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1. Topic 
Dealing with multicollDealing with multicollDealing with multicollDealing with multicollinearity in inearity in inearity in inearity in multiple multiple multiple multiple regression.regression.regression.regression.    

Multicollinearity is a statistical phenomenon in which two or more predictor variables in a multiple 
regression model are highly correlated. In this situation the coefficient estimates may change 
erratically in response to small changes in the model or the data. Multicollinearity does not reduce the 

predictive power or reliability of the model as a whole; it only affects calculations regarding individual 
predictors. That is, a multiple regression model with correlated predictors can indicate how well the 
entire bundle of predictors predicts the outcome variable, but it may not give valid results about any 
individual predictor, or about which predictors are redundant with others (Wikipedia - 
http://en.wikipedia.org/wiki/Multicollinearity). Sometimes the signs of the coefficients are inconsistent 

with the domain knowledge; sometimes, explanatory variables which seems individually significant are 
invalidated when we add other variables. 

There are two steps when we want to treat this kind of problem: (1) detecting the presence of the 
collinearity; (2) implementing solutions in order to obtain more consistent results. 

In this tutorial, we study three approaches to avoid the multicollinearity problem: the variable selection; 
the regression on the latent variables provided by PCA (principal component analysis); the PLS 

regression (partial least squares). 

2. Dataset 

 

Figure Figure Figure Figure 1111    ––––    Dataset Dataset Dataset Dataset ---- Dependent variable: “CONSOMMATION” Dependent variable: “CONSOMMATION” Dependent variable: “CONSOMMATION” Dependent variable: “CONSOMMATION”    

There 27 instances into the car_consumption_colinearity_regression.xls data file. The goal is to predict 
the consumption of cars (CONSOMMATION) from various characteristics (price, engine size, 
horsepower and weight). 
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3. Multiple regression and the multicollinearity problem 

3.1. Creating a diagram and importing the data file 

The easiest way to launch Tanagra and to import the dataset is to load the file into Excel spreadsheet. 
We select the dataset. We click on the TANAGRA / EXECUTE TANAGRA menu1. 

 

Tanagra is launched. The dataset is now available in the root of the diagram. 

 

                                                      
1 See the following tutorial for the installation and the utilization of the Tanagra add-on for Excel - http://data-
mining-tutorials.blogspot.com/2008/10/excel-file-handling-using-add-in.html 
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3.2. Multiple linear regression 

In a first time, we intended to perform a multiple regression analysis using all the explanatory 
variables. By using the shortcut into the toolbar, we insert the DEFINE STATUS component. We set 
CONSOMMATION as TARGET; PRIX, CYLINDREE, PUISSANCE and POIDS as INPUT. 

 

We add the MULTIPLE LINEAR REGRESSION component (REGRESSION tab). We click on the 

VIEW menu to obtain the results. The model seems very good. The coefficient of determination R2 is 
0.92950.92950.92950.9295    (http://en.wikipedia.org/wiki/Coefficient_of_determination). We are rather confident about the 
quality of the model.  

But, when we consider the coefficients of the model, some results seem strange. Only the weight is 
significant for the explanation of the consumption. The sign is positive, when the weight of the car 

increases, the consumption increases also. It seems natural. But, neither the horsepower nor the 
engine size seems to influence the consumption? It is unusual. It suggests that two cars with the same 
weight have similar consumption, even if the engine size of the second is 4 times bigger than the first. 
Although not a great expert, this last result does not correspond at all with what we know about cars. 
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Figure Figure Figure Figure 2222    –––– R R R Regression using all explanatory variablesegression using all explanatory variablesegression using all explanatory variablesegression using all explanatory variables    

3.3. Detecting the multicollinearity 

We suspect a multicollinearity phenomenon here. We know for instance that the engine size and the 
horsepower are often highly correlated. It influences the results in a different ways. The model is very 
unstable; a small change in the dataset (by removing or adding instances) causes a large modification 

of the estimated parameters. The sign and the values of the coefficients are inconsistent with the 
domain knowledge. For instance, it seems here that the horsepower has a negative influence on the 
consumption. We know that this cannot be true. Lastly, some variables that we know they are relevant 
according the domain knowledge are not significant into the regression. 

In short, we have an excellent model (according the R2) but unusable because we can not draw a 
meaningful interpretation of the coefficients. It is impossible to understand the causal mechanism of 

the phenomenon studied. 

We use very simple calculations to detect the multicollinearity problem. 
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Sign consistencySign consistencySign consistencySign consistency.... The first strategy is very basic. We check if the sign of the coefficient is consistent 

with the sign of the correlation of each explanatory variable with the target variable (computed 
individually). If some of them are inconsistent, it means that other variables interfere in the association 
between the explanatory variable and the dependent variable. 

To compute the correlation between each independent variable and the dependent variable, we add 
the LINEAR CORRELATION tool (STATISTICS tab) behind DEFINE STATUS 1. We use the default 

settings. 

 

Figure Figure Figure Figure 3333    –––– Corr Corr Corr Correlation elation elation elation –––– Dependent vs. each independent variable Dependent vs. each independent variable Dependent vs. each independent variable Dependent vs. each independent variable    

Each explanatory variable is highly correlated with the dependent variable (≥ 0.8883). We note also 
that there is a problem about PUISSANCE (horsepower). The correlation is positive, but the sign of its 
coefficient into the regression is negative. Another variable probably interferes with PUISSANCE. 

KleinKleinKleinKlein’s r’s r’s r’s ruleuleuleule.... We compute the square of the correlation for each couple of explanatory variables. If one 

or more of the values are higher than (or at less near) the coefficient of determination (R2) of the 
regression, there is probably a multicollinearity problem. The advantage here is that we can identify 
the variables which are redundant in the regression. 

We add again the LINEAR CORRELATION component, but we modify the settings by clicking on the 
PARAMETERS contextual menu. We set the CROSS INPUT option in the INPUT LIST section. 
Tanagra computes the correlation between the INPUT variables. 
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We confirm the settings and we click on the VIEW menu. In the visualization window, we observe that 

all the explanatory variables are highly correlated each other. 

 

Figure Figure Figure Figure 4444    ----    Cross correlation between the explanatory variablesCross correlation between the explanatory variablesCross correlation between the explanatory variablesCross correlation between the explanatory variables    

We note among others than the square of the correlation between PUISSANCE (horsepower) and 
CYLINDREE (engine size) is very close to the coefficient of determination of the regression (0.9137 
vs. 0.9295). 

All these symptoms suggest that there is a problem of collinearity in our study. We must adopt an All these symptoms suggest that there is a problem of collinearity in our study. We must adopt an All these symptoms suggest that there is a problem of collinearity in our study. We must adopt an All these symptoms suggest that there is a problem of collinearity in our study. We must adopt an 

appropriate strategy if we want to get usable resultsappropriate strategy if we want to get usable resultsappropriate strategy if we want to get usable resultsappropriate strategy if we want to get usable results. 
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4. Variable selection 
The selection of explanatory variables is not really a direct solution to collinearity. Even in the absence 
of collinearity between independent variables, reducing the dimensionality of the problem studied is 
always beneficial. It helps to identify relevant variables and give an interpretable result. In the context 
of multicollinearity problem, it can especially remove redundant variables which interfere in the 
regression. This is this characteristic that is interesting here. 

We use a forward search. At each step, we search the most relevant explanatory variable according 
the absolute value of the correlation coefficient. We must take into account the influence of already 
selected variables i.e. we use a partial correlation. 

We add the FORWARD ENTRY REGRESSION component (REGRESSION tab) into the diagram. We 
click on the VIEW menu. In addition to the standard output of the regression, we obtain more detailed 

results about the selection process.  

 

Figure Figure Figure Figure 5555    ––––    FORWARD selection processFORWARD selection processFORWARD selection processFORWARD selection process    
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We observe that: 

• The selected explanatory variables are POIDS (weigth) and CYLINDREE (engine size). They are 
very significant. 

• Compared to the initial regression, despite the elimination of two variables, the proportion of 
explained variance remains very good with a coefficient of determination of R2 = 0.9277 (R2 = 
0.9295 for the model with 4 variables). 

• POIDS and CYLINDREE have both a positive influence on the consumption i.e. when the weight 
(or the engine size) increases, the consumption increases also. This is rather consistent to the 
domain knowledge. 

• And the signs of the coefficients are in adequation to the sign of the correlation coefficient 
computed individually (Figure 3). 

• When we consider the cross-correlation (Figure 4), we note that these variables are the less 

correlated among the explanatory variable. We have r² = 0.7417, it is largely lower than the 
coefficient of determination of the regression. 

• About the selection steps (Figure 5), the used significance level is 5%2: 
o At the first step, the variable which is the mostly correlated (absolute value) to the 

dependent variable is POIDS (r = 0.9447). The test statistic F for the significance is 

207.63. The p-value of the test is <0.0001. Because the p-value is lower than the 
significance level, we add the variable into the regression. 

o At the next step, we search the variable which is the most correlated with the dependent 
variable, by removing the effect of the already selected variables. The partial correlation3,4 
for CYLINDREE is 0.5719. We note that it is clearly lower than the direct correlation which 
was 0.9088 (Figure 3). The partial correclation is significant (p-value = 0.0118). The 

variable is selected. 
o At the thirs step, we observe that PRIX is the most partially correlated variable (0.1507). It 

is significant (p-value = 0.4721). The selection process is stoped. 

There are other search strategies (backward, stepwise). They give very similar results in the most of 
situations. Actually, there is not really an optimal subset of explanatory variables. It is more informative 

to examine their influence on the regression. 

Let us consider the second step of the selection process. CYLINDREE (partial-r = 0.5719) is in 
competition with PUISSANCE (horsepower, partial-r = 0.4859). It seems better; it is added in the 
selected subset. In the next steps, PUISSANCE is forevermore excluded. This does not mean that 
PUISSANCE has no influence on the consumption. If we perform a regression with POIDS and 
PUISSANCE, we observe that the model (Figure 6 – R2 = 0.9179) is almost as good as the selected 

model above (Figure 5 – R2= 0.9277), and PUISSANCE is significant (p-value = 0.0118). 

                                                      
2 http://en.wikipedia.org/wiki/Statistical_significance 
3 http://faculty.chass.ncsu.edu/garson/PA765/partialr.htm 
4 http://en.wikipedia.org/wiki/Partial_correlation 
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Thus, we should be used carefully the variable selection process. Of course, it removes the irrelevant 

explanatory variables. But it removes (masks) also variables which are strongly associated with the 
dependent variable, but redundant with some already selected variables. It is really important to 
analyze attentively the results provided by the selection process in order to differentiate these two 
kinds of explanatory variables (irrelevant or redundant). 

 

Figure Figure Figure Figure 6666    –––– R R R Regression withegression withegression withegression with POIDS  POIDS  POIDS  POIDS andandandand PUISSANCE PUISSANCE PUISSANCE PUISSANCE    

5. Regression from the factors of PCA 
Principal component analysis is a variable reduction procedure. From the original variables, it 
computes a small number of articial variables called “principal components” or “factors” or “latent 
variables”. These new variables are uncorrelated. They can be used as predictof in subsequent 
analysis5,6. In our context, we use them as explanatory variables in the regression analysis. 

Thus, the regression process is organized as follows: (1) we compute the factors from the explanatory 

variables; (2) we use some of them as new explanatory variable in the regression analysis; (3) we 
obtain the coefficients of the linear combination on the original variable from the results of the 
regression and the PCA. 

5.1. The principal component analysis (PCA) 

To perform a PCA with Tanagra, we add the PRINCIPAL COMPONENT ANALYSIS (FACTORIAL 
ANALYSIS tab). We click on the VIEW menu, we obtain the following results. 

 

                                                      
5 http://support.sas.com/publishing/pubcat/chaps/55129.pdf 
6 About its implementation with Tanagra, see for instance http://data-mining-
tutorials.blogspot.com/2009/04/principal-component-analysis-pca.html 
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Figure Figure Figure Figure 7777    –––– R R R Reeeesults sults sults sults of the principal component analysisof the principal component analysisof the principal component analysisof the principal component analysis (PCA) (PCA) (PCA) (PCA)    

The visualization window is divided in three parts. 

• EIGEN VALUES7. The eigenvalue for a given factor measures the variance in all the variables 
which is accounted for by that factor. The ratio of eigenvalues is the ratio of explanatory 

importance of the factors with respect to the variables. We observe that 93.28% of the variance is 
explained by the first factor on our dataset. It means, among others, that the explanatory variables 
are highly redundant. The second factor explains only 4.71% of the global variance, the others are 
negligible. 

• FACTOR LOADINGS. The factor loadings, also called component loadings in PCA, are the 

correlation coefficients between the variables (rows) and factors (columns). Analogous to 
Pearson's r, the squared factor loading is the percent of variance in that indicator variable 
explained by the factor. We observe here that all the variables are correlated with the first factor. It 
is rather natural: cars with a large engine are also heavy and powerful; last, they are also costly 
(price). 

                                                      
7 See http://faculty.chass.ncsu.edu/garson/PA765/factor.htm for detailed description. 
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• EIGEN VECTORS - FACTOR SCORES. This last table gives the coefficients which are useful to 

compute the factor scores of an instance. The factor score is the coordinate on the representation 
space defined by the factors. About the first car (Daihatsu Core - ), its coordinate on the first factor 
is computed as follows 

035.3

)
3.308

1.1193650
(49.0)

2.32

1.7832
(50.0)

6.622

1.1802846
(50.0)

5.12366

6.2826011600
(51.01

−=

−×+−×+−×+−×=v  

5.2. Regression from the factors of the PCA 

A crucial problem is the determination of the number of factors used for the regression. The easiest 
way is to use all the factors. But this solution has a drawback. We know that some factors have a very 
weak power, their proportion of variance explained (Eigen value) is low. They are very unstable; 
indeed, they correspond to residual information of the explanatory variable. By using only the relevant 
factors, we perform a kind of regularization by smoothing the information provided by the learning 
instances. 

For our dataset, taking into account the PCA results, we retain only the first two factors. We insert the 
DEFINE STATUS component into the diagram. We set as TARGET the dependent variable for the 
regression, as INPUT the two first factors PCA_1_AXIS_1 and PCA_1_AXIS_2. 

 

Then we insert again the MULTIPLE LINEAR REGRESSION component. We click on the VIEW 

menu. 
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Figure Figure Figure Figure 8888    ---- Re Re Re Regression gression gression gression on the two first factorson the two first factorson the two first factorson the two first factors    

The model seems good since the coefficient of determination is R2 = 0.9246, similar to this obtained 
from the regression on POIDS ans CYLINDREE (Figure 5, R² = 0.9276). The two factors are both 
significant.  

NoteNoteNoteNote: We have attempted to perform the regression on all the factors. It appears that the two last ones 
(third and fourth) are not significant in the regression. This corroborates the choice to use only the two 
first factors in the regression phase. 

5.3. Obtaining the coefficients of the linear combination from the initial variables 

At this step, our model is not easy to deploy on unseen cases because we must handle many linear 
combinations: those which define the factors, the coefficients of the regression on the selected factors. 
Obviously, it is more convenient to have a single linear combination defined on the original 

explanatory variables. The interpretation of the results, understanding the associations between each 
explanatory variable and the dependent variable, is easier. 

For this, we use the results of the regression (Figure 8) in conjunction with those of the PCA (Figure 
7). Let V1 and V2 the factors of the PCA, xm  and xσ  are the mean and the standard deviation of the 

explanatory variable X. The equation of the linear combination from the original explanatory variables 
is computed as follows. 
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Then we obtain the equation defined on the standardized variables. 
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Let us consider the coefficients of this linear combination. Because they are defined on the 
standardized variables, the influences of each explanatory variable on the dependent variable are 
directly comparable. We observe that all the variables have a positive influence on the consumption. 
We note also that the weight (poids) has the strongest influence on the consumption. When the weight 
increases of one standard deviation, the consumption increases of 0.9816 times of its standard 

deviation. 

By inserting the estimated values of the mean and the standard deviation, we obtain the 
unstandardized coefficients of the model defined from the original explanatory variables. 

poidspuissancecylindreeprixy ×+×+×+×+= 00318.000750.000042.000006.036954.2  

6. PLS Regression 
“Partial least squares” (PLS) is sometimes called "Projection to Latent Structures" because of its 
general strategy. The explanatory variables are reduced to principal components, as are the Y 
variables (the approach can handle one or more dependent variables). The components of X are used 
to predict the scores on the Y components, and the predicted Y component scores are used to predict 

the actual values of the Y variables. While the original X variables may be multicollinear, the X 
components used to predict Y will be orthogonal (http://faculty.chass.ncsu.edu/garson/PA765/pls.htm). 
Thus, this approach is particularly convenient for treating the multicollinearity problem. 

Like for the PCA + Regression approach, we can smooth the used information by selecting only the 
relevant factors for the construction of the final model. 
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6.1. Reading the output of the PLS regression 

We add the PLS REGRESSION component (PLS tab) into the diagram, behind DEFINE STATUS 1. 
We click on the PARAMETERS contextual menu. With the default settings, the algorithm computes 
automatically L = MIN (5, number of input variables) factors. So, we obtain 4 factors on our dataset. 
We activate the RESULTS tab. We select the DETAILED RESULTS option. 

 

We validate our choice and we click on the VIEW menu. 

Regression coefficientsRegression coefficientsRegression coefficientsRegression coefficients.... We obtain the regression parameter estimates (Figure 9). We can use them 
to predict the value of the dependent variable of an unlabeled case. Because we use all the factors Because we use all the factors Because we use all the factors Because we use all the factors 
(corresponding to the number of explanatory variables), we note that we have the same coefficients of (corresponding to the number of explanatory variables), we note that we have the same coefficients of (corresponding to the number of explanatory variables), we note that we have the same coefficients of (corresponding to the number of explanatory variables), we note that we have the same coefficients of 
the standard multiple linear regressionthe standard multiple linear regressionthe standard multiple linear regressionthe standard multiple linear regression (Figure 2). 

 

Figure Figure Figure Figure 9999    ---- Coefficients de la régression PLS  Coefficients de la régression PLS  Coefficients de la régression PLS  Coefficients de la régression PLS ---- 4 axes 4 axes 4 axes 4 axes    

PPPProportion of variance explained by latent factorsroportion of variance explained by latent factorsroportion of variance explained by latent factorsroportion of variance explained by latent factors    for for for for XXXX    (Red(Red(Red(Redundancyundancyundancyundancy).).).). It described the part of the 

variance of the explanatory variables explained by the latent factors (Figure 10). When we use all the 
factors (the last column of the table), we explain all the variance of each explanatory variable (in 
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brackets, the cumulative part of variance explained). We note here that from the third factor, the part 

of variance explained is negligible whatever the independent variable. It suggests that only the two 
first factors are enough to build an efficient model. 

The last row (redundancy) describes the part of variance of all the explanatory variables explained by 
the latent factors. Like for the PCA, we observe that the two first factors explains about 98% of the 
global variance. But, unlike the PCA, the factors are computed by taking into account the values of the 

dependent variable in the context of the PLS regression.  

 

Figure Figure Figure Figure 10101010    ---- Redu Redu Redu Redundancndancndancndancyyyy    for the latent factorsfor the latent factorsfor the latent factorsfor the latent factors    –––– PLS PLS PLS PLS regression regression regression regression    

PPPProportion of variance explained by latent factorsroportion of variance explained by latent factorsroportion of variance explained by latent factorsroportion of variance explained by latent factors    for for for for YYYY    (Red(Red(Red(Redundancyundancyundancyundancy)))). . . . The aim of the PLS Regression 
is to explain (predict) the values of the dependent variable(s) (Y). This table (Figure 11) describes the 
proportion of the variance of the dependent variable explained by the latent factors. In a prediction 
purpose, this table is maybe the most important of the results.  

Once again, if we use all the latent factors here, the coefficient of determination (redundancy - Figure 
11) is the same as this obtained with the standard linear regression i.e. R2 = 92.95% (Figure 2). But 

we observe into the same table the quality of the model when we use only some of the latent factors. 
For instance, if we use only the two first factors, we have already explained R2 = 92.70% of the 
variance of Y. It suggests that only the two first factors are enough to obtain a good model. 

 

Figure Figure Figure Figure 11111111    –––– Red Red Red Reduuuundancndancndancndancy on Yy on Yy on Yy on Y    ––––    PLS PLS PLS PLS RRRReeeegressiongressiongressiongression    

Variable Importance in Projection.Variable Importance in Projection.Variable Importance in Projection.Variable Importance in Projection. The last table gives an indication about the contribution of each 
explanatory variable on the dependent variable, through the latent factors (Figure 12). Like for the 
regression on the PCA factors, we note that all the explanatory variables have a positive influence on 

the consumption. POIDS and PRIX seem the most important ones (VIP > 1). 

NoteNoteNoteNote: The influence of prices on consumption is not very obvious. If we understand that the price is 
certainly correlated with the consumption, it seems strange that it has an influence. This would mean 
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that if we reduce artificially the price of cars, their consumption decreased in the same time. A 

numerical technique can not demonstrate that it is nonsense. This is for this reason that we will always 
need the domain knowledge to validate the results. 

 

 

Figure Figure Figure Figure 12121212    –––– VIP VIP VIP VIP table table table table    ––––    PLS PLS PLS PLS RRRReeeegressiongressiongressiongression    

6.2. Choosing the appropriate number of factors 

The determination of the appropriate number of factors is a crucial problem in the PLS regression. 
Some considerations expressed above, mostly about the redundancies (Figure 10 and Figure 11), 
seem suggest that the "optimal" number factors could be 2. But this approach is mainly a rule of 
thumb. From the reading these tables, two statisticians might come to different conclusions. 

There is a more stringent approach to determine the right number of latent factors. It is based on the 

accuracy of the model in a prediction perspective. The PLS SELECTION component is based on the 
PRESS criterion (Predicted Residual Sum of Squares).  

The PRESSPRESSPRESSPRESS is computed in a leave-one-out way8: (a) we remove the i-th instance from the dataset; (b) 
we learn the model form the remaining instances; (c) we predict the output of the model for this 
instance; (d) we compare the predicted and the observed values, (e) we store the square of the error; 

(f) we perform this procedure for all the instances, and we obtain the sum of the square of the error. 

PRESS si more reliable than the RSSRSSRSSRSS criterion (Residual Sum of Squares) where the i-th instance is 
used for the construction of the predictive model. 

Another criterion based on the PRESS and RSS can be used in order to determine the right number of 
factors. Q2Q2Q2Q2 compares the RSS of the model computed on (h-1) factors to the PRESS of the model 
based on h factors. The aim is to assess the real contribution of the h-th factor on the quality of the 

prediction. 

We insert the PLS SELECTION (PLS tab) into the diagram. We click on the PARAMETRES contextual 
menu. We set the following settings. 

 

                                                      
8 We describe the process based on leave-one-out here, but we can generalize the approach on a cross-
validation framework. The computation is faster while maintaining accuracy. This approach is favored under 
Tanagra. 
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Into the first tab “PARAMETERS”:  

• We can specify the number of folds for the cross-validation process. The default value is 5 i.e. the 
dataset is subdivided in 5 folds: 4/5 of the dataset is used during the construction of the model, 1/5 
of them for the computation of the error9. 

• « Update plugged component ». If this option is selected, the preceding component is 
automatically updated with the optimal number of factors after the search process. 

• Last, « Seed Random Generator » allows to specify the behavior of the random number 

generator. 

 

 

                                                      
9 http://en.wikipedia.org/wiki/Cross-validation_%28statistics%29 – See K-fold cross validation. 
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Into the second tab “STOPPING RULE”, we specify the way to stop the search process i.e. the 

method of detection of the right number of factors: 

• Q2 criterion, the seach is stopped if Q2 > Q2 cut value (default value = 0.05). 

• We can use also the PRESS criterion. In this case, we stop the process if the relative decreasing 
is lower a threshold (default value = 20%) when we add a factor. 

On our dataset, we select the Q2 criterion, the used cut value is 0.0975. 

We validate these settings and we click on the VIEW menu. We obtain the following results. 

 

When we select only one factor, the Q2 is 0.907 and the PRESS is 12.337. When we add the 2nd 
factor, the PRESS decreases to 10.851, but it seems that this diminution is not really significant 
because the Q2 is only 0.079, lower than our cut value (0.0975). 

Thus, we select the model with only one latent factor. We note that the PLS REGRESSION 

component is automatically updated. We can visualize the new coefficients by clicking on the VIEW 
menu of PLS REGRESSION 1 into the diagram. The new coefficients are (Figure 13) 

 

poidspuissancecylindreeprixy ×+×+×+×+= 001820.0016397.0000867.0000045.0835123.2
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Figure Figure Figure Figure 13131313    ---- Coefficients  Coefficients  Coefficients  Coefficients of PLS Regression based on 1 latent factorof PLS Regression based on 1 latent factorof PLS Regression based on 1 latent factorof PLS Regression based on 1 latent factor    

We summarize the unstandardized estimated parameters of the model according the method: 

 

Variable Standard multiple 
regression 

Regression from 
factors of PCA  

PLS Regression 

Constante 1.8380 2.36954 2.835123 

Prix 0.0000 0.00006 0.000045 

Cylindrée 0.0012 0.00042 0.000867 

Puissance -0.0037 0.00750 0.0016397 

Poids 0.0037 0.00318 0.001820 

 

On the one hand, the parameters estimated from the regression of factors of the PCA and the PLS 
regression are consistent. On the other hand, the coefficients estimated from the standard linear 
regression are very different for some explanatory variables (e.g. PUISSANCE). We know at this time 

that this is a consequence of the multicollinearity problem. 
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6.3. Assessing the estimated parameters from the PLS Regression 

One of the main advantages of the standard regression is that we can easily assess the contribution of 
each explanatory variable by computing the confidence interval of the estimated parameters or by 
implementing the test of significance. About the first approach, we consider that the contribution of an 
explanatory variable is significant if the confidence interval of its associated coefficient does not cover 
the zero value. 

Tanagra uses a resampling approach to implement the same assessment for the estimated 
parameters of the PLS Regression. Roughly speaking, the process can be described as follows: we 
draw a sample of n instances with replacement (n is the size of the available dataset); we compute the 
parameters; we repeat this process K times (K is a parameter of the algorithm); we obtain empirically 
the confidence interval by computing the quantiles. For α−1  confidence level, the lower bound 
corresponds to the 2/α -quantile; and the upper bound is the ( 2/1 α− )-quantile. 

We add PLS CONF INTERVAL (PLS tab) behind PLS REGRESSION 1. That means that it uses the 
same settings during the resampling process, especially the same number of latent factors. We click 
on the PARAMETERS menu. We ask K = 1000 replications. We ask also the standardized parameters 
in order to compare the influence of the explanatory variables. 

 

 

We click on the VIEW menu to launch the calculations. We obtain both the unstandardized and the 
standardized estimated parameters. According these last ones, we observe that all the variables are 
significant; they have a positive influence on the consumption. 
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Moreover, we note that the coefficients are very stable. This draws our attention if we consider the 

small size of the learning sample. It is certainly the consequence of the utilization of a few numbers of 
latent factors.  

7. Conclusion 
In this tutorial, we show how to deal with the multicollinearity problem in a regression framework.  

Of course, the results can be slightly different according the approaches. The most important for us is 
to understand the outputs of the software, and deduce the correct interpretation of the estimated 
parameters. The case of PUISSANCE (horsepower) is very interesting. Because it is correlated with 
CYLINDREE (engine size), we could conclude that it has no influence on the consumption. We 
observe afterwards, when we use the appropriate approaches, that it is not true. 

Nevertheless, whatever the quality of a statistical technique, nothing can replace human expertise. In 
our problem, it is clear that the price can not be a predictor of consumption, although we can easily 
understand that they are somehow linked. Neither approach has been able to highlight this nonsense. 

 


