Case studies R.R.

1. Topic
Dealing with multicollinearity in multiple regression.

Multicollinearity is a statistical phenomenon in which two or more predictor variables in a multiple
regression model are highly correlated. In this situation the coefficient estimates may change
erratically in response to small changes in the model or the data. Multicollinearity does not reduce the
predictive power or reliability of the model as a whole; it only affects calculations regarding individual
predictors. That is, a multiple regression model with correlated predictors can indicate how well the
entire bundle of predictors predicts the outcome variable, but it may not give valid results about any
individual predictor, or about which predictors are redundant with others (Wikipedia -

http://en.wikipedia.org/wiki/Multicollinearity). Sometimes the signs of the coefficients are inconsistent

with the domain knowledge; sometimes, explanatory variables which seems individually significant are

invalidated when we add other variables.

There are two steps when we want to treat this kind of problem: (1) detecting the presence of the

collinearity; (2) implementing solutions in order to obtain more consistent results.

In this tutorial, we study three approaches to avoid the multicollinearity problem: the variable selection;
the regression on the latent variables provided by PCA (principal component analysis); the PLS

regression (partial least squares).

2. Dataset

MODELE PRIX CYLINDREE PUISSANCE POIDS CONSOMMATION
Daihatsu Cuare 11600.00 846.00 32.00 B50.00 5.70
Suzuki Swift 1.0 GL 12490,00 993,00 39.00 790,00 5,80
Fiat Panda Mambo L 10450.00 899.00 29.00 730.00 6.10
YW Polo 1.4 60 17140.00 1390.00 4400 955.00 .50
Opel Corsal.2iEco 14825.00 1195.00 33.00 §95.00 &80
Subaru Vivio 4WD 13730.00 658.00 32.00 740.00 G.80
Toyota Corolla 13490.00 1331.00 55.00 1010.00 7.10
OpeIAstra 1.6i16Y 25000.00 1597.00 74.00 1080.00 7.40
Peugeot 306 X5 108 22350.00 1761.00 74.00 1100.00 9.00
Renault Safrane 2.2 36600.00 2165.00 101.00 1500.00 11.70
Seat lbiza 2.0 GTI 22500.00 1983.00 85.00 1075.00 9.50
YW Golt 2.0 GTI 31580.00 19384.00 85.00 1155.00 9.50
Citroen ZX Volcane 28750.00 1998.00 89.00 1140.00 8.80
Fiat Tempra 1.6 Lib 22600.00 1580.00 65.00 1080.00 9.30
Fort Escort 1L.4i PT 20300.00 1390.00 54,00 1110.00 8.60
Honda Civic Joker 1 19900.00 1396.00 56,00 1140.00 7.70
“olvo B50 2.5 39800.00 2435.00 106.00 1370.00 10.80
Ford Fiesta 1.2 Zet 13740.00 1242.00 55.00 940.00 G660
Hyundai Sonata 3000 38990.00 2972.00 107.00 1400.00 11.70
Lancia K 3.0 LS S0800.00 2958.00 150,00 1550.00 11.90
Mazda Hachthack v S36200.00 2497.00 122.00 1330.00 10.80
Opel Omega 2.5i V& 47700.00 2496.00 125.00 1670.00 11.30
Peugeot 806 2.0 3E950.00 1998.00 §9.00 15&60.00 10,80
MNissan Primera 2.0 26950.00 1997.00 92.00 1240.00 9.20
Seat alhambra 2.0 Se400.00 1384.00 85.00 1635.00 11.60
Toyota Previa salon 50900.00 2438.00 a7.00 1800.00 12.80
Wolvo 960 Kombi aut 49300.00 2473.00 125,00 1570.00 12.70

Figure 1 — Dataset - Dependent variable: “CONSOMMATION"

There 27 instances into the car_consumption_colinearity_regression.xls data file. The goal is to predict

the consumption of cars (CONSOMMATION) from various characteristics (price, engine size,

horsepower and weight).
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3.
3.1,

Multiple regression and the multicollinearity problem
Creating a diagram and importing the data file

The easiest way to launch Tanagra and to import the dataset is to load the file into Excel spreadsheet.
We select the dataset. We click on the TANAGRA / EXECUTE TANAGRA menu.

A

MODELE FRIX CYLINDREE FUISSANCE CONSGMMATION, =
Daihatsu Cuare 11g00.00 846.00 32.00 5.70
iSuzuki Swift1LO0GL | 12450.00] 993,00 39.00 5.80
Fiat Panda Mambo L | 10450.00] 899,00 29.00 5.10|
VW Polo 1.4 60 17140.00 1390.00 44,00 6.50|
| 6 iOpel Corsa 1.2iEco 14825.00 1195.00 33.00 5.80}
7 1Subaru Vivio 4WD 13730.00 658.00 32.00 6.80)

|

55.00

| 8 |Towata Corolla 1331.00
c 740

9 'OpelAstralsilev | 250

10 !Peugeot 306 XS 108

Renault Safrane 2.2

) 15eat Ibiza 2.0 GTI
VW Golt 2.0 GTI

’Dataset range (iMluding the name of the attributes -- First row):
! 7
$a41:4F478
N .

~_-

| \Citroen Zx Volcane
 \Fiat Tempra 1.6 Lib
Fort Escort1.4i PT
17 !Honda Civic Joker 1
18 MVolvo 850 2.5

Cancsl

rdFiestal.2 Zet | TIF0.00, TZAZ00, SE00 540,00 5.60|

sundai Sonata 3000 | 38990.00 2972.00 107.00 1400.00 11.70}

1 sLanciakK3.0LS 50800.00 2958.00 150.00 1550.00 11.90)

22 |Mazda HachtbackV 36200.00 2497.00 122.00 1330.00 10.80}

i Opel Omega 2.5 V6 47700.00 2496.00 125.00 1670.00 11 30!

Peugeot 806 2.0 36950.00 1998.00 §9.00 1560.00 10.3_0!

| 25 INissan Primera 2.0 26950.00 1997.00 92.00 1240.00 9.201

26 'Seat Alhambra 2.0 36400.00 1984.00 85.00 1635.00 11.50]
| 27 IToyota Previa salon 50900, 2438.00)

[bhdataset / B ' IEIE

! Dessin = [x (5

=2 N

Paintar || Somme=046262.50 |

Tanagra is launched. The dataset is now available in the root of the diagram.

" TANAGRA 1.4.19.(build 3) - [Dataset (taniC.txt)]

¥ Fie Diagram Component Window Help -8 %
Ow 8|5
' o [
Emslestn L eetes
Database : C'DOCUME-TWaison\LOCALS- 1\ Tempitan1C. txt
| T
Download information
| Datasource processing
Computation time 0ms
Mlocated memory 8 KB
Dataset degcription
& attribute{s) 7
27 example(s)
Attribute  Category Informations
MODELE Discrete 27 values
PRIX Continue
CYLINDREE Continue
PUISSANCE Continue
POIDS Continue L
CONSOMMATION Continue
v
| C
[ Data visualization Statistics | Menparametric statistics Instance selsction Feature construction
Feature selection Regressian Factorial analysis PLS Clustering
Spv learning Metaspy learning | Spu learning assessment | Scoring Association
| Correlation scatterplot [ Scatterplot with label
[ERexport dataset
|l seatterplat [z View multiple scatterplot

1 See the following tutorial for the installation and the utilization of the Tanagra add-on for Excel - http://data-

mining-tutorials.blogspot.com/2008/10/excel-file-handling-using-add-in.html
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3.2.  Multiple linear regression

In a first time, we intended to perform a multiple regression analysis using all the explanatory
variables. By using the shortcut into the toolbar, we insert the DEFINE STATUS component. We set

CONSOMMATION as TARGET; PRIX, CYLINDREE, PUISSANCE and POIDS as INPUT.

EE2- Y

/6

" TANAGRA 1.4.19 (build 3) - [Dataset (tan1C.txt)1
EFiIE Diagr’am\CnmpnnEnt Window  Help

Ana{ysis

= aset [tan1C.txt)

T Define status 1

Feature selection

Spu learning

Data wisualization

Statistics
Regressian

Meta-spw learning.

E@Cnrrelatinn scatterplot
EExport dataset
”g‘ Scatterplot

E‘Scatterplnt with labe
\f'w‘ew datazet
E_';View multiple scatter|

Define attribute statuses

Pararneters

Affributes

Target | |HDU"H\ustratwe

PRIX
CYLINDREE
PUISEANCE
FOIDS

[ Clear selection

]

Define attribute statuses

Parameters

[ ok ][ caneel ||

Help

Aftributes

D MODELE

C PRIX

C CrLINDREE
C PuUISSANCE

Target ‘ Input Iy strative

CONSOMMATION

Clear selection

]

[ ek

“ Cancel “ Help ]

We add the MULTIPLE LINEAR REGRESSION component (REGRESSION tab). We click on the
VIEW menu to obtain the results. The model seems very good. The coefficient of determination R2 is

0.9295 (http://en.wikipedia.org/wiki/Coefficient_of determination). We are rather confident about the

quality of the model.

But, when we consider the coefficients of the model, some results seem strange. Only the weight is
significant for the explanation of the consumption. The sign is positive, when the weight of the car
increases, the consumption increases also. It seems natural. But, neither the horsepower nor the
engine size seems to influence the consumption? It is unusual. It suggests that two cars with the same
weight have similar consumption, even if the engine size of the second is 4 times bigger than the first.

Although not a great expert, this last result does not correspond at all with what we know about cars.
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‘i TANAGRA 1.4.19 (build 3) - [Multiple linear regression 1]
E File Diagram Component ‘Window Help

Analysis.

= Dataset [taniC.txt)

= %% Define status 1

Global results

14 Multiple Hnear regression 1

Endogenous attribute CONSOMMATION
Examples 27
R= 0929520
Adjusted-R2 0.916706.
Sigmaerrar 0.651169
F-Test {4,22) 72,5365 (0.000000)

Analysis of variance

Source x55 d.f. xM§ F p-value
Regression 123.0275 4 30,7570 72,5365 0,0000
Residual 9.53285 22 0.4240
Total 132.3563 26
Coefficients
’l
Attribute Coef. std 122y p-ralue
Intercept 1,838006 0793367 2316716 0,030220
< PRIX 0,000034 0.000045 0.752735 0.459657
CYLIMDREE 0.001208 0.000722 1.672661 0.108557
PUISSAMCE -0.003742 0,015030 -0, 245956 0,505704
| Foios 0,003728 0.001300 zaeases [OI0RGEE
[ v
< >
Componhents
Data wizualization Statistics Monparametrc statistics Instance selection Feature construction
Feature selection Regression Factorial analysis PLS Clustering
Spw learning Meta-zpy learning Spw learning assessment Scoring hzzociation

-r{_ Backward Elimination Reg <, Forward Entry Regression [, Outlier Detection

[I#, DfBetas [ Multiple inear regression -r*“::, Regression tree

Figure 2 — Regression using all explanatory variables

3.3. Detecting the multicollinearity

We suspect a multicollinearity phenomenon here. We know for instance that the engine size and the
horsepower are often highly correlated. It influences the results in a different ways. The model is very
unstable; a small change in the dataset (by removing or adding instances) causes a large modification
of the estimated parameters. The sign and the values of the coefficients are inconsistent with the
domain knowledge. For instance, it seems here that the horsepower has a negative influence on the
consumption. We know that this cannot be true. Lastly, some variables that we know they are relevant

according the domain knowledge are not significant into the regression.

In short, we have an excellent model (according the R2) but unusable because we can not draw a
meaningful interpretation of the coefficients. It is impossible to understand the causal mechanism of

the phenomenon studied.

We use very simple calculations to detect the multicollinearity problem.
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Sign consistency. The first strategy is very basic. We check if the sign of the coefficient is consistent
with the sign of the correlation of each explanatory variable with the target variable (computed
individually). If some of them are inconsistent, it means that other variables interfere in the association

between the explanatory variable and the dependent variable.

To compute the correlation between each independent variable and the dependent variable, we add
the LINEAR CORRELATION tool (STATISTICS tab) behind DEFINE STATUS 1. We use the default

settings.

‘" TANAGRA 1.4.19 (build 3) - [Linear correlation 1]

ﬁ File Diagram Component Window  Help -3 %X
0w B
| Bnalyzis ~
=] Datazet (taniC.txt)
E‘.-*:i Define status 1
Ry ; g . Cross-tab parameters
P E Multiple inear regression 1
2R , sork It
o [# Linear correlation 1 sl Lo
Input list  Target (7)) and input (H)
o Rews
¥ X r r? t Pro=[t [}
COMNSOMMATION PREX 0.9426 0.5885 14,1136 0, 0000
’ < CONSOMMATION CYLINDREE 0.9038 0.5259 10,8901 0.0000
COMSOMMATION PUISSANCE 0,55883 0,759 9.6711 0.0000
CONSOMMATION POIDS 0.9447 0.8925 14,4094 0, 0000 £=
ol
L
Comeatatine Fima o O m
. Components
Data wisualization | Ctatistics Monparametric statistics Instance selection Feature construction
Feature zelection Regression Factoral analysis PLS Clustering
Spu learning Meta-spw learning Spi learning assessment Scorng fssociation
E@Bar‘tlett's test ae Fisher's test ﬂ Group exploration T;-.E%Linleear correlation ﬁ Normalii
i"'j* Brown - Forsythe's test m Group characterzation @Levene's test A are Univariate cont stat Lih One—wai
|
[ 2|

Figure 3 — Correlation — Dependent vs. each independent variable

Each explanatory variable is highly correlated with the dependent variable (= 0.8883). We note also
that there is a problem about PUISSANCE (horsepower). The correlation is positive, but the sign of its

coefficient into the regression is negative. Another variable probably interferes with PUISSANCE.

Klein’s rule. We compute the square of the correlation for each couple of explanatory variables. If one
or more of the values are higher than (or at less near) the coefficient of determination (R2) of the
regression, there is probably a multicollinearity problem. The advantage here is that we can identify

the variables which are redundant in the regression.

We add again the LINEAR CORRELATION component, but we modify the settings by clicking on the
PARAMETERS contextual menu. We set the CROSS INPUT option in the INPUT LIST section.

Tanagra computes the correlation between the INPUT variables.
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19 (build 3) - [Linear correlation 1]
enlk b Help
Analysis |
= [ Dataset {taniC.txt) Correlation aptions
% Define status 1
1 Multipls linear regressian 1 Parameters 1
Linear correlation 1
7 Linear correlation 2\ DlSortresults
\ L
\ |
\
A
A
\
\
\ =
~ Input list L

A ~|
\ | O Target and Input —
N B

Data wisualization | I Statisti & Cross Input tion |

Feature selection | Regressi |

Spv learning | et a-sp le: |
o Bartlett's test iFishers ¢ Mormalf
7 Brown - Forsythe's test [ Group Lok [ ocencal [ Heln |k oneowa

£ il 5

We confirm the settings and we click on the VIEW menu. In the visualization window, we observe that

all the explanatory variables are highly correlated each other.

i TANAGRA 1.4.19 (build 3) - [Linear correlation 2] CEX
EF\Ie Diagram Component  Window  Help =
OwHd| S

Binalpsis

=] Dataset (tanil txt)
=-§ Define status 1

s , " i Cross-tah parameters
1 dultiple linear regression 1

- . Sort results non
1# Linear correlation 1

" 1# Linear correlation 2 Inputlist  Cross-input (¥'x X)

¥ X r ¥ t Pri=[t])
PRIX CYLINDREE 0.9185 0.8436 116127 0.0000
PRIX PUISSANCE 0.9269 0.85%2 12.3504 0.0000
’ PRIX POIDS 0,967 0,8962 14,6914 0,0000
CYLINDREE PUISSANCE 0.9559 0‘9137646.-1599'_9!9999—
CYLINDREE POIDS 0,850 0.7414 84656 0.0000 L
PUISSANCE PQIDE 0.8520 0.7259 8.13600 0.0000
v
Camponents |
Data visualization | | Statistics ‘ Monparametric statistics ‘ Instance selection | Feature construction |
Feature selection | Regression ‘ Factorial analysis ‘ PLS | Clustering |
Spu learning | Meta-zpy learning ‘ Spy learning assessment ‘ Scorng | hssociation |
/.:‘.: Bartlett's test = Fisher's test [l Group exploration 1# Linear correlation Fii Naormali]
’f‘:\‘ Brown - Forsythe's test [ Group characterization ’:,‘:La\tene's test L thore Untvariate cont stat Tt One-wal
¢ | 3

Figure 4 - Cross correlation between the explanatory variables

We note among others than the square of the correlation between PUISSANCE (horsepower) and
CYLINDREE (engine size) is very close to the coefficient of determination of the regression (0.9137
vs. 0.9295).

All these symptoms suggest that there is a problem of collinearity in our study. We must adopt an
appropriate strategy if we want to get usable results.
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4. Variable selection

The selection of explanatory variables is not really a direct solution to collinearity. Even in the absence
of collinearity between independent variables, reducing the dimensionality of the problem studied is
always beneficial. It helps to identify relevant variables and give an interpretable result. In the context
of multicollinearity problem, it can especially remove redundant variables which interfere in the

regression. This is this characteristic that is interesting here.

We use a forward search. At each step, we search the most relevant explanatory variable according
the absolute value of the correlation coefficient. We must take into account the influence of already

selected variables i.e. we use a partial correlation.

We add the FORWARD ENTRY REGRESSION component (REGRESSION tab) into the diagram. We
click on the VIEW menu. In addition to the standard output of the regression, we obtain more detailed

results about the selection process.

T TANAGRA 1.4.19 (build 3) - [Forward Entry Regression 1]
E File Diagram Component ‘window Help o (]

=

Analysis ~ |

f 1| Global results

= Dataset [tan15.txt)

= %% Define status 1 Endogenous attribute ‘COMSOMMATION
= L.e‘_( Multiple linear regression Examples a7
- L,Jf Linear correlation 1 Rz 0,927679
- |# Linear correlation 2
[’i.f Adjusted-Rz 0.921653
= -ef' Forward Entry Regression -
Sigma error 0.631536
F-Test (2,24) 153.9275 (0.000000)
Analysis of variance
’ Source x88 d.F. xMS F p-vralue
Regression 122,7842 z 61,3921 153.9275 0.0000
Residual 9.5721 24 0.3988
Total 132.3563 26
Coefficients
Attribute Coef. std {24} p-ralue
Intercept 1.392276 0.496854 2.,802012 [
FOIDS 0.004505 0.000775 5511721 i
\ CYLINDREE 0.001311 0.000384 sva1s1z1 |G
r Forward Selection Process
partial carr,
Foin eaiin] Step 1 Step 2 Step 3
dif. 25 24 23
Y SRIi1,02,..) POIDS 10,9447 CYLINDREE : 0,57 19
R2 0,8925 0,9277 -
BRI 0.9426 0.4567 0.1507
199,19 (0,0000) 6,32 (0.0190) 0.53 (0.4721)
0.9088 0.5719
SO NEREE 118,60 (0.0000) 1166 (0.0023) )
0.8853 0.4359 0.0185
FLISSANCE
93,53 {0.0000) 7.42 (0.0118) 0.01 (0.9288)
0.94el7
Bt 207,63 (0,0000) B

\ e s

Components
Data wisualization Statistics Monparametric statistics Instance selection Feature construction
Feature selection Regresszion Factoral analvsis PLS Clusterng
Spv learning feta-cpy learning Spu learning asseszment Scoring Azzociation

Figure 5 - FORWARD selection process
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We observe that:

« The selected explanatory variables are POIDS (weigth) and CYLINDREE (engine size). They are
very significant.

« Compared to the initial regression, despite the elimination of two variables, the proportion of
explained variance remains very good with a coefficient of determination of R2 = 0.9277 (R2 =
0.9295 for the model with 4 variables).

« POIDS and CYLINDREE have both a positive influence on the consumption i.e. when the weight
(or the engine size) increases, the consumption increases also. This is rather consistent to the
domain knowledge.

« And the signs of the coefficients are in adequation to the sign of the correlation coefficient
computed individually (Figure 3).

< When we consider the cross-correlation (Figure 4), we note that these variables are the less
correlated among the explanatory variable. We have r2 = 0.7417, it is largely lower than the
coefficient of determination of the regression.

* About the selection steps (Figure 5), the used significance level is 5%2:

o0 At the first step, the variable which is the mostly correlated (absolute value) to the
dependent variable is POIDS (r = 0.9447). The test statistic F for the significance is
207.63. The p-value of the test is <0.0001. Because the p-value is lower than the
significance level, we add the variable into the regression.

0 At the next step, we search the variable which is the most correlated with the dependent
variable, by removing the effect of the already selected variables. The partial correlation3.4
for CYLINDREE is 0.5719. We note that it is clearly lower than the direct correlation which
was 0.9088 (Figure 3). The partial correclation is significant (p-value = 0.0118). The
variable is selected.

0 At the thirs step, we observe that PRIX is the most partially correlated variable (0.1507). It

is significant (p-value = 0.4721). The selection process is stoped.

There are other search strategies (backward, stepwise). They give very similar results in the most of
situations. Actually, there is not really an optimal subset of explanatory variables. It is more informative

to examine their influence on the regression.

Let us consider the second step of the selection process. CYLINDREE (partial-r = 0.5719) is in
competition with PUISSANCE (horsepower, partial-r = 0.4859). It seems better; it is added in the
selected subset. In the next steps, PUISSANCE is forevermore excluded. This does not mean that
PUISSANCE has no influence on the consumption. If we perform a regression with POIDS and
PUISSANCE, we observe that the model (Figure 6 — R2 = 0.9179) is almost as good as the selected
model above (Figure 5 — R2= 0.9277), and PUISSANCE is significant (p-value = 0.0118).

2 http://en.wikipedia.org/wiki/Statistical_significance

3 http://faculty.chass.ncsu.edu/garson/PA765/partialr.htm

4 http://en.wikipedia.org/wiki/Partial_correlation
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Thus, we should be used carefully the variable selection process. Of course, it removes the irrelevant
explanatory variables. But it removes (masks) also variables which are strongly associated with the
dependent variable, but redundant with some already selected variables. It is really important to
analyze attentively the results provided by the selection process in order to differentiate these two

kinds of explanatory variables (irrelevant or redundant).

Global results

Endogenous attribute CONSOMMATION
Examples a7
Rz 0.917912
Adjusted-R2 0.911071
Sigma error 0.672833
F-Test (2,24) 134,1842 (0.000000)

Analysis of variance

Source x53 d.f. xM3 F p-value
Regression 1214914 2 60,7457 13,1542 0.0000
Residual 10,8649 24 0.4527
Total 132.3563 26
Coefficients

Attribute Coef. std t{24) p-value
Intercept 1,620097 0.540290 2891532 | NTERETIEI
PUISSANCE 0.020937 0.007686 2.7238% 0.011839
FOIDS 0.004923 0.000802 s.137204 | NEERRG02)

Figure 6 — Regression with POIDS and PUISSANCE

5. Regression from the factors of PCA

Principal component analysis is a variable reduction procedure. From the original variables, it
computes a small number of articial variables called “principal components” or “factors” or “latent
variables”. These new variables are uncorrelated. They can be used as predictof in subsequent

analysis®8. In our context, we use them as explanatory variables in the regression analysis.

Thus, the regression process is organized as follows: (1) we compute the factors from the explanatory
variables; (2) we use some of them as new explanatory variable in the regression analysis; (3) we
obtain the coefficients of the linear combination on the original variable from the results of the

regression and the PCA.
5.1. The principal component analysis (PCA)

To perform a PCA with Tanagra, we add the PRINCIPAL COMPONENT ANALYSIS (FACTORIAL
ANALYSIS tab). We click on the VIEW menu, we obtain the following results.

5 http://support.sas.com/publishing/pubcat/chaps/55129.pdf

6 About its implementation with Tanagra, see for instance http://data-mining-

tutorials.blogspot.com/2009/04/principal-component-analysis-pca.html
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{2 TANAGRA 1.4.19 (build 3) - [Principal Component Analysis 1]
E Flle Diagram Component ‘Window Help - B

B %

Default il ~

= Dataset (car_consumption_colinearity_re Elgen values
= ¥% Define status 1 "
-1 Multiple linear regression 1 Matrix trace - 4.00
4?” Linear correlation 1 Axis Eigen value % explained Histogram % cumulated
-~ Linear correlation 2 1 3.731086 93.76% 93.28%
-r{(’ Forward Entry Regression 1

el 7 2 0.188262 A4.71% Q7 98%
"@{ Principal Component Anabysiz 1

3 0.049333 1.23% 99.22%

4 0.031320 0.768% 100, 00%

Tot. 4000000 =

Factor Loadings [Communality Estimates]

Aftribute Axis_1 Axis 2 Axis 3 Axis_4
carr, % (Tot, %) carr, % (Tot, %) carr, % (Tot, %) carr, % (Tot, %)
PRIX 09817 96 % (76 %) 01058 1 %57 %) 04003 {995 01224 1 K00 %)
CYLINDREE 09672 94 %94 %) -0.1972 4 B{97 %) -0.1643 2 &% 100 %) -0.0435 0 %100 %)
PUISSAHCE 00671 94%04% 0203 4%05%) 04098 { %P0 &) 00920 1 K100 %)
POIDS 0.9463 90 %90 %) 03065 9 %99 %) 00585 0 %[99 %) 0.0774 7 %100 %)
Var. Expl. 27 93 K97 %) 0.1683 5598 %) 00493 1 %99 00313 7 %7100 %)

Eigen vectors -- Factor Scores

Attribute Hean Std-dev Axis_1 Axis_2 Axis_3 Axis_4
PRIX 28260,656656 12366,497328  0,608240  0,243791 0481604 -0.691666
CYLINDREE 1802.074074  622,561133  0.500710 -0.454522 -0.694519  -0.245647
PUISSANCE 78,143148 F278104  0.500669  -0,434441 0.494294  0,519738
P3 N POIDS 1193, 148148 308332277 0.490217  0.706470 -0,263662  0.437132
| w
Cornponents
Data wisualization Statiztics Monparametric statistics Instance selection Feature construction Feature selection
Regression Factorial analysis PLS Clustering Spw learning Meta-cpy learning
Spw learning aszessment Scorng Aszociation
|l¢* canonical Discriminant Analysis ECmrraspnndenca Analysis @Factﬁr rotation @Mum’pte Correspondence Analysis Fﬁ;NIPALS
|z L4

Figure 7 — Results of the principal component analysis (PCA)

The visualization window is divided in three parts.

« EIGEN VALUES’. The eigenvalue for a given factor measures the variance in all the variables
which is accounted for by that factor. The ratio of eigenvalues is the ratio of explanatory
importance of the factors with respect to the variables. We observe that 93.28% of the variance is
explained by the first factor on our dataset. It means, among others, that the explanatory variables
are highly redundant. The second factor explains only 4.71% of the global variance, the others are

negligible.

* FACTOR LOADINGS. The factor loadings, also called component loadings in PCA, are the
correlation coefficients between the variables (rows) and factors (columns). Analogous to
Pearson's r, the squared factor loading is the percent of variance in that indicator variable
explained by the factor. We observe here that all the variables are correlated with the first factor. It

is rather natural: cars with a large engine are also heavy and powerful; last, they are also costly

(price).

7 See http://faculty.chass.ncsu.edu/garson/PA765/factor.htm for detailed description.
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« EIGEN VECTORS - FACTOR SCORES. This last table gives the coefficients which are useful to
compute the factor scores of an instance. The factor score is the coordinate on the representation

space defined by the factors. About the first car (Daihatsu Core - ), its coordinate on the first factor
is computed as follows

v, =0.51x (11600~ 282606, | 5, (BAO—1802L, | 5 50 (327781, | .4gx (82011931,
123665 6226 322 3083

=-3.035

5.2. Regression from the factors of the PCA

A crucial problem is the determination of the number of factors used for the regression. The easiest
way is to use all the factors. But this solution has a drawback. We know that some factors have a very
weak power, their proportion of variance explained (Eigen value) is low. They are very unstable;
indeed, they correspond to residual information of the explanatory variable. By using only the relevant

factors, we perform a kind of regularization by smoothing the information provided by the learning
instances.

For our dataset, taking into account the PCA results, we retain only the first two factors. We insert the
DEFINE STATUS component into the diagram. We set as TARGET the dependent variable for the
regression, as INPUT the two first factors PCA_1_AXIS_1 and PCA_1_AXIS_2.

‘i TAMAGRA 1.4.19 (build 3) - [Principal Component Analysis 1]

E File Diagram Component Window Help
Define attribute statuses
EIGY
. T
Drefault title Gene ~
= E aset (car_consumption_colinearity_re; Input | Nlustrative
X taset | + | + i Aftributes
e 3 D MODELE [
F- £ Defi tatus 1 =
’.‘ ehne status C PR
- Mhultiple lnear regression 1 - C cvLINDREE _
i C PUISSANCE
-~ #" Linear correlation 1 C FoDs
s R 3 C CONSOMMATION
= #7 Linear correlation 2 Elgi? C Foa 1 A1 -
= 4‘( Forward Entry Regression 1 ot C PCa_1_fxis 2
<\E Principal Component Analusie Matr E Eﬁ’lﬁ‘ -
1 _pcis_d
o+ ;
£4 Define status 2 %
& ( Axis
\ cumulat
\ i 8| 8 e cl Iecl 9.2
\ 5
\ 2 Help 972
AN
\ 3 0049 i 99.2
Define attribute statuses
A 4 100.0
\\ Tot. Paramets
\Eac Aibutes Target Input [Jllustrative
D MODELE PGA_1_fuis_1
\ € PRIX PCA_1_fods_2
\ C CYLINDREE A
1 C PUISSANCE T i |
% 2|l J C PoIDE g
== = ||| = C COMNSOMMATION —
|:: 1 |
c 2
| T e [ 3 ;
Data visualization Statistics N C poa 1 Ao d construction
Feature selection Regression sterng
Spu learning iheta-spu learning 5 ociation
B| B B | Clear selection
i%CDrreLatiUn scatterplot ]ﬁls:atterplut
iEXDDFt dataset ES:attErplut with label Help

Then we insert again the MULTIPLE LINEAR REGRESSION component. We click on the VIEW
menu.
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 TANAGRA 1.4.19 (build 3) - [Multiple linear regression 2] [=1(3
mFile Diagram Component  Window  Help 5 i

=
Defaul file |[Global results ~]

=] Dataset [car_consumption_colinearty_re;

=) 1_-:* TR tEa) Endogenous attribute CONSOMMATION
-« 1# Multiple inear regression 1 Examples : a7
¥ Linear correlation 1 R 0.934643
¥ Linear carrelation 2 Adjusted-RE 0,918369

# Forward Entry Regression 1 Sigma error 0. 644636

=13 Principal Component Analysis 1 F-Test (2,24) 147,2524 (0,000000)

=% Define status 2
~1# Multiple linear regression & Analy‘ils of variance

Source X35 d.f. xMs F p-value
Regression 122.3830 2 61,1915 147, 2624 0.0000
Rezidual 99733 24 0.4156
Total 32,3663 26
Coefficients
Afttribute Coef. std t24) p-value
Intercept 9129430 0124060 F35,590524
PCA_1_Axis_1 1.093050 0.064227 17.018649
PCA_1_fxis_2 0,631006 0,285925 2,206596 0.037132 =
:..<-_ _>. J ‘ >
: : Companents : :
Data wizualization Statistics Monparametric statistics Instance selection Festure construction
Festure selection ’—Ti‘egreT Factoral analysis PLS Clustering
Spw learning Meta-spy learning Spw learning assessment Scoring hszociation

-f_x_ Backward Elimination Reg .:i Forward Entry Regression [ Outlier Detection
|li, DfBetas |« #hultiple linear regression .-‘::, Regression tree

Figure 8 - Regression on the two first factors

The model seems good since the coefficient of determination is R2 = 0.9246, similar to this obtained
from the regression on POIDS ans CYLINDREE (Figure 5, R? = 0.9276). The two factors are both
significant.

Note: We have aftempted to perform the regression on all the factors. It appears that the two last ones
(third and fourth) are not significant in the regression. This corroborates the choice fo use only the two

first factors in the regression phase.
5.3. Obtaining the coefficients of the linear combination from the initial variables

At this step, our model is not easy to deploy on unseen cases because we must handle many linear
combinations: those which define the factors, the coefficients of the regression on the selected factors.
Obviously, it is more convenient to have a single linear combination defined on the original
explanatory variables. The interpretation of the results, understanding the associations between each

explanatory variable and the dependent variable, is easier.

For this, we use the results of the regression (Figure 8) in conjunction with those of the PCA (Figure
7). Let V1 and V2 the factors of the PCA, M, and O, are the mean and the standard deviation of the
explanatory variable X. The equation of the linear combination from the original explanatory variables
is computed as follows.
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y =9.13+1.09%V, +0.63%V,
rix—m,_. cylindree—m_,.
=90.13+1.09x% {O.Slx (uj + 0,50){ 4 mcy""d'%J +.. }
Uprix

g,

cylindree
Fix—m._. cylindree-m_,.
+0.6 024X(uj_045x( Y mcylmdreeJ_i_“.
Uprix chlindree
Then we obtain the equation defined on the standardized variables.
y=9.13

rix—-m_ .

+0.7094% uj
a ...
prix

lindree—m,,

+ 02605X Cy mcyhndree
acylindree
puissance—m, ;..
+0.2414 %
ag. .
puissance

oids—m,__.

+0.9816x p—de
g

poids

Let us consider the coefficients of this linear combination. Because they are defined on the
standardized variables, the influences of each explanatory variable on the dependent variable are
directly comparable. We observe that all the variables have a positive influence on the consumption.
We note also that the weight (poids) has the strongest influence on the consumption. When the weight
increases of one standard deviation, the consumption increases of 0.9816 times of its standard

deviation.

By inserting the estimated values of the mean and the standard deviation, we obtain the

unstandardized coefficients of the model defined from the original explanatory variables.

y = 2.36954 + 0.00006 x prix +0.00042 x cylindree + 0.00750 x puissance + 0.00318 x poids

6. PLS Regression

“Partial least squares” (PLS) is sometimes called "Projection to Latent Structures" because of its
general strategy. The explanatory variables are reduced to principal components, as are the Y
variables (the approach can handle one or more dependent variables). The components of X are used
to predict the scores on the Y components, and the predicted Y component scores are used to predict
the actual values of the Y variables. While the original X variables may be multicollinear, the X

components used to predict Y will be orthogonal (http://faculty.chass.ncsu.edu/garson/PA765/pls.htm).

Thus, this approach is particularly convenient for treating the multicollinearity problem.

Like for the PCA + Regression approach, we can smooth the used information by selecting only the

relevant factors for the construction of the final model.
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6.1. Reading the output of the PLS regression

We add the PLS REGRESSION component (PLS tab) into the diagram, behind DEFINE STATUS 1.
We click on the PARAMETERS contextual menu. With the default settings, the algorithm computes
automatically L = MIN (5, number of input variables) factors. So, we obtain 4 factors on our dataset.
We activate the RESULTS tab. We select the DETAILED RESULTS option.

‘" TAMAGRA 1.4.19 (build 3) - [Dataset (car_consumption, colinearity._resression.xls)]

m File Diagram Component ‘Window Help - X
Ow Bl %
[ Diefault ftle ~|
=] Dataset (car_consumption_colinearity_regression.xls)
%% Define status 1 R
_ Ahultiple linear regression 1 D\DataMining'Databases_for_miningidataset_for_soft_dev_and_comparisoniregression
Linear correlation 1 E
7 linear coretton 2 R
| Forward Entry Regression 1
. Principal Component Analysis 1
s Define status 2
Multiple linear regression 2 o — Results k
io - ;
e o — — — o
K
o Exextile Detailed result
4 WView
#' h
J
5
.
N
"“ o] H Cancel “ Help |
*, M= ] | s
= =
_Comnponents.
Data \fisualiza’tTml Statistics Monparametric statistics Instance selection Feature construction
‘e
Feature selection ."~.. Regression Factaorial analysiz PLS Clustering
. ...' i ' | . Ly
Spv learning N\sta.-spv learnjpng we| oSpv learning assessment Scoring Azzociation
o e, g ) i S )
|EEE PLS Conf. Interval PLEPLS Factorial '\EE§ PLS Regression ) Fb5PLS Selection
~ — — -

We validate our choice and we click on the VIEW menu.

Regression coefficients. We obtain the regression parameter estimates (Figure 9). We can use them
to predict the value of the dependent variable of an unlabeled case. Because we use all the factors
(corresponding to the number of explanatory variables), we note that we have the same coefficients of

the standard multiple linear regression (Figure 2).

Regression coefficients

Xy COHSOMMATION

PRIX 0.0000
CYLINDREE 0.0012
PUISSANCE -0.0037

POIDS 0.0037

constant 1.8380

Figure 9 - Coefficients de la régression PLS - 4 axes

Proportion of variance explained by latent factors for X (Redundancy). It described the part of the
variance of the explanatory variables explained by the latent factors (Figure 10). When we use all the

factors (the last column of the table), we explain all the variance of each explanatory variable (in
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brackets, the cumulative part of variance explained). We note here that from the third factor, the part
of variance explained is negligible whatever the independent variable. It suggests that only the two

first factors are enough to build an efficient model.

The last row (redundancy) describes the part of variance of all the explanatory variables explained by
the latent factors. Like for the PCA, we observe that the two first factors explains about 98% of the
global variance. But, unlike the PCA, the factors are computed by taking into account the values of the

dependent variable in the context of the PLS regression.

R? coefficients and redundancy on inputs (X)

Attribute Axis_1 Axis_? Axis_3 Axis_4

0.9649 0,009 0.0125 0.0157
PRIX

(0.964%)  (0.9718)  (0.9843)  (1.0000)
09732 0036 00337 0.0015

CYLMDREE \os32)  (0.9648)  (0.9985)  (1.0000)
09324 00535 00063 0.0079

PUISSANCE 1 oazq)  jo9ess)  (0.9921)  (1.0000)
POIDS 05005 00932 0.0001 0.0062
(0.9005)  (0.9937)  (0.9938)  (1.0000)

09327 00463 0.0131 0.0078

Redundancy . o0y jo.9790) (0.9922)  (4.0000)

Figure 10 - Redundancy for the latent factors — PLS regression

Proportion of variance explained by latent factors for Y (Redundancy). The aim of the PLS Regression
is to explain (predict) the values of the dependent variable(s) (Y). This table (Figure 11) describes the
proportion of the variance of the dependent variable explained by the latent factors. In a prediction

purpose, this table is maybe the most important of the results.

Once again, if we use all the latent factors here, the coefficient of determination (redundancy - Figure
11) is the same as this obtained with the standard linear regression i.e. R2 = 92.95% (Figure 2). But
we observe into the same table the quality of the model when we use only some of the latent factors.
For instance, if we use only the two first factors, we have already explained R2 = 92.70% of the

variance of Y. It suggests that only the two first factors are enough to obtain a good model.

R? coefficients and redundancy on targets ()

Attribute Axis_1 Axis_2 Axis_ 3 Axis_4

0.9110 0.0160 0.0025 0.0000
([09410)  (0.92F0) (0.929%)  (0.9295)

0.9110 0.0160 0.0025 0.0000
(0.51-10) (0.9270) (0.9295) (0.9295)

CONSOMMATION

Redundancy

Figure 11 — Redundancy on Y — PLS Regression

Variable Importance in Projection. The last table gives an indication about the contribution of each
explanatory variable on the dependent variable, through the latent factors (Figure 12). Like for the
regression on the PCA factors, we note that all the explanatory variables have a positive influence on

the consumption. POIDS and PRIX seem the most important ones (VIP > 1).

Note: The influence of prices on consumption is not very obvious. If we understand that the price is

certainly correlated with the consumption, it seems strange that it has an influence. This would mean
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that if we reduce artificially the price of cars, their consumption decreased in the same time. A
numerical technique can not demonstrate that it is nonsense. This is for this reason that we will always

need the domain knowledge to validate the results.

Variable Importance in the Projection

Attribute Axis_1 Axis 2 Axis 3 Axis_ 4
PRIX 1.0230 10144 1.0143 1.0143

CYLINDREE 0.9563 09799 0,9522 09822

PUISSANCE 0,941 0.95695 0,991 0,959
POIDS 1.0253 1.0345 1.0331 1.0331

Figure 12 — VIP table — PLS Regression

6.2. Choosing the appropriate number of factors

The determination of the appropriate number of factors is a crucial problem in the PLS regression.
Some considerations expressed above, mostly about the redundancies (Figure 10 and Figure 11),
seem suggest that the "optimal" number factors could be 2. But this approach is mainly a rule of

thumb. From the reading these tables, two statisticians might come to different conclusions.

There is a more stringent approach to determine the right number of latent factors. It is based on the
accuracy of the model in a prediction perspective. The PLS SELECTION component is based on the
PRESS criterion (Predicted Residual Sum of Squares).

The PRESS is computed in a leave-one-out ways8: (a) we remove the i-th instance from the dataset; (b)
we learn the model form the remaining instances; (c) we predict the output of the model for this
instance; (d) we compare the predicted and the observed values, (e) we store the square of the error;

(f) we perform this procedure for all the instances, and we obtain the sum of the square of the error.

PRESS si more reliable than the RSS criterion (Residual Sum of Squares) where the i-th instance is

used for the construction of the predictive model.

Another criterion based on the PRESS and RSS can be used in order to determine the right number of
factors. Q2 compares the RSS of the model computed on (h-1) factors to the PRESS of the model
based on h factors. The aim is to assess the real contribution of the h-th factor on the quality of the

prediction.

We insert the PLS SELECTION (PLS tab) into the diagram. We click on the PARAMETRES contextual

menu. We set the following settings.

8 We describe the process based on leave-one-out here, but we can generalize the approach on a cross-
validation framework. The computation is faster while maintaining accuracy. This approach is favored under

Tanagra.
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(" TANAGRA 1.4.19 (build 3) - [Dataset (car_consumption_colinearity_regression.xis)]

EFl\e Diagram Component Window Help
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Difault tile

= Dataset (car_consumption_colinearity_regression.xls)

=% Define status 1

Multiple inear regression 1

Linear correlation 1

o Linear correlation 2

Forward Entry Regression 1
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=-RL3 PLS Regression 1
-PLS Gl ction 1

Database :

Parameters |S(opp|ng rulg

D:\DataMining\Databases_for_mining\dataset_for_soft_dew_and_comparison\regressionicar_c
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# folds for cross-validation :
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— o -

Into the first tab “PARAMETERS”:

»  We can specify the number of folds for the cross-validation process. The default value is 5 i.e. the

dataset is subdivided in 5 folds: 4/5 of the dataset is used during the construction of the model, 1/5

of them for the computation of the error®.

* «Update plugged component ».

If this option is selected, the preceding component is

automatically updated with the optimal number of factors after the search process.

e Last, « Seed Random Generator » allows to specify the behavior of the random number

generator.

PLS Selection
| Parameters | Stopping rule|

[

¥ 3
e _ e
Vo

O PREZS improverment

Stoppin

®a2

02 cutvalue :
FRESS cutvalue : 2%

[o]'4 ” Cancel ” Help

9 http://en.wikipedia.org/wiki/Cross-validation_%28statistics %29 — See K-fold cross validation.
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Into the second tab “STOPPING RULE”, we specify the way to stop the search process i.e. the

method of detection of the right number of factors:
* Q2 criterion, the seach is stopped if Q2 > Q2 cut value (default value = 0.05).

» We can use also the PRESS criterion. In this case, we stop the process if the relative decreasing

is lower a threshold (default value = 20%) when we add a factor.
On our dataset, we select the Q2 criterion, the used cut value is 0.0975.

We validate these settings and we click on the VIEW menu. We obtain the following results.

‘i TANAGRA 1.4.19 (build 4) - [PLS Selection 1]

E File Diagram Component ‘Window Help - 8 x
Dw
| Diztault ttle Stopping rule o ~
— Dataset [car_consumption_colinearity_regression.xls) Q2 cut value 0.0976
= f':i Define status 1 PRESS Reduction cut () 0
L Mhultiple linear regression 1 Update plugzed component 1
* Linear correlation 1
szt s
. Forward Entry Regression 1
" Principal Component Analysts 1 Component selection results
i Define status 2
Lol ultiple Bnear regression 2 Number of components =1
= El—g PLS Regression 1 Detailed results
RS PLS Selection 1
COHSOMMATION
h Q2 @2cum Q? PRESS D{PRESS)
1 00907 0,907 0,907 125337 907 %
20,079 0,914 0,079 10,551 12.0%
Computation time : 16 ms. e
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Data wisualization Statistics Monparametric statistics Instance selection
Feature construction Feature selection Regression Factorial analysis
PLS Clustering Spw learning Meta-zpy learning
Spw learning assessment Scoring hssociation
E7|:_,5PLS Conf. Interval E';é PLS Factorial E";éPLS Regression F'LSF'LS Selection
|

When we select only one factor, the Q2 is 0.907 and the PRESS is 12.337. When we add the 2nd
factor, the PRESS decreases to 10.851, but it seems that this diminution is not really significant

because the Q2 is only 0.079, lower than our cut value (0.0975).

Thus, we select the model with only one latent factor. We note that the PLS REGRESSION
component is automatically updated. We can visualize the new coefficients by clicking on the VIEW
menu of PLS REGRESSION 1 into the diagram. The new coefficients are (Figure 13)

y = 2.835123 + 0.000045 x prix + 0.000867 x cylindree + 0.016397 x puissance + 0.001820 x poids
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Figure 13 - Coefficients of PLS Regression based on 1 latent factor

We summarize the unstandardized estimated parameters of the model according the method:

Variable Standard multiple | Regression from [ PLS Regression
regression factors of PCA

Constante 1.8380 2.36954 2.835123

Prix 0.0000 0.00006 0.000045

Cylindrée 0.0012 0.00042 0.000867

Puissance -0.0037 0.00750 0.0016397

Poids 0.0037 0.00318 0.001820

On the one hand, the parameters estimated from the regression of factors of the PCA and the PLS
regression are consistent. On the other hand, the coefficients estimated from the standard linear
regression are very different for some explanatory variables (e.g. PUISSANCE). We know at this time

that this is a consequence of the multicollinearity problem.
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6.3. Assessing the estimated parameters from the PLS Regression

One of the main advantages of the standard regression is that we can easily assess the contribution of
each explanatory variable by computing the confidence interval of the estimated parameters or by
implementing the test of significance. About the first approach, we consider that the contribution of an
explanatory variable is significant if the confidence interval of its associated coefficient does not cover

the zero value.

Tanagra uses a resampling approach to implement the same assessment for the estimated
parameters of the PLS Regression. Roughly speaking, the process can be described as follows: we
draw a sample of n instances with replacement (n is the size of the available dataset); we compute the
parameters; we repeat this process K times (K is a parameter of the algorithm); we obtain empirically
the confidence interval by computing the quantiles. For 1—a confidence level, the lower bound

corresponds to the @ / 2 -quantile; and the upper bound is the (1—a / 2)-quantile.

We add PLS CONF INTERVAL (PLS tab) behind PLS REGRESSION 1. That means that it uses the
same settings during the resampling process, especially the same number of latent factors. We click
on the PARAMETERS menu. We ask K = 1000 replications. We ask also the standardized parameters

in order to compare the influence of the explanatory variables.

" TANAGRA 1.4.19 (build 4) - [PLS Regression 1]
E File Diagram Component ‘Window Help - B %
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R
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Reszults on standardized attributes

. N

[dta visualization Statistics Manpal

FeatLre construction Feature selection ’ 0K ” Cancel ” Help
PLS Clusterng
Spw lea‘[ning asseszment Scoring fszaciation
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We click on the VIEW menu to launch the calculations. We obtain both the unstandardized and the
standardized estimated parameters. According these last ones, we observe that all the variables are

significant; they have a positive influence on the consumption.
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Moreover, we note that the coefficients are very stable. This draws our attention if we consider the
small size of the learning sample. It is certainly the consequence of the utilization of a few numbers of

latent factors.

7. Conclusion

In this tutorial, we show how to deal with the multicollinearity problem in a regression framework.

Of course, the results can be slightly different according the approaches. The most important for us is
to understand the outputs of the software, and deduce the correct interpretation of the estimated
parameters. The case of PUISSANCE (horsepower) is very interesting. Because it is correlated with
CYLINDREE (engine size), we could conclude that it has no influence on the consumption. We

observe afterwards, when we use the appropriate approaches, that it is not true.

Nevertheless, whatever the quality of a statistical technique, nothing can replace human expertise. In
our problem, it is clear that the price can not be a predictor of consumption, although we can easily

understand that they are somehow linked. Neither approach has been able to highlight this nonsense.
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