
Didacticiel - Études de cas R.R.

29 mai 2013 Page 1

1 Topic

Multithreaded implementation of linear discriminant analysis in SIPINA 3.10. Study of its impact on

the execution time.

Most of the modern personal computers have multicore CPU. This increases considerably their

processing capabilities. Unfortunately, the popular free data mining tools does not really incorporate

the multithreaded processing in the data mining algorithms they provide, aside from particular case

such as ensemble methods or cross-validation process. The main reason of this scarcity is that it is

impossible to define a generic framework whatever the mining method. We must study carefully the

sequential algorithm, detect the opportunity of multithreading, and reorganize the calculations. We

deal with several constraints: we must not increase excessively the memory occupation, we must use

all the available cores, and we must balance the loads on the threads. Of course, the solution must

be simple and operational on the usual personal computers.

Previously, we implemented a solution for the decision tree induction in Sipina 3.5. We studied also

the solutions incorporated in Knime and RapidMiner. We show that the multithreaded programs

outperform the single-thread version. This is wholly natural. But we observed also that there is not a

unique solution. The internal organization of the multithread calculations influences the behavior

and the performance of the program1. In this tutorial, we present a multithreaded implementation

for the linear discriminant analysis in SIPINA 3.10. The main property of the solution is that the

calculation structure requires the same amount of memory compared with the sequential program.

We note that in some situations, the execution time can be decreased significantly.

The linear discriminant analysis is interesting in our context. We obtain a linear classifier which has a

similar classification performance to the other linear method on the most of the real databases,

especially compared with the logistic regression which is really popular (Saporta, 2006 – page 480;

Hastie et al., 2013 – page 128). But the computation of the discriminant analysis is comparably really

faster2. We will see that this characteristic can be enhanced when we take advantage of the

multicore architecture.

To better evaluate the improvements induced by our strategy, we compare our execution time with

tools such as SAS 9.3 (proc discrim), R (lda of the MASS package) and Revolution R Community (an

"optimized" version of R).

2 Linear discriminant analysis

There are many references which describe the linear discriminant analysis on the Net (e.g.

https://onlinecourses.science.psu.edu/stat505/node/89). Below, we describe the main steps of the

learning algorithm, those that may need a lot of resources.

1 Tanagra, « Multithreading for decision tree induction » - http://data-mining-tutorials.blogspot.fr/2010/11/multithreading-

for-decision-tree.html

2 On the MIT FACE IMAGE dataset - see experiments - the SAS 9.3 logistic regression (proc logistic) does 7 min 08 sec

while discriminant analysis (proc discrim) would not take more than 39.12 seconds!

http://www-stat.stanford.edu/~tibs/ElemStatLearn/printings/ESLII_print10.pdf
http://www.r-project.org/
http://www.revolutionanalytics.com/products/revolution-r.php
https://onlinecourses.science.psu.edu/stat505/node/89
http://data-mining-tutorials.blogspot.fr/2010/11/multithreading-for-decision-tree.html
http://data-mining-tutorials.blogspot.fr/2010/11/multithreading-for-decision-tree.html

Didacticiel - Études de cas R.R.

29 mai 2013 Page 2

The linear discriminant analysis deals with a classification problem. It aims to assign the instances

described by a set of p quantitative measurements (X1, X2, ..., Xp) to a predefined group described by

a categorical variable Y. There are K groups {1, 2,…, K}. We dispose of a learning sample of size n for

the construction of the model. Let an instance, y() correspond to the class value of this instance.

The absolute frequency of the class k is nk. Three steps may lead to an intense CPU usage:

1. Calculation of the K conditional covariance matrices of size (p x p).

Where is the conditional mean (for the kth group) of the variable Xi.

2. Calculation of the pooled covariance matrix

3. Inversion of the pooled covariance matrix (S-1).

The step (2) does need to access the data. It does not raise major problem. Similarly, the inversion of

S at the 3rd step is not really a bottleneck. Some linear algebra libraries can handle very efficiently this

kind of calculation3. The 1st step is thus the main challenge for the acceleration of the calculations.

Sequential implementation. In a single-threaded programming, the simplest, and probably the

fastest, is to perform only one passes on the data. This requires keeping in memory K matrices Sk of

dimension (p x p). A rough estimation shows that the memory occupation remains contained on the

most of databases4. It is even possible to further reduce their memory occupation since these

matrices are symmetrical. In addition, this strategy presents the interest to be fully compatible with

our optional storage of data on the disc when dealing with databases which cannot fit in main

memory. The degradation of the processing time is almost imperceptible in this case.

Multithreaded implementation. In Sipina 3.10, we implement a simple solution for the linear

discriminant analysis. In a first pass on the database, we create K indexes which enable to distinguish

the group membership of the instances. Then we start a thread for each group (in the 2nd pass over

the dataset). The main advantage of this approach is that the transformation of the sequential

program in a multithreaded program is really easy. This solution does not require additional memory

compared with the sequential implementation, except for the indexes. And the synchronization of

the threads is also easy. We just wait that the last thread was completed before starting the

calculation of the pooled covariance matrix S. There are two main drawbacks to this solution: (a) if

the number of available cores is higher than K, the surplus is not used; (b) when we have imbalanced

dataset, the execution time depends on the processing of the most frequent group (the group with

the most important number of instances). The experiments will confirm these intuitions when we put

in relation the execution time with the characteristics of the data.

3 Some libraries are really efficient e.g. http://www.netlib.org/lapack/

4 For the MIT FACE IMAGE, K = 2 and p = 361. The memory occupation in double precision is [(361 x 361) x 8] x 2 2 MB.

http://www.netlib.org/lapack/

Didacticiel - Études de cas R.R.

29 mai 2013 Page 3

3 Linear discriminant analysis under SIPINA

3.1 Importing the dataset

We use the Hastie and al. program (http://www-stat.stanford.edu/~tibs/ElemStatLearn/data.html ;

waveform.S) to generate the WAVE500K database with n = 500,000 instances and p = 21 descriptors.

There are K = 3 groups. After we launch SIPINA, we click on the FILE / OPEN menu, and we pick the

WAVE500K.TXT data file (tab delimited text file format).

A wizard appears. It allows you to define the characteristics of the data file (type of delimiter, the

first row corresponds to the names of the variables).

We confirm these specifications. The data file is imported and the values are visible into the Sipina

data editor.

http://www-stat.stanford.edu/~tibs/ElemStatLearn/data.html

Didacticiel - Études de cas R.R.

29 mai 2013 Page 4

3.2 Defining the role of the variables

To specify the role of the variables, we click on the ANALYSIS / DEFINE CLASS ATTRIBUTE menu. By

drag and drop, we set ONDE in CLASS, the other variables in ATTRIBUTES.

We confirm this choice. The selected variables appear in the left part of the main window.

3.3 Single-threaded implementation

We want to perform a linear discriminant analysis. To select the learning method, we click on the

INDUCTION METHOD / STANDARD ALGORITHM menu.

Didacticiel - Études de cas R.R.

29 mai 2013 Page 5

Into the DISCRIMINANT ANALYSIS tab, we select the (single-thread) LINEAR DISCIMINANT ANALYSIS.

We confirm the default settings (the priori class probabilities are estimated on the learning set). Then

we click on the ANALYSIS / LEARNING menu to launch the learning process. The discriminant

functions are displayed in a new visualization window after 1295 milliseconds.

(1)

(2)

(3)

(4)

(5)

Didacticiel - Études de cas R.R.

29 mai 2013 Page 6

By way of comparison, we show below the coefficients provided by SIPINA and SAS software. They

are strictly identical.

3.4 Multithreaded implementation

We must stop the current analysis. We do this by clicking on the ANALYSIS / STOP ANALYSIS menu.

Then, we select the new learning algorithm (INDUCTION METHOD / STANDARD ALGORITHM…).

We select MULTITHREADED LINEAR DISCRIMINANT ANALYSIS (MEMORY PARSIMONIOUS) in the

DISCRIMINANT ANALYSIS tab. We have the same settings as previously.

Label A B C

Constant -40.04668 -42.73233 -42.66217

V1 0.00377 0.00476 0.00541

V2 0.50408 0.47400 0.42693

V3 1.02392 0.96181 0.87710

V4 1.52079 1.41004 1.29700

V5 2.06354 1.92008 1.75948

V6 2.52591 2.45984 2.25037

V7 3.03977 3.05506 2.80563

V8 2.48582 2.64713 2.44356

V9 1.94234 2.24896 2.08549

V10 1.92816 2.29702 2.21027

V11 1.91005 2.34766 2.34649

V12 1.91492 2.20122 2.28404

V13 1.93703 2.07603 2.23833

V14 2.46897 2.42098 2.62170

V15 3.03766 2.81172 3.05126

V16 2.53097 2.26796 2.46251

V17 2.05902 1.75070 1.91801

V18 1.53216 1.31029 1.43251

V19 1.02175 0.86640 0.94353

V20 0.52232 0.45131 0.48785

V21 -0.02602 -0.01864 -0.01655

SIPINA SAS

(1)

(2)

(3)

(4)

(5)

Didacticiel - Études de cas R.R.

29 mai 2013 Page 7

We launch again the calculations by clicking on the ANALYSIS / LEARNING menu. We obtain the same

coefficients as the single-thread version. But the execution time is now 437 ms.

This reduction is not the result of chance. My machine has a quad-core processor (Q9400, 4 cores).

By monitoring the Windows Task Manager, we note that K = 3 hearts among the 4 (75%) are used

during the calculations.

3.5 Experiments on various databases

To evaluate the behavior of our multithreaded solution in comparison with the sequential

implementation, we measured the execution time on various databases. For the WAVE datasets, we

have always K = 3 balanced classes: WAVE500K that we described previously; WAVE500KLARGE with

n = 500,000 instances and p = 121 descriptors (100 additional descriptors); WAVE2M with n =

Didacticiel - Études de cas R.R.

29 mai 2013 Page 8

2,000,000 instances and p = 21 descriptors. These are all artificial databases that we can change at

our discretion. The idea is to study the impact of the evolution of the number of instances and the

number of descriptors compared with the WAVE500K.

We have also process the COVTYPE5 dataset with K = 7 classes, but rather unbalanced (2 classes of

the target variable concentrated a large part of the observations); and MIT FACE IMAGE6 dataset,

with K = 2, but with very unbalanced classes.

In the table below, we show the execution time in seconds7. "Ratio" indicates the reduction of

execution time when we use the multithreaded version (e.g. 3.0 = 1.30 / 0.44). Because we use a

quad-core processor, the best possible value for ratio is 4. When the number of groups (K) is lower

than 4, the best value should be K.

The results suggest:

 The multithreaded approach always improves the execution time. The construction of the

additional indexes for recognizing the class membership of the instances does not put a

disadvantage.

Figure 1 – Class values distribution for "wave500K"

5 http://archive.ics.uci.edu/ml/datasets/Covertype

6 http://c2inet.sce.ntu.edu.sg/ivor/cvm.html (Extended MIT face + non-face images data set).

7 Strictly, it would be necessary to repeat the experiments and compute average of execution times.

Dataset K n p SIPINA (s td) SIPINA (threads) Ratio

Wave 500k 3 500000 21 1.30 0.44 3.0

Wave 500k Large 3 500000 121 19.19 6.13 3.1

Wave 2M 3 2000000 21 5.16 1.83 2.8

Covtype 7 581012 52 5.30 2.67 2.0

Face Images 2 513455 361 142.73 135.46 1.1

http://archive.ics.uci.edu/ml/datasets/Covertype
http://c2inet.sce.ntu.edu.sg/ivor/cvm.html

Didacticiel - Études de cas R.R.

29 mai 2013 Page 9

 Compared with WAVE500K, the solution is relevant when we increase the number of variables

(WAVE500KLarge) or the number of observations (WAVE2M). But we are in a particularly

favorable configuration here. Firstly, the number of classes K = 3 is close to the number of cores

in my machine (quad-core). On the other hand, we have a balanced dataset (Figure 1). The loads

on the cores are well balanced until the end of the calculation of the conditional covariance

matrices. So, we divide by about 3 the processing time since K = 3 cores are used.

 The situation is less favorable for COVTYPE. Yet, with K = 7 classes, we should fully use the

potential of the machine. But the reduction ratio is 2. We better understand this result when we

compute the class-attribute distribution (Figure 2). The execution time relies mainly of the

processing of the groups "spruce" and "lodgepole". The calculation of the pooled covariance

matrix is only possible when we have terminated the processing of the "lodgepole" group.

Figure 2 – Class values distribution for "covtype"

 The result is definitely disappointing for the MIT FACE IMAGE database. We understand why

when we study the class-attribute distribution. In fact, only one core is used. The processing of

the "pos" group is very quickly completed (Figure 3).

Figure 3 – Class value distribution for "mit face images"

Didacticiel - Études de cas R.R.

29 mai 2013 Page 10

Conclusion. Better use the capabilities of the machine, here by loading the available cores, is

beneficial in terms of performance. In all cases, we have improved the execution time, including in

the most unfavorable configuration (MIT_FACE_IMAGE). But it is also clear that we can do better. We

will talk about it in the general conclusion.

4 Comparison with the other tools

4.1 Comparison with Tanagra

The linear discriminant approach is available in Tanagra. We show below the screenshot for the

processing of the WAVE500K dataset8.

Compared with Sipina, Tanagra produces additional indicators which require additional calculations:

(A) the Wilks’ lambda enables to evaluate the relevance of the whole model, we need to calculate

the global covariance matrix and the determinant of both the global and the pooled covariance

matrices; (B) the partial lambda enables to evaluate the relevance of the variables, here also we need

to calculate various version of the covariance matrices and their determinant. So, the processing

time for the WAVE500K is 5.25 sec. under Tanagra.

4.2 Comparison with SAS, R and Revolution R

We have measured the execution time of SAS 9.3 (proc discrim), R 3.0.0 (64 bits) and Revolution R

Community 6.2.0 (64 bits) on the same databases.

For SAS, we use the following program for the WAVE500K dataset. No optional calculation is asked. I

do not know if SAS produces internal objects which need additional computation.

8 See http://data-mining-tutorials.blogspot.fr/2012/11/linear-discriminant-analysis-tools.html for the use of this approach in

Tanagra and other tools.

(A)

(B)

http://support.sas.com/documentation/cdl/en/statug/63962/HTML/default/viewer.htm#statug_discrim_sect001.htm
http://www.r-project.org/
http://www.revolutionanalytics.com/products/revolution-r.php
http://www.revolutionanalytics.com/products/revolution-r.php
http://data-mining-tutorials.blogspot.fr/2012/11/linear-discriminant-analysis-tools.html

Didacticiel - Études de cas R.R.

29 mai 2013 Page 11

proc discrim data = mesdata.wave500k;

 class onde;

 priors proportional;

run;

For R and Revolution R, we use the lda() procedure from the MASS package:

wave500k <- read.table(file="wave500k.txt",header=T,dec=".",sep="\t")

system.time(model.1 <- lda(ONDE ~ ., data = wave500k))

print(model.1)

We collect execution times in the following table. We placed the tools from left to right depending

on their performance:

We note that:

 Obviously, the multithreaded approach is efficient. The multithreaded of Sipina is better than

SAS in 4 datasets on 5.

 The MIT FACE IMAGES database is particular. Firstly, we know that we have only two groups and

they are very unbalanced. Secondly, some previous experiments on various learning methods

show that the internal structure of Sipina (the data are stored in columns) are better adapted to

some algorithms (e.g. the decision tree induction9) than the others (e.g. support vector

machine10, all the methods where we need to calculate scalar products). This dataset is the one

which has the higher number of descriptors (p = 361) in our experiments, the performance is less

good than SAS because of this structure. We note however that SIPINA can achieved the

computation unlike R and Revolution R Community.

 R and Revolution R seem definitely less efficient. This is mainly because they use another

calculation framework. It seems that the discriminant functions are deducted from a singular

value decomposition process (Venables & Ripley, 2002; page 334). In fact, the processing times

are not comparable to SIPINA or SAS.

 Revolution R Community is always faster than R. But the gaps are not as spectacular as those

shown on the editor’s website. I have already noticed this kind of results in a previous paper11.

 The calculations are not achieved successfully under R and Revolution R for the MIT FACE

IMAGES database. They both send the following error message: “Reached total allocation of

8127Mb”.

9 http://data-mining-tutorials.blogspot.fr/2011/10/decision-tree-and-large-dataset-follow.html

10 http://data-mining-tutorials.blogspot.fr/2009/07/implementing-svm-on-large-dataset.html, the internal structures of

SIPINA and TANAGRA are similar.

11 http://data-mining-tutorials.blogspot.fr/2012/07/revolution-r-community-50.html

Dataset K n p SIPINA (threads) SAS SIPINA (std) Revol. R 6.2.0 R 3.0.0

Wave 500k 3 500000 21 0.44 1.65 1.30 33.89 37.68

Wave 500k Large 3 500000 121 6.13 9.09 19.19 187.29 264.89

Wave 2M 3 2000000 21 1.83 6.19 5.16 137.05 148.42

Covtype 7 581012 52 2.67 4.29 5.30 67.29 84.69

Face Images 2 513455 361 135.46 39.12 142.73 ERR ERR

http://data-mining-tutorials.blogspot.fr/2011/10/decision-tree-and-large-dataset-follow.html
http://data-mining-tutorials.blogspot.fr/2009/07/implementing-svm-on-large-dataset.html
http://data-mining-tutorials.blogspot.fr/2012/07/revolution-r-community-50.html

Didacticiel - Études de cas R.R.

29 mai 2013 Page 12

Because of its internal structure, SIPINA is less efficient than SAS when the number of descriptors

increases (e.g. “Mit Face Images”, “Wave500KLarge” in the single-threaded process). In contrast,

even more so with the multithreaded strategy, Sipina is clearly better when n >> p (e.g. Wave2M).

5 Conclusion

The parallelization of the data mining algorithms is not a new field. Many works exist. But they often

correspond to specific solutions for some architecture. They rarely come out of the laboratories and

do not reach the generalist tools. We note that many efforts are lead under R for the "high

performance computing"12. But, they often correspond to the set up of environments allowing

programming parallel algorithms rather than modifications of existing methods.

In this tutorial, we present a simple solution for discriminant analysis. It takes advantage of

additional performance that offers multicore processors computers. Compared to the sequential

program, the memory occupation of the calculation structure is unmodified. This is a great advantage

for the processing of very large databases. We have implemented the solution in SIPINA 3.10. The

experiments show that it allows reducing in significant proportions the execution time, especially for

some datasets.

But the experiments show also that we can do better. To obtain an efficient behavior whatever the

dataset that we deal, we must use all the available cores on the machine i.e. the number of used

cores is a setting of the algorithm. In addition, we must also achieve a better load balancing among

the cores.

6 References

Hastie T., Tibshirani R., Friedman J., « The Elements of Statistical Learning », Springer, 10th printing,

January 2013.

Saporta G., « Probabilités, Analyse de Données et Statistique », Technip, 2006.

Venables W.N., Ripley B.D., « Modern Applied Statistics with S », Springer, 2002.

12 http://cran.r-project.org/web/views/HighPerformanceComputing.html

http://www-stat.stanford.edu/~tibs/ElemStatLearn/printings/ESLII_print10.pdf
http://cran.r-project.org/web/views/HighPerformanceComputing.html

