
Didacticiel - Études de cas R.R.

15 janvier 2014 Page 1

1 Topic

Scilab and R – Performance comparison in a supervised learning framework (memory occupation

and processing time)

We have studied the Scilab tool in a data mining scheme in a previous tutorial1. We noted that Scilab

is well adapted for data mining. It is a credible alternative to R. But, we observed also that the

available toolboxes for statistical processing and data mining are not very numerous compared to

those of R. In this second tutorial, we evaluate the behavior of Scilab when we deal with a dataset

with 500,000 instances and 22 attributes. We compare its performances with those of R. Two criteria

are used: the memory occupation measured in the Windows task manager; the execution time at

each step of the process.

It is not possible to obtain an exhaustive point of view. To delimit the scope of our study, we have

specified a standard supervised learning scenario: loading a data file, building the predictive model

with linear discriminant analysis approach, calculating the confusion matrix and resubstitution error

rate. Of course, this study is incomplete. But it seems that Scilab is less efficient in the data

management step. It is however quite efficient in the modeling step. This last assessment depends

on the toolbox used.

2 Dataset

I often use the WAVEFORM database, mainly because we have a generator that we can configure as

we want2. There are 21 continuous predictors, the target variable is nominal (3 categories). In this

tutorial, we generate 500,000 instances. We use the text file format (tab separated values). Here are

the first rows of the data file “WAVE500KNumeric.txt “.

3 Scilab

We programmed the following commands under Scilab.

//increasing the size of the stack

stacksize("max")

//loading the data file

tic()
D=csvRead("wave500kNumeric.txt","\t",".","double",[],[],[2 1 500001 22])
disp(toc(),"duree chargement : ")

//target variable : y, predictors : X

1 http://data-mining-tutorials.blogspot.fr/2014/01/data-mining-with-scilab.html

2 http://www-stat.stanford.edu/~tibs/ElemStatLearn/

http://data-mining-tutorials.blogspot.fr/2014/01/data-mining-with-scilab.html
http://www-stat.stanford.edu/~tibs/ElemStatLearn/

Didacticiel - Études de cas R.R.

15 janvier 2014 Page 2

y=D(:,22:22)

X=D(:,1:21)

//frequency distribution of the target variable

disp(tabul(y),"distribution classe : ")

//learning phase

tic()

modele=nan_train_sc(X,y,'LD2')

disp(modele.weights,"Coefs. Analyse Discriminante")

disp(toc(),"duree apprentissage : ")

//prediction on the learning sample

tic()

pred=nan_test_sc(modele,X)

disp(toc(),"duree prediction")

//confusion matrix

mc=nan_confusionmat(y,pred.classlabel)

disp(mc,"matrice de confusion")

//resubstitution error rate

disp(1.0-sum(diag(mc))/sum(mc),"taux erreur en resubstitution")

Some important comments about this program:

 The tic() command starts a stopwatch procedure; toc() stops the stopwatch and calculates the

elapsed time since the previous tic() command.

 We use the “NaN” toolbox. Our results are dependents on this choice.

 The confusion matrix and the resubstitution error rate are mainly used to compare the results

with those obtained with R.

We detail below the behavior of Scilab at every step of the processing.

3.1 Data loading

When we start Scilab, the memory occupation is 302,928 KB, knowing that several toolboxes are

loaded.

The loading time is 25.887 seconds. The memory occupation is 2,151,964 KB (2.05 GB) 3. This value

seems high if we consider the moderate size of the database. This is surprising. Other tests were led.

We describe the results in the conclusion.

3 The measured values (processing time and memory usage) may slightly vary from one execution to another.

Didacticiel - Études de cas R.R.

15 janvier 2014 Page 3

We calculate the frequency distribution of the target variable. We obtain the following results.

3.2 Construction of the predictive model

The learning phase is extremely fast (2.497 sec.) with the linear discriminant method of the “NaN”

toolbox.

We cannot really make comparisons without knowing the exact nature of the calculations. The

memory occupation after the construction of the model remained unchanged. This is also another

surprise.

Data loading time

Classes
distribution

Processing time

Didacticiel - Études de cas R.R.

15 janvier 2014 Page 4

3.3 Prediction, confusion matrix and resubstitution error rate

We apply the model on the learning sample to obtain the prediction column (0.706 sec.). The

resubstitution error rate is 13.62%.

4 R

R (http://www.r-project.org/) is a state-of-the art program in the data mining domain. It is always

interesting to compare the behavior of a tool with the R software. Here is the source code for R.

#loading the dataset

system.time(donnees <- read.table("wave500kNumeric.txt",sep="\t",dec=".",header=T))

#target attribute y, predictors X

y <- factor(donnees[,22])

X <- donnees[,1:21]

#frequency distribution of the target variable

print("distribution classe : ")

print(table(y))

#learning phase

library(MASS)

system.time(modele <- lda(X,y))

print("Modele")

print(modele)

#prediction on the learning sample

system.time(pred <- predict(modele,newdata=X))

#confusion matrix

mc <- table(y,pred$class)

print("matrice de confusion")

print(mc)

#resubstitution error rate

print("taux erreur en resubstitution")

print(1.0-sum(diag(mc))/sum(mc))

Prediction time

Error rate

Confusion
matrix

http://www.r-project.org/

Didacticiel - Études de cas R.R.

15 janvier 2014 Page 5

We have the same process. The difference is that we must transform the target column into the

factor type under R. When we launch R, its memory occupation is 31,188 KB. It becomes 210,216 KB

after the data loading. The loading time is 12.07 sec.

The learning process takes 28.86 seconds. The situation is inverted compared with Scilab for which

the loading process is the most difficult.

The memory occupation becomes 580,536 KB. I think the two tools do not lead the calculations in

the same way. Thus, the results (especially the computation time) are not really comparable. We

note that the confusion matrix and the resubstitution error rate (13.59%) under R are different.

Didacticiel - Études de cas R.R.

15 janvier 2014 Page 6

Because the documentation about the "NaN" toolbox does not describe the underlying approach, it

is not really possible to understand the differences between the two tools4.

5 Comparison with Tanagra and Sipina

To complete our comparison, we conducted the same experiments (linear discriminant analysis) with

Tanagra and Sipina. For this latter, we tested the single-threaded and multithreaded versions.

Software Data loading time (sec.) Learning time (sec.)5 Memory occupation the

experiment is achieved (MB)

Scilab (‘LDA’ from « NaN ») 25,89 sec. 2,49 sec. 2103.47 MB

R (lda from MASS package) 12,07 sec. 28,86 sec. 566.93 MB

Tanagra 1.4.49 3,96 sec. 5,29 sec. 56.06 MB

Sipina Monothread 4,29 sec. 1,29 sec. 63.46 MB

Sipina Multithread (4 threads) 4,29 sec. 0,38 sec. 64.07 MB

These results suggest some comments.

 The multithreaded version implemented into Sipina is really fast. It is favorably compared

with the well known SAS program on several databases6.

 Compared with Sipina, Tanagra implements a single-threaded approach. In addition, it

computes other statistical indicators to evaluate the relevance of the whole model and each

predictor. Thus, its execution time is less favorable.

 The underlying calculations are not the same between R and Sipina/Tanagra. The calculation

time is not a good indicator here.

Ultimately, the main issue is memory usage for treatments that we want to achieve. It determines

the ability of the software to perform the calculations, especially when the database size increases. It

4 The underlying calculations of the lda() procedure for R are described in the Venables and Ripley's book, “Modern

Applied Statistics with S”, Springer, 2002 ; pp.331-338.

5 The underlying calculations may be different.

6 http://data-mining-tutorials.blogspot.fr/2013/09/load-balanced-multithreading-for-lda.html

http://data-mining-tutorials.blogspot.fr/2013/09/load-balanced-multithreading-for-lda.html

Didacticiel - Études de cas R.R.

15 janvier 2014 Page 7

seems that Scilab is not really efficient in this domain. The memory occupation can be large even if

we deal with a moderate sized dataset. We explore this in detailed way below by processing various

databases.

6 Conclusion

Scilab can perform a supervised learning process irrefutably. We had already observed this fact in a

previous tutorial. But it seems here that the memory occupation becomes a critical issue when we

handle a large database. To confirm this analysis, we observe the behavior of Scilab on various sized

databases that we used in the tutorial about the multi-threaded discriminant analysis7.

Dataset Rows [n] Variables [p]

(including the

target)

Number of values

(million)

[n x p]

Data file size

(KB) [text file

format]

Memory occupation

(after data loading)

[KB]

Wave500KLarge 500.000 122 61.00 361.577 KB 2.885.760 KB

Wave2M 2.000.000 22 44.00 184.864 KB 2.587.212 KB

Covtype 581.012 53 30.79 75.556 KB 2.378.496 KB

Mit_Face_Images 513.455 362 185.87 647.793 KB 3.135.888 KB

About the memory occupation, we note that a higher peak is observed during loading process. This is

the real limitation of Scilab for the data manipulation. For instance, it increased up to 7 GB to

"mit_face_images". My computer has 8 GB RAM had great difficulty, disturbing the execution of the

other applications under Windows. The processing time was very long (almost 30 minutes for this

dataset). Subsequently, at the end of the reading of the file, the memory occupation stabilizes at the

value recorded in the above table.

Surprisingly, the memory occupation does not increase linearly with the database size. It seems that

Scilab uses a more sophisticated strategy than simply copying the values in main memory. Clearly,

more investigations are needed to better understand the behavior of Scilab in the data mining task.

7 http://data-mining-tutorials.blogspot.fr/2013/09/load-balanced-multithreading-for-lda.html

http://data-mining-tutorials.blogspot.fr/2013/09/load-balanced-multithreading-for-lda.html

