart proposes a variable important measure that

quantifies the influence of a variable, even if it does not appear in the tree. It is based on the

surrogate split3 mechanism. I was wondering if adabag does not simply perform a sum of the

values provided by rpart. I have therefore developed a bagged model with a single tree that I

inspected.

#bagging with one tree

bag_seul <- bagging(REGION_TYPE ~ ., data = image_train,mfinal=1)

#the tree

print(bag_seul$trees[[1]])

#variable importance

print(bag_seul$importance)

We obtain the following classification tree,

n= 210

node), split, n, loss, yval, (yprob)

 * denotes terminal node

 1) root 210 177 BRICKFACE (0.16 0.13 0.15 0.15 0.14 0.13 0.14)

 2) EXGREEN_MEAN< 0.8889 179 146 BRICKFACE (0.18 0.16 0.17 0 0.16 0.16 0.17)

 4) REGION_CENTROID_ROW< 160.5 150 117 BRICKFACE (0.22 0.19 0.21 0 0 0.19 0.2)

 8) INTENSITY_MEAN< 79.037 122 89 BRICKFACE (0.27 0.23 0.25 0 0 0 0.25)

 16) HUE_MEAN>=-1.8422 44 11 BRICKFACE (0.75 0.023 0.068 0 0 0 0.16)

 32) EXGREEN_MEAN< -7.05555 37 4 BRICKFACE (0.89 0.027 0.081 0 0 0 0) *

 33) EXGREEN_MEAN>=-7.05555 7 0 WINDOW (0 0 0 0 0 0 1) *

 17) HUE_MEAN< -1.8422 78 50 FOLIAGE (0 0.35 0.36 0 0 0 0.29)

 34) EXGREEN_MEAN< -10.94445 30 4 CEMENT (0 0.87 0.067 0 0 0 0.067) *

 35) EXGREEN_MEAN>=-10.94445 48 22 FOLIAGE (0 0.021 0.54 0 0 0 0.44)

 70) HUE_MEAN< -2.2124 20 0 FOLIAGE (0 0 1 0 0 0 0) *

 71) HUE_MEAN>=-2.2124 28 7 WINDOW (0 0.036 0.21 0 0 0 0.75)

 142) RAWRED_MEAN< 0.7778 9 3 FOLIAGE (0 0 0.67 0 0 0 0.33) *

 143) RAWRED_MEAN>=0.7778 19 1 WINDOW (0 0.053 0 0 0 0 0.95) *

 9) INTENSITY_MEAN>=79.037 28 0 SKY (0 0 0 0 0 1 0) *

 5) REGION_CENTROID_ROW>=160.5 29 0 PATH (0 0 0 0 1 0 0) *

 3) EXGREEN_MEAN>=0.8889 31 0 GRASS (0 0 0 1 0 0 0) *

The following variables are present: EXGREEN_MEAN, REGION_CENTROID_ROW,

INTENSITY_MEAN, HUE_MEAN, RAWRED_MEAN. In the variable importance list, only these

2
 L. Breiman, J. Friedman, R. Olshen, C. Stone, « Classification and Regression Trees », Wadsworth, 1984.

3
 T. Therneau, E. Atkinson, « An Introduction to Recursive Partitioning Using RPART Routines », 2015 ; see

section 3.4, page 11.

https://cran.r-project.org/web/packages/rpart/vignettes/longintro.pdf

Tanagra Data Mining Ricco Rakotomalala

30 décembre 2015 Page 10/40

variables have an importance greater than 0. The most important variable is

EXGREEN_MEAN because it appears repeatedly, especially at the root of the tree.

 EXBLUE_MEAN EXGREEN_MEAN EXRED_MEAN HEDGE_MEAN

 0.000000 38.471715 0.000000 0.000000

 HEDGE_SD HUE_MEAN INTENSITY_MEAN RAWBLUE_MEAN

 0.000000 22.219920 17.858486 0.000000

 RAWGREEN_MEAN RAWRED_MEAN REGION_CENTROID_COL REGION_CENTROID_ROW

 0.000000 3.155757 0.000000 18.294122

 REGION_PIXEL_COUNT SATURATION_MEAN SHORT_LINE_DENSITY_2 SHORT_LINE_DENSITY_5

 0.000000 0.000000 0.000000 0.000000

 VALUE_MEAN VEDGE_MEAN VEDGE_SD

 0.000000 0.000000 0.000000

Obviously, "adabag" takes account only the variables that appear in the trees when it

computes the variable importance.

3.4.5 Modifying the tree characteristics

According to the literature, Bagging affects only the variance component of the error, not

the bias. Thus, a bagging of decision stumps is not a good idea; by contrast, increasing the

size of the base classifications trees would have a positive effect. Let us examine that.

Bagging of decision stumps. We reuse the parameters defined above (section 3.3.2).

#bagging of decision stumps

bag_stump <- bagging(REGION_TYPE~.,data=image_train,mfinal=20,control=param_stump)

#prediction

predbag_stump <- predict(bag_stump,newdata = image_test)

#test error rate

print(error_rate(image_test$REGION_TYPE,predbag_stump$class))

The idea is disastrous on our dataset with a test error rate = 85.71%.

Bagging of deep trees. The aim is to reduce the bias of the base classification trees. We hope

that the combination of the classifiers overcompensates the increase in variance.

#bagging of large trees

bag_deep <- bagging(REGION_TYPE~.,data=image_train,mfinal=20, control=param_deep)

#prediction

predbag_deep <- predict(bag_deep,newdata = image_test)

#test error rate

print(error_rate(image_test$REGION_TYPE,predbag_deep$class))

The test error rate is equal to 6.14%. Of course, we cannot generalize from a single result,

but this kind of behavior is consistent with the theory.

Tanagra Data Mining Ricco Rakotomalala

30 décembre 2015 Page 11/40

3.4.6 Make varying the number of trees

The number of base classifiers is crucial in the ensemble methods. In our experiment, we try

the following number of trees [m = (1, 5, 10, 20, 50, 100, 200)] and we measure the test

error rate. Each m is evaluated 20 times in order to have some stability in the results. We

then calculate the average of the error rates.

#various values of number of trees

m_a_tester <- c(1,5,10,20,50,100,200)

#learning and testing phases

train_test_bag <- function(m){

 bag <- bagging(REGION_TYPE ~ .,data=image_train,mfinal=m,control=param_deep)

 predbag <- predict(bag,newdata = image_test)

 return(error_rate(image_test$REGION_TYPE,predbag$class))

}

#evaluate 20 times each value of m

result <- replicate(20,sapply(m_a_tester,train_test_bag))

#graphical representation of the results

#horizontal axis: m, vertical axis: mean of the errors for each m

plot(m_a_tester,apply(result,1,mean),xlab="m",ylab="Err. rate",type="b")

Knowing programming in R becomes significant here!

Starting from m = 50, additional trees do not improve the performance. The error rate would

be 5.7% for m = 50. We must take with caution this value because we used the test set to

select the best model. It is not really impartial. It would be more appropriate to use another

procedure for the selection of models. Scikit-learn for Python for example uses the cross-

Tanagra Data Mining Ricco Rakotomalala

30 décembre 2015 Page 12/40

validation to detect the best combination of parameters. Thereafter, we can evaluate the

best model identified in this way on the test set (see section 4).

3.5 Random Forest

In certain respects, Random Forest is an improved version of the bagging, where the

underlying models are necessarily classification trees. A random disturbance is introduced in

the learning process in order to "decorrelate" them. We use “randomForest” library for R. A

very large tree is created with the default settings: when maxnodes is not specified, there is

no limitation on the size of the tree; nodesize indicates the minimum number of

observations into leaves (default value 1).

3.5.1 Random Forest with 20 trees

We fit and evaluate a model with 20 trees.

#random forest

library(randomForest)

rf_1 <- randomForest(REGION_TYPE ~ ., data = image_train, ntree = 20)

#prediction

predrf_1 <- predict(rf_1,newdata=image_test,type="class")

#test error rate

print(error_rate(image_test$REGION_TYPE,predrf_1))

The test error rate is 5.05%.

3.5.2 Out-of-bag (OOB) error rate

Random Forest offers an internal mechanism for the error rate estimation. We do not need

an additional dataset or an additional learning process. We have access to the confusion

matrix and we can deduce the error rate.

out-of-bag confusion matrix

print(rf_1$confusion)

out-of-bag error rate

print(1-sum(diag(rf_1$confusion))/sum(rf_1$confusion))

We have 10.3%. The out-of-bag error clearly overestimates the error on our dataset. We did

well to use a separate test sample for our example.

https://en.wikipedia.org/wiki/Random_forest

Tanagra Data Mining Ricco Rakotomalala

30 décembre 2015 Page 13/40

3.5.3 Accessing to trees

We can access to the underlying trees.

#access to the first tree

print(getTree(rf_1,1))

The presentation is not intuitive:

 left daughter right daughter split var split point status prediction

1 2 3 11 69.22220 1 0

2 4 5 19 0.91940 1 0

3 0 0 0 0.00000 -1 6

4 6 7 8 0.63890 1 0

5 0 0 0 0.00000 -1 4

6 8 9 11 5.11115 1 0

7 10 11 2 159.50000 1 0

8 12 13 11 0.11110 1 0

9 14 15 10 7.40740 1 0

10 16 17 13 23.05555 1 0

11 0 0 0 0.00000 -1 5

12 18 19 14 -0.77780 1 0

13 0 0 0 0.00000 -1 7

14 0 0 0 0.00000 -1 1

15 0 0 0 0.00000 -1 7

16 20 21 19 -1.85465 1 0

17 0 0 0 0.00000 -1 2

18 0 0 0 0.00000 -1 3

19 0 0 0 0.00000 -1 7

20 22 23 2 145.50000 1 0

21 24 25 18 0.38770 1 0

22 26 27 10 14.74075 1 0

23 28 29 12 7.55555 1 0

24 0 0 0 0.00000 -1 3

25 30 31 6 1.61110 1 0

26 32 33 7 0.10740 1 0

27 34 35 19 -2.19505 1 0

28 0 0 0 0.00000 -1 7

29 0 0 0 0.00000 -1 2

30 0 0 0 0.00000 -1 1

31 36 37 11 12.05555 1 0

32 0 0 0 0.00000 -1 7

33 0 0 0 0.00000 -1 3

34 0 0 0 0.00000 -1 3

35 38 39 17 28.55555 1 0

36 0 0 0 0.00000 -1 7

37 0 0 0 0.00000 -1 1

38 0 0 0 0.00000 -1 7

39 0 0 0 0.00000 -1 2

Tanagra Data Mining Ricco Rakotomalala

30 décembre 2015 Page 14/40

The nodes are numbered, splitting variable is identified by its number, an intermediate node

corresponds to a status equal to 1, a leaf has a status equal to -1, the predicted class number

is indicated in the prediction column.

3.5.4 Variable importance

The calculation of the variable importance is consistent with the bagging. In addition, the

“randomForest” package indicates the number of occurrence of variables, knowing that a

variable may be present multiple times in a tree.

#occurrence of variables

print(data.frame(cbind(colnames(image_train)[2:20],varUsed(rf_1))))

#variable importance

varImpPlot(rf_1)

REGION_PIXEL_COUNT is included in no tree despite the random selection mechanism….

 X1 X2

1 REGION_CENTROID_COL 27

2 REGION_CENTROID_ROW 33

3 REGION_PIXEL_COUNT 0

4 SHORT_LINE_DENSITY_5 7

5 SHORT_LINE_DENSITY_2 2

6 VEDGE_MEAN 19

7 VEDGE_SD 20

8 HEDGE_MEAN 25

9 HEDGE_SD 22

10 INTENSITY_MEAN 27

11 RAWRED_MEAN 27

12 RAWBLUE_MEAN 21

13 RAWGREEN_MEAN 24

14 EXRED_MEAN 23

15 EXBLUE_MEAN 16

16 EXGREEN_MEAN 33

17 VALUE_MEAN 14

18 SATURATION_MEAN 28

19 HUE_MEAN 45

… its importance is logically null.

HUE_MEAN is the most relevant. This is not the case in the bagging where INTENSITY_MEAN

seems to be the most relevant one (section 3.4.3).

Tanagra Data Mining Ricco Rakotomalala

30 décembre 2015 Page 15/40

3.5.5 Tree number

We reiterate the experimentation to identify the "optimal" number of trees. Compared to

“adabag”, “randomForest” is very quick.

number of trees to try

m_a_tester <- c(1,5,10,20,50,100,200)

#training and testing phase

train_test_rf <- function(m){

 rf <- randomForest(REGION_TYPE ~ .,data=image_train,ntree=m)

 predrf <- predict(rf,newdata = image_test)

 return(error_rate(image_test$REGION_TYPE,predrf))

}

#evaluate 20 times for each value of m

result <- replicate(20,sapply(m_a_tester,train_test_rf))

#graphical representation

plot(m_a_tester,apply(result,1,mean),xlab="m",ylab="Err. rate",type="b")

Starting from m = 100 trees, the error decreases very slowly, but seems still decrease. There

is no overfitting phenomenon when we add trees.

With m = 200, the test error rate is 4.25%. But, again, because the test sample is used in

order to detect the best model, the test error rate must be considered with caution.

Tanagra Data Mining Ricco Rakotomalala

30 décembre 2015 Page 16/40

3.6 Boosting

We use again the “adabag” package in order to implement boosting with R. The process is

the same as the previous sections. The variable importance takes into account the weight of

the classifiers here. The real issues are the setting of the underlying tree and the number of

trees. Indeed, the boosting may be subject to overfitting.

3.6.1 Boosting with 20 trees (default settings for the trees)

#boosting

bo_1 <- boosting(REGION_TYPE ~ ., data = image_train,mfinal=20, boos=FALSE)

#prediction

predbo_1 <- predict(bo_1,newdata = image_test)

#test error rate

print(error_rate(image_test$REGION_TYPE,predbo_1$class))

The test error rate is 5.67%. This result is better than any bagging we have tried. It is similar

than the Random Forest with 20 trees (5.05%).

The option "boos = FALSE" plays an important role. It indicates that we are using the original

version AdaBoost based on the weighting of all individuals. If it is equal to TRUE, the

algorithm relies on a random sampling with replacement, but with unequal probability

proportional to the weights. The result is not deterministic in this case.

Tanagra Data Mining Ricco Rakotomalala

30 décembre 2015 Page 17/40

3.6.2 Depth of the trees

Boosting with decision stumps. We use the SAMME algorithm here (coeflearn = ‘Zhu’) ,

more adapted to the multiclass problem.

#boosting with decision stumps

bo_stump <- boosting(REGION_TYPE ~ ., data = image_train,mfinal=20, coeflearn=

 'Zhu', control=param_stump, boos=FALSE)

#prediction

predbo_stump <- predict(bo_stump,newdata = image_test)

#test error rate

print(error_rate(image_test$REGION_TYPE,predbo_stump$class))

This is not at all convincing with a test error rate = 61.6%. Boosting allows to reduce bias, but

in our context of a target attribute with 7 values, it is not efficient.

Boosting with deep trees. Let us see if, as for the bagging, the increase in the size of the tree

influences positively the performance.

#boosting with deep trees

bo_deep <- boosting(REGION_TYPE ~ ., data = image_train,mfinal=20, boos=FALSE,

 coeflearn= 'Zhu', control=param_deep)

#prediction

predbo_deep <- predict(bo_deep,newdata = image_test)

#test error rate

print(error_rate(image_test$REGION_TYPE,predbo_deep$class))

Here too, this solution is not convincing with a test error rate equal to 10.4%. We are facing

a overfitting problem when the underlying model is too complex, in accordance with the

machine learning literature.

3.6.3 Tree number

We reiterate the experimentation on the number of trees.

#number of trees

m_a_tester <- c(1,5,10,20,50,100,200)

#function for training and testing

train_test_boosting <- function(m){

 bo <- boosting(REGION_TYPE ~ .,data=image_train,mfinal=m,coeflearn='Zhu')

 predbo <- predict(bo,newdata = image_test)

 return(error_rate(image_test$REGION_TYPE,predbo$class))

}

Tanagra Data Mining Ricco Rakotomalala

30 décembre 2015 Page 18/40

#evaluate 20 times for each value of m

result <- replicate(20,sapply(m_a_tester,train_test_boosting))

#graphical representation

plot(m_a_tester,apply(result,1,mean),xlab="m",ylab="Err. rate",type="b")

We obtain the following graphical representation:

Starting from m = 50, the decreasing of the error rate is small. But there is not an overfitting

phenomenon when we increase m (until m = 200 in any case).

4 Analysis with Python

In this section, we want to show the implementation of the different techniques in Python

(scikit-learn package, version 0.17), without trying to reproduce all of the experiments that

have been conducted under R. We presented the package “scikit-learn” in a previous

tutorial4. This second document allows us to go further.

4.1 Data importation and preparation

We import the data file "image.txt" and we verify the shape of the table object.

#change the default directory

import os

os.chdir("… your directory …")

#import the data file using the pandas library

4
 Tanagra, “Python - Machine Learning with scikit-learn (slides)”, December 2015.

http://scikit-learn.org/stable/
http://data-mining-tutorials.blogspot.fr/2015/12/python-machine-learning-with-scikit.html

Tanagra Data Mining Ricco Rakotomalala

30 décembre 2015 Page 19/40

import pandas

image_all = pandas.read_table("image.txt",sep="\t",header=0,decimal= ".")

#shape of the table

print(image_all.shape) # (2310, 21)

We use the “pandas” package for the importation. “image_all” is an object of the DataFrame

class5, very similar to the R class6. We have a tabular data with 2310 rows and 21 columns.

We exploit the column "sample" in order to subdivide the dataset into training and test sets.

We extract Numpy matrices and vectors that we use with scikit-learn procedures thereafter.

We extract the training set,

#training sample - select the instances

image_train = image_all[image_all["sample"]=="train"]

#remove the column ‘sample’

image_train = image_train.iloc[:,0:20]

#checking

print(image_train.shape) # (210, 20)

#transformation into numpy matrix

d_train = image_train.as_matrix()

#vector for the target attribute

y_app = d_train[:,0]

#matrix for the predictive attributes

X_app = d_train[:,1:20]

The predictive variables and the target are divided in two different objects: X_app is a matrix

with 210 rows and 19 columns; y_app is a vector with 210 values.

We proceed the same for the test set.

#test

image_test = (image_all[image_all["sample"]=="test"]).iloc[:,0:20]

print(image_test.shape) # (2100, 20)

y_test = image_test.as_matrix()[:,0]

X_test = image_test.as_matrix()[:,1:20]

4.2 Function for performance evaluation

As for R, we define a function which calculates the error rate on the test sample. It is very

generic because we use only the “scikit-learn” package. The signatures of the functions are

the same regardless of the used machine learning algorithm.

5
 pandas 0.17.1 documentation - http://pandas.pydata.org/pandas-docs/stable/index.html

6
 See the comparison: http://pandas.pydata.org/pandas-docs/stable/comparison_with_r.html

http://pandas.pydata.org/
http://pandas.pydata.org/pandas-docs/stable/index.html
http://pandas.pydata.org/pandas-docs/stable/comparison_with_r.html

Tanagra Data Mining Ricco Rakotomalala

30 décembre 2015 Page 20/40

The function takes as input: the model developed from the learning sample; for the test

sample, the vector of the variable target and the matrix of predictive variables. We use the

metrics module from the scikit-learn package to calculate the accuracy rate. The error rate is

the complementary to one of the accuracy rate.

#module for the evaluation of the classifiers

from sklearn import metrics

#function for the performance evaluation

def error_rate(modele,y_test,X_test):

 #prediction

 y_pred = modele.predict(X_test)

 #error rate = 1 - accuracy rate (success rate)

 err = 1.0 - metrics.accuracy_score(y_test,y_pred)

 #return

 return err

#end fonction

4.3 Classification tree

4.3.1 Instantiation and settings

The process is always the same with scikit-learn, at least in the supervised learning task:

#Decision tree - importation of the class

from sklearn.tree import DecisionTreeClassifier

#instantiation

dtree = DecisionTreeClassifier()

#print the settings of the algorithm

print(dtree)

We import the class related to the method that we instantiate (by calling its constructor).

We therefore get an object that we fit on the training set. The display of the instantiated

object allows to visualize the algorithm's parameters and their default values.

DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=None,

 max_features=None, max_leaf_nodes=None, min_samples_leaf=1,

 min_samples_split=2, min_weight_fraction_leaf=0.0,

 presort=False, random_state=None, splitter='best')

3 parameters get our attention: max_depth = None, there is no limit to the depth of the

tree (if we want a “decision stump”, we set max_depth = 1, the root is at the level 0);

min_samples_split = 2, a node is split if it contains at least 2 observations; min_samples_leaf

= 1, any leaves of the tree must contain at least 1 instance.

Tanagra Data Mining Ricco Rakotomalala

30 décembre 2015 Page 21/40

With such parameters, we will get a very deep tree.

4.3.2 Learning phase

We fit the model on the learning set:

#learning

dtree.fit(X_app,y_app)

The operation is apparently OK, but no message was sent. When I wanted to display the

tree, I realized that the operation is not easy.

4.3.3 Visualization of the classification tree

There is no default text display with print(). The simplest way to visualize the tree seems to

generate a file that can be transformed into graphic with the GraphViz software7. Therefore,

we must first download and install this tool8.

With the following commands, we generate the “tree.dot” file.

#generation of the output -> .dot format

from sklearn import tree

tree.export_graphviz(dtree,out_file="tree.dot",feature_names=image_train.columns[1:20])

We load “tree.dot” into a text editor, we observe a not very legible description.

digraph Tree {

node [shape=box] ;

0 [label="EXGREEN_MEAN <= 0.8889\ngini = 0.8571\nsamples = 210\nvalue = [30, 30,

30, 30, 30, 30, 30]\nclass = R"] ;

1 [label="REGION_CENTROID_ROW <= 160.5\ngini = 0.8333\nsamples = 180\nvalue = [30,

30, 30, 0, 30, 30, 30]\nclass = R"] ;

0 -> 1 [labeldistance=2.5, labelangle=45, headlabel="True"] ;

...

The file is converted with Graphviz using the following command (launched in a DOS

command prompt),

dot -Tpng tree.dot -o tree.png

« dot » is the name of the executable file. A “tree.png” file has been generated. We can

visualize it with any graphic software that supports PNG format.

7
 http://scikit-learn.org/stable/modules/generated/sklearn.tree.export_graphviz.html

8
 http://www.graphviz.org/Download_windows.php

http://scikit-learn.org/stable/modules/generated/sklearn.tree.export_graphviz.html
http://www.graphviz.org/Download_windows.php

Tanagra Data Mining Ricco Rakotomalala

30 décembre 2015 Page 22/40

It is so large that its reading is not really interesting. The main information here is that it is

possible to get a graphical representation of the tree with a little extra effort.

4.3.4 Variable importance

We can get the importance of variables. Scikit-learn includes only the variables that appear

explicitly in the tree.

#importance of variables - 0 when the variable does not appear into the tree

imp = {"VarName":image_train.columns[1:],"Importance":dtree.feature_importances_}

print(pandas.DataFrame(imp))

We put the results in a data frame structure in order to be able to match each variable name

(obtained by using the columns property of the training set) with its importance

(feature_importances_).

 Importance VarName

0 0.026058 REGION_CENTROID_COL

1 0.169000 REGION_CENTROID_ROW

2 0.000000 REGION_PIXEL_COUNT

Tanagra Data Mining Ricco Rakotomalala

30 décembre 2015 Page 23/40

3 0.000000 SHORT_LINE_DENSITY_5

4 0.000000 SHORT_LINE_DENSITY_2

5 0.019665 VEDGE_MEAN

6 0.000000 VEDGE_SD

7 0.000000 HEDGE_MEAN

8 0.000000 HEDGE_SD

9 0.000000 INTENSITY_MEAN

10 0.189911 RAWRED_MEAN

11 0.000000 RAWBLUE_MEAN

12 0.000000 RAWGREEN_MEAN

13 0.000000 EXRED_MEAN

14 0.000000 EXBLUE_MEAN

15 0.282588 EXGREEN_MEAN

16 0.000000 VALUE_MEAN

17 0.097552 SATURATION_MEAN

18 0.215226 HUE_MEAN

4.3.5 Prediction and evaluation

We use the error_rate function defined above (section 4.2) to measure the performance.

#error rate

print(error_rate(dtree,y_test,X_test))

The test error rate is 10.38%, similar to the deep tree with R’s rpart (10.42%).

4.4 Bagging of classification trees

4.4.1 Train and test

Instantiation. Bagging is a meta-classifier that can take as input any learning algorithm under

scikit-learn. As a first step, we develop a bagging of 20 deep trees, equivalent to that carried

out under R (section 3.4.5).

You must first import the class BaggingClassifier, and then instantiate it with as a parameter

the desired underlying algorithm, a DecisionTreeClassifier in our case.

#class bagging

from sklearn.ensemble import BaggingClassifier

#instantiation

baggingTree = BaggingClassifier(DecisionTreeClassifier(),n_estimators=20)

print(baggingTree)

The print command displays both the characteristics of the meta-classifier (in blue), and

those of the base (in purple) algorithm.

BaggingClassifier(base_estimator=DecisionTreeClassifier(class_weight=None,

criterion='gini', max_depth=None,

Tanagra Data Mining Ricco Rakotomalala

30 décembre 2015 Page 24/40

 max_features=None, max_leaf_nodes=None, min_samples_leaf=1,

 min_samples_split=2, min_weight_fraction_leaf=0.0,

 presort=False, random_state=None, splitter='best'),

 bootstrap=True, bootstrap_features=False, max_features=1.0,

 max_samples=1.0, n_estimators=20, n_jobs=1, oob_score=False,

 random_state=None, verbose=0, warm_start=False)

We note a very interesting option. It is possible to make calculations in parallel using the

'n_jobs' option, in order to take advantage of the possibilities of multi-core processors for

example. On very large databases, the gain in speed is significant.

Train and test. We fit the model on the training set and we evaluate it on the test set.

#training

baggingTree.fit(X_app,y_app)

#test

print(error_rate(baggingTree,y_test,X_test))

The test error rate is 5.85%, slightly better than that of R (6.14%, section 3.4.5).

4.4.2 Tree number

We can also program in Python. In this section, we try to reproduce the detection of the

“best” number of trees for the bagging.

#train-test function for a given m

def train_test_bagging(m,X_app,y_app,X_test,y_test):

 #instantiation

 bag = BaggingClassifier(DecisionTreeClassifier(),n_estimators=m)

 #fit the model

 bag.fit(X_app,y_app)

 #prediction and calculation of the error rate

 return error_rate(bag,y_test,X_test)

#end train-test

#values of m to evaluate

m_a_tester = [1,5,10,20,50,100,200]

#initialization of the matrix for the results

import numpy

result = numpy.zeros(shape=(1,7))

#repeat 20 times the experiment for m

for expe in range(20):

 #evaluate each value of m

 res = [train_test_bagging(m,X_app,y_app,X_test,y_test) for m in m_a_tester]

 #the vector with 7 values is transformed in a matrix (1, 7)

Tanagra Data Mining Ricco Rakotomalala

30 décembre 2015 Page 25/40

 res = numpy.asarray(res).reshape(1,7)

 #add a new row in the matrix

 result = numpy.append(result,res,axis=0)

#remove the first row

result = numpy.delete(result,0,axis=0)

#calculate the average of error rate for each m

mresult = numpy.mean(result,axis=0)

print(mresult)

There is a double loop: repeat 20 times the experience for each value of m, perform the

analysis for different values of m.

Here are the mean of the error rate for each value of m.

 [0.11340476 0.07761905 0.0632619 0.05878571 0.05764286 0.05711905 0.05769048]

We create a graphical representation…

#graphical tool

import matplotlib.pyplot as plt

#label of the axes

plt.xlabel("m")

plt.ylabel("Err. Rate")

plt.plot(m_a_tester,mresult,linewidth=2)

… we have,

4.4.3 Grid search

By reading the documentation, I realized that scikit-learn proposes a tool for testing the

effectiveness of different parameters values. The main interest is that it proceeds by cross-

validation to evaluate the quality of the combination of parameters. Thus, our test sample

Tanagra Data Mining Ricco Rakotomalala

30 décembre 2015 Page 26/40

keeps its impartiality status since it is not used to detect the best configuration, but only to

measure the error rate of the latter.

In what follows, for the same values of m of the previous section, we ask to Python to

measure the success rate by cross-validation. Then we use the test sample in order to

measure the error rate of the best configuration highlighted by the tool.

detecting the “optimal” number of trees

using the grid search tool

from sklearn.grid_search import GridSearchCV

the parameters to make vary

the name of the parameter must be explicit

we enumerate the values to try

parametres = [{"n_estimators":[1,5,10,20,50,100,200]}]

instantiate the classifier

bag = BaggingClassifier(DecisionTreeClassifier())

#instantiation of the gris search tool

#the metric used is the accuracy rate (error rate = 1 - accuracy rate)

grid_bag = GridSearchCV(estimator=bag,param_grid=parametres,scoring="accuracy")

#launching the exploration

grille_bag = grid_bag.fit(X_app,y_app)

#print the results

print(grille_bag.grid_scores_)

Despite the amount of calculations, the procedure is very fast. We obtain the following

outputs:

[mean: 0.81905, std: 0.02935, params: {'n_estimators': 1}, mean: 0.88571, std:

0.04666, params: {'n_estimators': 5}, mean: 0.88095, std: 0.00673, params:

{'n_estimators': 10}, mean: 0.89048, std: 0.03750, params: {'n_estimators': 20},

mean: 0.90000, std: 0.05084, params: {'n_estimators': 50}, mean: 0.91429, std:

0.04206, params: {'n_estimators': 100}, mean: 0.90000, std: 0.05084, params:

{'n_estimators': 200}]

For m = 1, the accuracy rate in cross-validation is 81.90% ; for m = 5, we have 88.57%, etc.

We can directly identify the best configuration:

#best score

print(grille_bag.best_score_) # 0.91428

#parameter for the best score

print(grille_bag.best_params_) # {‘n_estimators’ : 100}

Tanagra Data Mining Ricco Rakotomalala

30 décembre 2015 Page 27/40

The solution with m = 100 trees is the most effective. When we apply this solution on the

test sample...

#valuation of the best solution on the test set

print(error_rate(grille_bag,y_test,X_test))

… we obtain the error rate 5.71%, better (very slightly) than our first configuration with m =

20 trees (section Erreur ! Source du renvoi introuvable.).

4.4.4 Bagging with other base classifier

The bagging is generic under scikit-learn, we can pass any base classifier. For instance, if we

want to perform a bagging of linear discriminant analysis (LDA), we will proceed as follows:

#import the discriminant analysis class

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis

#instantiation

bag_lda = BaggingClassifier(LinearDiscriminantAnalysis(),n_estimators=20)

print(bag_lda)

#learning process

bag_lda.fit(X_app,y_app)

#evaluation

print(error_rate(bag_lda,y_test,X_test))

The tool sends a warning about the collinearity between the variables, but it still continue

the learning process. The test error rate is 10.43%. In comparison, if we perform a single

instance of the LDA, the error rate is 9.57%. So it is technically possible to make a bagging of

any base classifier. But the gain is really convincing that when it is slightly biased and has a

high variance, which is not really the case of the linear discriminant analysis.

4.5 Random Forest

Scikit-learn includes also the Random Forest method. We perform a simple analysis with 20

trees.

RandomForest class

from sklearn.ensemble import RandomForestClassifier

instantiation

rf = RandomForestClassifier(n_estimators=20)

training phase

rf.fit(X_app,y_app)

test error rate

print(error_rate(rf,y_test,X_test))

importance of variables…

print(rf.feature_importances_)

Tanagra Data Mining Ricco Rakotomalala

30 décembre 2015 Page 28/40

with their names

imp = {"VarName":image_train.columns[1:],"Importance":rf.feature_importances_}

print(pandas.DataFrame(imp))

The test error rate is 4.9%, here are the importance of the variables:

 Importance VarName

0 0.026045 REGION_CENTROID_COL

1 0.138857 REGION_CENTROID_ROW

2 0.000000 REGION_PIXEL_COUNT

3 0.001765 SHORT_LINE_DENSITY_5

4 0.001373 SHORT_LINE_DENSITY_2

5 0.018827 VEDGE_MEAN

6 0.018828 VEDGE_SD

7 0.033337 HEDGE_MEAN

8 0.025444 HEDGE_SD

9 0.082932 INTENSITY_MEAN

10 0.073985 RAWRED_MEAN

11 0.103093 RAWBLUE_MEAN

12 0.043970 RAWGREEN_MEAN

13 0.037872 EXRED_MEAN

14 0.039667 EXBLUE_MEAN

15 0.082905 EXGREEN_MEAN

16 0.044985 VALUE_MEAN

17 0.085668 SATURATION_MEAN

18 0.140448 HUE_MEAN

In trying to find the “optimal” number of trees with the GridSearchCV tool, it appears that m

= 100 is the best solution with a test error rate of 4.76%. The gain, compared with m = 20, is

negligible for Random Forest.

4.6 Boosting

We proceed also simply for boosting, specifying a decision tree as a base classifier. Note: a

decision stump is used by default if the option "base_estimator" is omitted.

Adaboost

from sklearn.ensemble import AdaBoostClassifier

instantiation

ab=AdaBoostClassifier(algorithm="SAMME",n_estimators=20,base_estimator=

 DecisionTreeClassifier())

print(ab)

training phase

ab.fit(X_app,y_app)

test error rate

print(error_rate(ab,y_test,X_test))

The test error rate is 8.9%.

Tanagra Data Mining Ricco Rakotomalala

30 décembre 2015 Page 29/40

5 Analysis with other tools

The interest of R and Python is that we have the ability to write programs. The possibilities

of analysis are strongly increased. We had noticed that in the two previous sections. But

know how to program requires a time of training which is sometimes not available for

practitioners of data mining. The tools that we present in this section allow to reproduce our

overall process, without having to write a single line of code. Some users appreciate to this

characteristic.

5.1 Analysis with Tanagra

Various ensemble methods are available into Tanagra: bagging, arcing (Breiman, 1998),

boosting, and also ensemble techniques which allow to take into account the

misclassification costs (Cost Sensitive Bagging, MultiCost)9.

The underlying base classifier can be any learning algorithm. We seen previously that both

bagging and boosting may be defined theoretically with any type of learning algorithm even

if, in practice, a classification tree is the most commonly used.

Random Forest it is not defined as such. It corresponds to a bagging with a special induction

tree algorithm (RndTree)10 where the tree is built as large as possible, with the particular

variable selection process when splitting the nodes.

5.1.1 Data importation and preparation

Importing the data file. We load the data file « image.xlsx » into Excel. We select the data

range and we click on the menu COMPLEMENTS / TANAGRA / EXECUTE (ADD-INS /

TANAGRA / EXECUTE in English) installed with the “tanagra.xla” add-in for Excel11,12.

9
 Tanagra, “Cost-sensitive learning - Comparison of tools”, March 2009.

10
 Tanagra, “Random Forest”, November 2008.

11
 Tanagra, “Tanagra add-in for Excel 2010 - 64-bit version”, December 2011.

12
 Tanagra, “Tanagra add-in for Office 2007 and Office 2010”, August 2010.

https://projecteuclid.org/download/pdf_1/euclid.aos/1024691079
http://data-mining-tutorials.blogspot.fr/2009/03/cost-sensitive-learning-comparison-of.html
http://data-mining-tutorials.blogspot.fr/2008/11/random-forest.html
http://data-mining-tutorials.blogspot.fr/2011/12/tanagra-add-in-for-excel-2010-64-bit.html
http://data-mining-tutorials.blogspot.fr/2010/08/tanagra-add-in-for-office-2007-and.html

Tanagra Data Mining Ricco Rakotomalala

30 décembre 2015 Page 30/40

We click on the OK button. Tanagra is automatically launched and the dataset is imported.

Subdivision into training and test sets. We use the DISCRETE SELECT EXAMPLES component

in order to subdivide the dataset according to the “sample” column. We insert it into the

diagram, then we click on the PARAMETERS menu.

Tanagra Data Mining Ricco Rakotomalala

30 décembre 2015 Page 31/40

“sample = train” corresponds to the training sample, with 210 instances.

Role of the variables. With the DEFINE STATUS component, we set REGION_TYPE as target

attribute, the other ones (with the exception of “sample”) as input attributes.

Tanagra Data Mining Ricco Rakotomalala

30 décembre 2015 Page 32/40

5.1.2 Classification tree

Learning phase. We insert the C4.5 component (SPV LEARNING tab) after DEFINE STATUS 1.

We click on the VIEW menu to visualize the results.

We obtain a classification tree with 11 leaves (11 decision rules):

 REGION_CENTROID_ROW < 160.5000

o RAWGREEN_MEAN < 72.5000

 RAWBLUE_MEAN < 40.1666

 HUE_MEAN < -1.7894

 REGION_CENTROID_ROW < 145.5000

 HUE_MEAN < -2.0896

 SATURATION_MEAN < 0.4972 then REGION_TYPE = WINDOW

(77.78 % of 9 examples)

 SATURATION_MEAN >= 0.4972 then REGION_TYPE =

FOLIAGE (92.59 % of 27 examples)

 HUE_MEAN >= -2.0896 then REGION_TYPE = WINDOW (100.00 % of 13 examples)

 REGION_CENTROID_ROW >= 145.5000 then REGION_TYPE = CEMENT (57.14 % of 7 examples)

 HUE_MEAN >= -1.7894

 HUE_MEAN < -0.2855 then REGION_TYPE = BRICKFACE (93.55 % of 31 examples)

 HUE_MEAN >= -0.2855 then REGION_TYPE = WINDOW (83.33 % of 6 examples)

 RAWBLUE_MEAN >= 40.1666

 HEDGE_SD < 9.4025 then REGION_TYPE = CEMENT (100.00 % of 23 examples)

 HEDGE_SD >= 9.4025 then REGION_TYPE = FOLIAGE (60.00 % of 5 examples)

o RAWGREEN_MEAN >= 72.5000 then REGION_TYPE = SKY (100.00 % of 30 examples)

 REGION_CENTROID_ROW >= 160.5000

o INTENSITY_MEAN < 25.9444 then REGION_TYPE = GRASS (100.00 % of 29 examples)

o INTENSITY_MEAN >= 25.9444 then REGION_TYPE = PATH (100.00 % of 30 examples)

Tanagra Data Mining Ricco Rakotomalala

30 décembre 2015 Page 33/40

Evaluation. To calculate the error rate on the set sample, we insert again the DEFINE STATUS

component. We set REGION_TYPE as target, the prediction of the classifier (available for all

the instances) PRED_SPVINSTANCE_1 as input.

Then, we add the TEST component (SPV LEARNING ASSESSMENT tab) which calculates the

confusion matrix and the error rate on the unselected instances i.e. the test set.

We click on the VIEW menu. The test error rate is 11.62%.

Tanagra Data Mining Ricco Rakotomalala

30 décembre 2015 Page 34/40

5.1.3 Bagging

To perform a bagging of C4.5 algorithm, we must proceed in two stages. First, we add the

meta learner BAGGING (META-SPV LEARNING tab) into the diagram.

Second, we put the component C4.5 (SPV LEARNING ALGORITHM) into the BAGGING 1.

Tanagra Data Mining Ricco Rakotomalala

30 décembre 2015 Page 35/40

We can set the parameter of the bagging (contextual menu PARAMETERS, mainly the

number of replications, default 25) or the underlying learning algorithm (contextual menu

SUPERVISED PARAMETERS: minimal number of instance on the leaves and the confidence

level for the calculation of the pessimistic error for the post pruning of C4.5).

Note: Like for scikit-learn, it is possible to perform a bagging with any base classifier. We

have seen above that this is not always appropriate (e.g. bagging of linear discriminant

analysis, section 4.4.4).

Again, we add the DEFINE STATUS component to compare the REGION_TYPE (target) and

the prediction of the model (PRED_BAGGING_1, input). Then, we use the TEST component

to calculate the error rate which is equal to 6.18%.

5.1.4 Boosting

The component BOOSTING is available into the META-SPV LEARNING tab. It implements the

ADABOOST.M1 approach. I think that I shall make improve it soon in such a way that it also

incorporates the SAMME approach, a more natural method for multi-class problems.

Here also, we proceed in two stages to insert the method into the diagram (BOOSTING first +

C4.5 second). We compare the REGION_TYPE and the prediction PRED_BOOSTING_1. The

test error rate is 5%.

Tanagra Data Mining Ricco Rakotomalala

30 décembre 2015 Page 36/40

5.1.5 Random Forest

To instantiate the Random Forest, we use the BAGGING component to which we associate

the RND TREE learning algorithm (SPV LEARNING tab).

The test error rate is 5.48% by comparing REGION_TYPE and PRED_BAGGING_2.

Note: Out of sheer curiosity, I perform a simple learning with RND TREE, the test error rate is

16.14%. This suggests that the proportion of relevant variables is high in the base. The

random disturbance does not penalize the learning process. A boosting of RND TREE leads to

a test error rate of 5.05%.

Tanagra Data Mining Ricco Rakotomalala

30 décembre 2015 Page 37/40

5.2 Analysis with Knime

The ENSEMBLE LEARNING package for Knime incorporates generic components for Bagging

and Boosting. We must install the library first. These components can use any base classifier,

like Python/Scikit-learn or Tanagra.

5.2.1 Data importation and preparation

Knime can directly read XLSX files. We use the XLS READER component. With the NOMINAL

VALUE ROW FILTER component, we filter the dataset according to the “sample” column to

https://www.knime.org/

Tanagra Data Mining Ricco Rakotomalala

30 décembre 2015 Page 38/40

define the test ("sample = test") and learning ("sample = train") samples. COLUMN FILTER

allows to remove the column “sample” for the rest of the study.

5.2.2 Boosting with Knime

Boosting is built in the form of loop in Knime. META-NODES allows to summarize the

operations, both for the learning and the prediction phase (Boosting Learner and Boosting

Predictor). But I preferred to define the steps manually. Indeed, the process may seem

confusing at first. However once we have understood the reasoning, the sequence of the

tools into the diagram is pedagogically very interesting.

The sequence below define a Boosting of decision trees. The BOOSTING LEARNER LOOP

START component starts the boosting loop boosting from the training set. It is connected to

a DECISION TREE LEARNER learning algorithm tool, but also to a predictive DECISION TREE

PREDICTOR tool. Indeed, the errors of prediction for the step (t) allows to set the weights of

individuals to the step (t + 1). BOOSTING LEARNER LOOP END closes the loop and allows to

move to the next iteration.

In term of parameters:

 for DECISION TREE LEARNER, we specify the target attribute REGION_TYPE ;

 for BOOSTING LEARNER LOOP END, we specify the target attribute [REGION_TYPE], the

prediction of the boosting process [Prediction(REGION_TYPE)], and the number of

iterations (25, so that the result would comparable with that of Tanagra).

Tanagra Data Mining Ricco Rakotomalala

30 décembre 2015 Page 39/40

5.2.3 Evaluation on the test sample

Two treatments are necessary at this stage: use the meta-classifier to calculate the

prediction on the sample test, then compare the observed class values with the predicted

class values to form the confusion matrix and calculate the test error rate.

A new loop defines the prediction on the test sample. The BOOSTING PREDICTOR LOOP

START tool takes as input the boosting learner loop. It is connected to a DECISION TREE

PREDICTOR, which also takes input test data.

We can clearly see the idea. For the prediction, we must activate all the trees and make

them vote (a weighted voting for boosting).

BOOSTING PREDICTOR LOOP END closes the loop.

Then we insert the SCORER tool into the diagram. It compares REGION_TYPE and

Prediction(REGION_TYPE). Here is the diagram as a whole.

The test error rate reported by SCORER is 4.90%.

Tanagra Data Mining Ricco Rakotomalala

30 décembre 2015 Page 40/40

Knime always offers interesting solutions. The hard part is understanding the logical layout

of the components. But once we understand the ideas, the pattern seems clear.

6 Conclusion

The first objective of this tutorial is to provide a practical touch to course material dedicated

to the ensemble techniques that I have written lately. I compare the specific libraries for R

and Python, but also the tools provided by Tanagra and Knime. In the end, at least as regards

the “image” dataset, these approaches are particularly effective. This is also somewhat true

in general. Random Forest and Boosting often offer the best results in the challenges.

7 References

Package ‘’adabag’’ for R.

Package ‘’randomForest’’ for R.

Scikit-learn ensemble methods for Python.

http://data-mining-tutorials.blogspot.fr/2015/12/bagging-random-forest-boosting-slides.html
https://cran.r-project.org/web/packages/adabag/index.html
https://cran.r-project.org/web/packages/randomForest/index.html
http://scikit-learn.org/stable/modules/ensemble.html

	1 Topic
	2 Dataset
	3 Analysis with R
	3.1 Data importation and preparation
	3.2 Function for performance evaluation
	3.3 Classification tree
	3.3.1 Classification tree with the default settings
	3.3.2 Decision stump
	3.3.3 Deeper tree

	3.4 Bagging
	3.4.1 Bagging with 20 trees (default parameter)
	3.4.2 Accessing the trees
	3.4.3 Importance of each variable
	3.4.4 Comment about the calculation of the variable importance
	3.4.5 Modifying the tree characteristics
	3.4.6 Make varying the number of trees

	3.5 Random Forest
	3.5.1 Random Forest with 20 trees
	3.5.2 Out-of-bag (OOB) error rate
	3.5.3 Accessing to trees
	3.5.4 Variable importance
	3.5.5 Tree number

	3.6 Boosting
	3.6.1 Boosting with 20 trees (default settings for the trees)
	3.6.2 Depth of the trees
	3.6.3 Tree number

	4 Analysis with Python
	4.1 Data importation and preparation
	4.2 Function for performance evaluation
	4.3 Classification tree
	4.3.1 Instantiation and settings
	4.3.2 Learning phase
	4.3.3 Visualization of the classification tree
	4.3.4 Variable importance
	4.3.5 Prediction and evaluation

	4.4 Bagging of classification trees
	4.4.1 Train and test
	4.4.2 Tree number
	4.4.3 Grid search
	4.4.4 Bagging with other base classifier

	4.5 Random Forest
	4.6 Boosting

	5 Analysis with other tools
	5.1 Analysis with Tanagra
	5.1.1 Data importation and preparation
	5.1.2 Classification tree
	5.1.3 Bagging
	5.1.4 Boosting
	5.1.5 Random Forest

	5.2 Analysis with Knime
	5.2.1 Data importation and preparation
	5.2.2 Boosting with Knime
	5.2.3 Evaluation on the test sample

	6 Conclusion
	7 References

