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1 Introduction 

SVM (Support Vector Machine) for classification with R and Python. Study of support 

points and decision boundaries. Considerations about the determination of the “best” 

values of the parameters. 

This tutorial completes the course material devoted to the Support Vector Machine 

approach [SVM]1. It highlights two important dimensions of the method: the position of the 

support points and the definition of the decision boundaries in the representation space 

when we construct a linear separator; the difficulty to determine the “best” values of the 

parameters for a given problem. 

We will use R (“e1071” package) and Python (“scikit-learn” package). We focus on didactic 

aspects in this tutorial. For readers interested in the operational aspects of SVM (learning-

test scheme for the evaluation of classifiers, identification of optimal parameters using grid 

search), I recommend reading our reference document [SVM, section 9]. I recommend also 

the reading of the tutorials devoted to the studying of the comparison of tools2 and the 

behavior of the linear classifiers3. 

2 Support points (vectors) and linear boundaries 

2.1 Reminder about SVM 

In a binary classification problem, where x is a vector of p descriptors, and y is the class 

attribute (y  {+1, -1}), the SVM approach seeks to construct a linear classification function, 

at least as a first step:  

𝑓(𝑥) = 𝑥𝑇𝛽 + 𝛽0 

The classification rule is: IF f(x) ≥ 0 THEN y = +1 ELSE y = -1 

The method is based on the maximization of the margin. Two approaches are possible. The 

primal formulation tries to optimize (when the hard margin with a perfect separation exists) 

[SVM, page 8]: 

                                                      

1 [SVM] Tanagra Tutorials, “Support Vector Machine”, May 2017. 
2 Tanagra Tutorials, “Implementing SVM on large dataset”, July 2009. 
3 Tanagra Tutorials, “Linear classifiers”, August 2017. 

http://data-mining-tutorials.blogspot.fr/2017/05/support-vector-machine-slides.html
https://cran.r-project.org/web/packages/e1071/index.html
http://scikit-learn.org/stable/
http://data-mining-tutorials.blogspot.fr/2017/05/support-vector-machine-slides.html
http://data-mining-tutorials.blogspot.fr/2017/05/support-vector-machine-slides.html
http://data-mining-tutorials.blogspot.fr/2009/07/implementing-svm-on-large-dataset.html
http://data-mining-tutorials.blogspot.fr/2017/08/linear-classifiers.html
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values  and 0  from a dataset of size n. 

The dual formulation (dual problem) emphasizes the notion of support vectors (support 
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i (i= 1, …, n) is a weight associated to each instance (point). The support points correspond 

to the instances for which the weight is (i > 0). In this formulation, the aim of the learning 

process is to estimate the values of (i). 

There is a direct relationship between the vectors 𝛽 and 𝛼 [SVM, page 15]. 

2.2 Dataset 

The idea is to reproduce the calculations presented in our reference document [SVM, pages 

6 to 16] where we calculated the coefficients of the linear boundary and the “margin lines” 

that perfectly separate the classes in a two-dimensional representation space. I used Excel to 

explain the process. Let us see if we find the same results using R or Python4.  

We process a dataset with n = 10 instances, p = 2 descriptors x = (x1, x2) and a target 

attribute y. We show below the contents of the data file “data_svm.txt”. 

i x1 x2 y 

6 5 1 p 

7 7 1 p 

8 9 4 p 

9 12 7 p 

                                                      

4 A somewhat similar approach is available on the web. Compared to us, the labels are slightly noisy: 

https://lagunita.stanford.edu/c4x/HumanitiesScience/StatLearning/asset/ch9.html 

https://lagunita.stanford.edu/c4x/HumanitiesScience/StatLearning/asset/ch9.html
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10 13 6 p 

1 1 3 n 

2 2 1 n 

3 4 5 n 

4 6 9 n 

5 8 7 n 

Column i is an identifier that is not used in the calculations. It will be used to identify 

individuals in graphical representations. The target attribute is coded y  {p, n} for 

convenience. The positive instances are placed before the negative ones into the data file. 

These has no influence on the calculations. 

We use R first. We will reproduce the calculations in Python. This allows us to compare the 

behavior of these tools in the SVM learning process. 

2.3 Analysis in R 

2.3.1 Data importation and graphical representations 

We read the “data_svm.txt” data file with the read.table() command. The first row 

corresponds the name of the variables (header). The first column corresponds to the 

identifier of the instances (row.names). 

#loading the data file 

df <- read.table("data_svm.txt",header=T,sep="\t",row.names=1) 

 

#descriptive statistics 

print(summary(df)) 

Variables and their types are correctly recognized. Column “i” is not used for the 

calculations. 

       x1              x2       y     

 Min.   : 1.00   Min.   :1.00   n:5   

 1st Qu.: 4.25   1st Qu.:1.50   p:5   

 Median : 6.50   Median :4.50         

 Mean   : 6.70   Mean   :4.40         

 3rd Qu.: 8.75   3rd Qu.:6.75     

We project the points in a two-dimensional representation space by colouring them 

according to their class membership and by displaying their identifiers (Erreur ! Source du 

renvoi introuvable.). 

#scatterplot (x1, x2) 

plot(df$x1,df$x2,type="n") 

text(df$x1,df$x2,rownames(df),col=c("blue","red")[df$y],cex=0.75) 
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Drawing a straight line to separate the red and blue dots without error is possible. We are 

talking about a separator hyperplane in a space with more than 2 dimensions. 

 

Figure 1 – Scatterplot (x1, x2) - R 

2.3.2 Learning process and reading the results 

We use the e1071 package for SVM. We call the svm() procedure to build a linear classifier 

(kernel ='linear') and we do not standardize (center and reduce) the variables (scale = F). 

#loading the package e1071 

library(e1071) 

#Linear SVM (kernel), the variables are not standardized (scale) 

mlin <- svm(y ~ x1+x2, data=df, kernel="linear",scale=F) 

print(mlin) 

The outputs give the number of support points 𝑠.  

Call: 

svm(formula = y ~ x1 + x2, data = df, kernel = "linear", scale = F) 

Parameters: 

   SVM-Type:  C-classification  

 SVM-Kernel:  linear  

       cost:  1  

      gamma:  0.5  

Number of Support Vectors:  3 

Usually, the number of support points is a good indicator. If it is too high in relation to the 

sample size n, we can legitimately think that modelling is not very effective. Nevertheless, 

our sample size n = 10 is too small for us to really draw conclusions from the value s = 3. 

The object can give more complete information. We get the list of properties with the 

command attributes() : 

2 4 6 8 10 12

2
4

6
8

df$x1

d
f$

x
2

6 7

8

9

10

1

2

3

4

5

https://cran.r-project.org/web/packages/e1071/index.html
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#properties of the object 

print(attributes(mlin)) 

$index notably provides the list of support points. 

$names 

 [1] "call"            "type"            "kernel"          "cost"            

 [5] "degree"          "gamma"           "coef0"           "nu"              

 [9] "epsilon"         "sparse"          "scaled"          "x.scale"         

[13] "y.scale"         "nclasses"        "levels"          "tot.nSV"         

[17] "nSV"             "labels"          "SV"              "index"           

[21] "rho"             "compprob"        "probA"           "probB"           

[25] "sigma"           "coefs"           "na.action"       "fitted"          

[29] "decision.values" "terms"           

 

$class 

[1] "svm.formula" "svm"         

These are the instances...  

#number of the support instances 

print((rownames(df))[mlin$index])  

n° 6, 2 and 5. 

We highlight them into the scatterplot (Figure 2): 

#highlighting the support points 

points(df$x1[mlin$index],df$x2[mlin$index],cex=3,col=rgb(0,0,0)) 

 

Figure 2 – Highlighting the support points - R 
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2.3.3 Representation of the decision boundary 

Separator hyperplane. To draw the separation line, we must have the coefficients of the 

equation: 

𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽0 = 0 

The object mlin allows to obtain 0 with: 0 = - mlin$rho 

#intercept  -1.666317 

beta.0 <- -mlin$rho 

print(beta.0) 

For the other coefficients, we can use the relation [SVM, page 15]: 

𝛽𝑗 = ∑ 𝛼𝑖𝑦𝑖𝑥𝑖𝑗
𝑛
𝑖=1  ; knowing that i > 0 only for the support points 

The property mlin$coefs provides the values of 𝛼𝑖𝑦𝑖  when (i > 0); to get 1 and 2, we must 

multiply mlin$coefs respectively the values of x1 and x2 

#coefficients 

beta.1 <- sum(mlin$coefs*df$x1[mlin$index]) 

beta.2 <- sum(mlin$coefs*df$x2[mlin$index]) 

print(paste(beta.1,beta.2)) 

We get 1 = 0.666492 and 2 = -0.666492 

We can draw the straight line using the following equation: 𝑥2 = −
𝛽1

𝛽2
𝑥1 −

𝛽0

𝛽2
 

#drawing the separation line in green 

abline(-beta.0/beta.2,-beta.1/beta.2,col="green") 

 

Figure 3- Separation line - R 
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Observations above the separation line will be classified as negative instances (y = -1), those 

below will be labelled as positive (y = +1). 

Lines delimiting the margins. We represent the “margin” lines which define the support 

points. They correspond to the saturation of the optimization constraints [SVM, page 8]: 

𝑦𝑖 × 𝑓(𝑥𝑖) = 1 

We have two lines, the first for yi = -1, the second for yi = +1 

#”margin” lines 

abline((-beta.0-1.0)/beta.2,-beta.1/beta.2,col="gray") 

abline((-beta.0+1.0)/beta.2,-beta.1/beta.2,col="gray") 

We draw them into the scatterplot, 

 

Figure 4 – Graphical representation of the study - R 

Note: In the context of perfect separation, the “margin” lines pass exactly over the support 

points. This is no longer true when we have noisy data i.e. when some points may be located 

on the wrong side of the decision boundary [SVM, soft margin, pages 20 to 23]. 

2.4 Analysis in Python 

In this section, we reproduce the analysis above in identical form (section 2.3) using the 

tandem Python / scikit-learn. 
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2.4.1 A specific function for the graphical representation 

Charts appearing several times throughout the study. I have written a specific procedure for 

organizing the commands needed to represent the point cloud with their identifiers and 

colors associated with the classes. 

#function for scatterplot 

#input:  data.frame with all the instances 

#   data.frame related to positive and negative instances 

def myscatter(df,dfpos,dfneg): 

    #blank scatterplot for delimiting the chart size 

    plt.scatter(df.iloc[:,0],df.iloc[:,1],color="white") 

 

    #annotate - positive instances 

    for i in dfpos.index: 

        plt.annotate(i,xy=(df.loc[i,'x1'],df.loc[i,'x2']),xytext=(-3,-3),textcoords='offset points',color='red') 

     

    #annotate - negative instances 

    for i in dfneg.index: 

        plt.annotate(i,xy=(df.loc[i,'x1'],df.loc[i,'x2']),xytext=(-3,-3),textcoords='offset points',color='blue') 

 

    return None 

#end of the function 

plt is an alias for the “matplotlib.pyplot” module. 

I use annotate() to display the identifiers into the chart. 

Their position had to be shifted slightly [xytext = (-3, -3)] so that they (the identifiers) were 

positioned exactly at the exact location of the points. Otherwise, the “margin” lines would 

appear to be shifted compared with the support points. 

2.4.2 Data importation and graphical representations 

First, we load the dataset and we draw the scatterplot. 

#package pandas for data handling 

import pandas 

 

#load the data file into a Pandas data frame structure 

df = pandas.read_table("data_svm.txt",sep="\t",header=0,index_col=0) 

print(df.shape) 

 

#split the data into two distinct data.frame: y=+1 (p), y=-1 (n) 

dfpos = df[df['y']=='p'] 

dfneg = df[df['y']=='n'] 
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#package for plotting 

import matplotlib.pyplot as plt 

 

#scatterplot 

myscatter(df,dfpos,dfneg) 

plt.show() 

We get… 

 

Figure 5 – Scatterplot - Python 

… the same scatterplot than in R. 

2.4.3 Learning process and reading the results 

We use the SVC tool from the scikit-learn package to perform the learning phase. It provides 

several information: 

#importing SVC 

from sklearn.svm import SVC 

 

#instantiation of the object: linear kernel 

svm = SVC(kernel='linear') 

 

#learning process 

svm.fit(df.as_matrix()[:,0:2],df.as_matrix()[:,2]) 

 

#number of support points… 

print(svm.support_.shape) 

 

#... and their labels 

print(df.index[svm.support_]) 

The results are consistent with those of R. 

http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
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#number of support points 

(3,) 

#their labels  n°2, 5 and 6 

Int64Index([2, 5, 6], dtype='int64', name='i') 

The weights i of the support points are also available 

#weigth of the support vectors 

print(svm.dual_coef_) 

That is [SVM, page 14], 

#i for i = 2, 5 et 6 

[[-0.33325096 -0.11109464  0.44434559]] 

We draw them into our scatterplot. 

#coordinates of the support points: c1 for x1, c2 for x2 

c1 = svm.support_vectors_[:,0] 

c2 = svm.support_vectors_[:,1] 

 

#highlighting the support points 

myscatter(df,dfpos,dfneg) 

plt.scatter(c1,c2,s=200,facecolors='none',edgecolors='black') 

plt.show() 

The chart corresponds to the Figure 2 for R: 

 

Figure 6 – Highlighting the support points - Python 

2.4.4 Representation of the decision boundary 

SVC incorporates an interesting functionality. The object can automatically provide the 

coefficients of the separation line when the kernel is linear. 

#coefficients 1 and 2 

print(svm.coef_) 
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#intercept 0 

print(svm.intercept_) 

I did not find the equivalent of the abline() function of R. The trick here is to calculate the 

coordinates of two points, then draw a line that connects them. 

#coordinates of the points for representing the separation line and the margins 

import numpy as np 

xf = np.array([3,12]) 

yf = -svm.coef_[0][0]/svm.coef_[0][1]*xf-svm.intercept_/svm.coef_[0][1] 

xb = np.array([4.5,12]) 

yb = -svm.coef_[0][0]/svm.coef_[0][1]*xb-(svm.intercept_-1.0)/svm.coef_[0][1] 

xh = np.array([2,11]) 

yh = -svm.coef_[0][0]/svm.coef_[0][1]*xh-(svm.intercept_+1.0)/svm.coef_[0][1] 

 

#graphical representation 

myscatter(df,dfpos,dfneg) 

plt.scatter(c1,c2,s=200,facecolors='none',edgecolors='black') 

plt.plot(xf,yf,c='green') 

plt.plot(xb,yb,c='gray') 

plt.plot(xh,yh,c='gray') 

plt.show() 

The chart (Figure 7) is equivalent to the one of R (Figure 4): 

 

Figure 7- Graphical representation in Python 

3 Importance of the parameters 

3.1 Nonlinear SVM – Using kernel functions 

Margin maximization is a possible approach for dealing with a classification problem, as well 

as maximizing likelihood for instance. One of the main advantage of the SVM is the 

utilization of the kernel functions K(xi,xi’) in the dual form. They allow us to project the 
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instances into a larger space without having to explicitly create the intermediate variables. In 

fact, we can customize the presentation power of our classifier. 

In the “soft margin” context, the optimization problem becomes [SVM, page 28] 
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The “cost parameter” C is fundamental. It indicates our tolerance for misclassified instances. 

If it is too high combined with an inadequate kernel function, it can lead us to overfitting 

because our model overreacts to the learning sample. If it is too low, we do not sufficiently 

extract valuable information from the data, leading to underfitting. 

Setting the right value of C is not obvious. In our study, we deal with an artificial dataset. It 

will be easy to find the right solution. In real situations, on data and problems for which we 

do not control all the ins and outs, we must adopt a trial and error approach. 

In spite of this, I note that the issue of the kernel function is often raised in scientific 

publications. In contrast, the issue of C is hardly addressed in experiments, whereas it has a 

great influence on the classifier performance. 

We exclusively conduct our study with R in this part. The reader should be able to easily 

transpose the operations in Python. 

3.2 Goal and dataset 

We work in a 2-dimensional representation space to facilitate the understanding the 

location of points. We randomly generated data in the square [0 ; 1], in which we included 

an isosceles triangle. Individuals within the triangle belong to the first class, those outside 

the triangle belong to the second class. 

We generate n = 30 instances for the training phase, and ntest = 5000 as test set. 

#to get the same dataset at each run 

set.seed(10) 

 

#function which generates the dataset (n: dataset size) 

generate.data <- function(n){ 
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  x2 <- runif(n) 

  x1 <- runif(n) 

  y <- factor(ifelse((x2>2*x1)|(x2>(2-2*x1)),1,2)) 

  return(data.frame(x1,x2,y)) 

} 

 

#training set - n = 30 

dtrain <- generate.data(30) 

 

#graphical representation 

plot(dtrain$x1,dtrain$x2,col=c("blue","red")[dtrain$y],xlim=c(0,1),ylim=c(0,1)) 

abline(0,2) 

abline(2,-2) 

 

#test set - ntest = 5000 

dtest <- generate.data(5000) 

 

#graphical representation 

plot(dtest$x1,dtest$x2,col=c("blue","red")[dtest$y],xlim=c(0,1),ylim=c(0,1)) 

abline(0,2) 

abline(2,-2) 

There are two comments here (Figure 8): 

1. Perfect discrimination is possible. But the classification function must be able to 

represent a triangle. This has an influence on the bias part of the error. 

2. The learning sample does not “fill” the representation space sufficiently, especially in the 

lower part of the triangle (red dots). This will create uncertainty and has an influence on 

the variance part of the error. 

 

Figure 8 – Triangle problem - Train and test samples 
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3.3 SVM – Linear kernel 

Obviously, a straight line does not separate the blue dots from the red ones. But without a 

graphical representation, we would not know that. Let us ignore this information, we launch 

a linear SVM. 

#e1071 

library(e1071) 

#Linear SVM 

mlin <- svm(y ~ x1+x2, data=dtrain, kernel="linear",scale=F) 

print(mlin) 

#graphical representation 

plot(dtrain$x1,dtrain$x2,col=c("blue","red")[dtrain$y],xlim=c(0,1),ylim=c(0,1)) 

points(dtrain$x1[mlin$index],dtrain$x2[mlin$index],pch=5,cex=1.75,col=rgb(0,0,0)) 

abline(0,2) 

abline(2,-2) 

s = 28 supports points are found… 

Call: 

svm(formula = y ~ x1 + x2, data = dtrain, kernel = "linear", scale = F) 

Parameters: 

   SVM-Type:  C-classification  

 SVM-Kernel:  linear  

       cost:  1  

      gamma:  0.5  

Number of Support Vectors:  28 

… almost all points in the learning sample. That is not a very good sign. Into the scatterplot 

(Figure 9), we note that there is a problem. The support points are scattered everywhere, 

their positions have absolutely nothing to do with a triangle. 

 

Figure 9 – Supports points supports (diamond) – Linear kernel 
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If we draw the decision boundary, 

#intercept 0 

beta.0 <- -mlin$rho 

 

#coefficients 1 and 2 

beta.1 <- sum(mlin$coefs*dtrain$x1[mlin$index]) 

beta.2 <- sum(mlin$coefs*dtrain$x2[mlin$index]) 

 

#separation line 

plot(dtrain$x1,dtrain$x2,col=c("blue","red")[dtrain$y],xlim=c(0,1),ylim=c(0,1)) 

abline(-beta.0/beta.2,-beta.1/beta.2,col="green") 

we find it completely inadequate. 

 

Figure 10 – Separation line – Linear kernel 

We can confirm this graphical diagnosis by calculating the confusion matrix on the learning 

sample: 

#prediction on the training sample, confusion matrix 

ylin.train <- predict(mlin,dtrain) 

table(dtrain$y,ylin.train) 

The result is consistent with what we observe in Figure 10. 

   ylin.train 

     1  2 

  1 14  2 

  2 12  2 

Measuring the performance on the test sample is not required here. The result will be 

equally catastrophic. A linear classifier is clearly not appropriate in our situation. 
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3.4 SVM – Polynomial kernel 

3.4.1 Why a polynomial kernel? 

If we consider the organization of our points into the scatterplot (Figure 8), we can think that 

it is possible to approximate the true decision boundary (in the form of a triangle) with a 

parabola. The equation would be: 

𝑥2 = 𝑎𝑥1
2 + 𝑏𝑥1 + 𝑐 

A kernel polynomial may be appropriate [SVM, page 29]. We set ‘’coef0 = 1’’ so that the 

terms (x1, 𝑥1
2,x2) should be considered in modelling [SVM, page 27]. 

We launch again the learning process. 

#using a polynomial kernel of degree 2 

mpoly <- svm(y ~ x1+x2, data=dtrain, kernel="polynomial", scale=F, coef0=1, degree=2) 

print(mpoly) 

We do not set the cost parameter. By default, svm() uses ‘’C = 1’’. This is important for 

understanding the results below. 

R output announces 29 support points. That is not a very good sign again. 

Parameters: 

   SVM-Type:  C-classification  

 SVM-Kernel:  polynomial  

       cost:  1  

     degree:  2  

      gamma:  0.5  

     coef.0:  1  

Number of Support Vectors:  29 

We apply the classifier on the test set. 

#prediction on the test set 

ypoly.test <- predict(mpoly,dtest) 

 

#confusion matrix 

mc.poly <- table(dtest$y,ypoly.test) 

print(mc.poly) 

 

#test error rate 

err.poly <- 1-sum(diag(mc.poly))/sum(mc.poly) 

print(err.poly) 

The test error rate is 49.4%. It is very bad. 
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#confusion matrix 

   ypoly.test 

       1    2 

  1 1987  530 

  2 1940  543 

When we visualize the decision boundary into the scatterplot.… 

#plotting 

plot(dtest$x1,dtest$x2,col=c("blue","red")[ypoly.test],xlim=c(0,1),ylim=c(0,1)) 

abline(0,2,lwd=2) 

abline(2,-2,lwd=2) 

… we observe that the classifier draws a straight line to attempt discriminate the classes. We 

know that this is not the right solution.  

 

Figure 11 – Decision boundary – SVM – Polynomial kernel of degree 2 (C = 1) 

However, the idea of approximating the triangle by a parabola seems logical. Why does the 

method ignore it and instead draw a straight line? 

3.4.2 Modifying the cost parameter 

If the parabola seems adequate to approximate the underlying concept, the inadequacies 

necessarily result from a poor parameterization of the modeling algorithm. In the case of 

SVM, the cost parameter, which corresponds roughly to a tolerance to the errors, has a 

crucial influence. On our artificial data, we know that perfect discrimination is possible, we 

have non-noisy data, and the dimensionality is low (p = 2 descriptors for n = 30 

observations). We can increase highly the value of C. We set “C = 1000”. 

#new setting: C = 1000 

mpoly <- svm(y ~ x1+x2, data=dtrain, kernel="polynomial", scale=F, cost=1000, coef0=1, degree=2) 

print(mpoly) 
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svm() find 10 support points… 

Parameters: 

   SVM-Type:  C-classification  

 SVM-Kernel:  polynomial  

       cost:  1000  

     degree:  2  

      gamma:  0.5  

     coef.0:  1  

Number of Support Vectors:  10 

… which are conveniently positioned along the triangle, especially in its upper part. 

 

Figure 12 – Support points (diamond) - Polynomial kernel of degree 2 - C = 1000 

We can expect better performance and, indeed, the test error rate is 10.76%. 

 

Figure 13 - Frontière induite par un noyau polynomial de degré 2 (C = 1000) 

When we draw the decision boundary into the scatterplot, we note that the approximation 

of the triangle by a parabola was a viable idea. Errors are caused by the small size of the 
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learning sample, which results in the absence of red support points in the lower part of the 

triangle (Figure 12). 

Note 1: The reader can easily verify this by modifying the R program that accompanies this 

document: when we increase the size of the learning sample, the opposing color support 

points will line up better along the edges of the triangle, the parabola is better positioned 

and, consequently, the error rate naturally decreases. 

Note 2: If we had left coef0 at its default value (coef0 = 0), 𝑥1 and 𝑥2 do not appear in the 

transformation underlying the kernel function [SVM, page 27]. It is impossible to obtain a 

decision boundary taking the form of a parabola, the modeling is bad whatever the value of 

the cost parameter.  We are in a situation similar to that observed for the linear kernel. 

Note 3: Not reported here but available in the R program, the RBF kernel (radial basis 

function) also gains efficiency when we increase the value of the cost parameter C. We reach 

a test error rate of 6.78%. 

4 Conclusion 

This tutorial is essentially for pedagogical purposes. In the first part, I tried to illustrate 

concretely the countless difficult formulas that can be found in the very many course 

materials that present the SVM approach. I often tell my students that dissecting a 

mathematical expression is only of interest, at least in our fields, if it allows us to better 

understand the ideas underlying the method. I had tried to detail the calculations in Excel in 

the course material prior to this document. The idea was to replicate the approach by using 

R and Python with the packages dedicated to SVM. 

In the second part, we were interested in the parameters. The example allows to 

comprehend the main difficulties. In addition to the choice of the kernel, the cost parameter 

C, often ignored in published experimental results, plays a fundamental role. No one sets a 

value C = 1000 in real problems (in the publications I read in any case), but we realized that it 

is a value that can be considered in our very specific configuration (absence of noise, low 

dimensionality). Above all, this means that special attention must be paid to the parameters 

when we conduct an analysis. 
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