
Didacticiel - Études de cas R.R.

29 septembre 2013 Page 1

1 Topic

Load balanced multithreaded algorithm for linear discriminant analysis (LDA). The number of

threads used is a parameter of the method. This new approach is incorporated in Sipina 3.11.

In a previous paper, we described a multithreading strategy for the linear discriminant analysis1. The

aim was to take advantage of the multicore processors of the recent computers. We noted that for

the same memory occupation than the standard implementation, we can decrease dramatically the

computation time according to the dataset characteristics. The solution however had two drawbacks:

the number of cores used was dependent on the number of classes K of the dataset; the load of the

cores depended on classes’ distributions. For instance, for one of dataset with K = 2 highly

unbalanced classes, the gain was negligible compared to the single-threaded version.

In this paper, we present a new approach for the multithreaded implementation of the linear

discriminant analysis, available in Sipina 3.11. It allows to overcome the two bottlenecks of the

previous version. The capacity of the machine is fully used. More interesting, the number of used

threads (cores) becomes customizable, allowing the user to adapt the machines resources used to

process the database. But this is not without consideration. The memory occupation is increased. It

depends on both the characteristics of the data and the number of cores that we want to use.

To evaluate the improvement introduced in this new version, we use various benchmark datasets to

compare its computation time with those of the previous multithreaded approach, the single-

threaded version, and the state-of-the-art proc discrim of SAS 9.3.

2 Linear discriminant analysis

There are many references which describe the linear discriminant analysis on the web (e.g.

https://onlinecourses.science.psu.edu/stat505/node/89). It deals with a classification problem. It

aims to assign the instances described by a set of p quantitative measurements (X1, X2, ..., Xp) to a

predefined group described by a categorical variable Y. There are K groups {1, 2, …, K}. We dispose of

a learning sample of size n for the construction of the model. Let an instance, y() correspond to

the class value of this instance. The absolute frequency of the class k is nk.

In our previous paper, we have established that the computation of the K conditional covariance

matrices (p x p) is the most resource-intensive step of the process.

Where corresponds to the mean of Xi for the individuals belonging to the group (Y = k).

Single-threaded implementation. For the single-threaded strategy, the fastest way to implement the

approach is to make the calculations in a single pass over the dataset. For that, we need to maintain

in memory several objects. With double precision values (8 bytes), we have:

1 Tanagra Tutorials, « Multithreading for linear discriminant analysis », may 2013.

https://onlinecourses.science.psu.edu/stat505/node/89
http://data-mining-tutorials.blogspot.fr/2013/05/multithreading-for-linear-discriminant.html

Didacticiel - Études de cas R.R.

29 septembre 2013 Page 2

 « 8 x (p x K) » for the vector of conditional means ;

 « 8 x [(p x p) x K] » 2 for the conditional covariance matrices Sk.

All in all, we have:

8 x [(p x K) + (p x p) x K]

= 8 x K x p x (p + 1)

For instance, for the MIT FACE IMAGES dataset with K = 2 classes and p = 361 descriptors:

8 x 2 x 361 x (361 + 1) 2 Mo

Multithreaded implementation (memory parsimonious). In Sipina 3.10, we create first K index

vectors which allow to associate each instance to its group membership. Then, we start K threads for

the computation of the covariance matrices Sk. Thus, apart from the index vectors that can be stored

on disk, the memory occupation and the objects used for the calculations are the same compared to

the single-threaded version.

Multithread implementation (load balancing). We want to subdivide the calculations in M units,

independently to the number K of classes. To do that, we describe below one of the distinctive

feature of the covariance matrix. The entries of Sk can be rewritten as follows:

pjiky

j

ky

i

kky

ji

k

pji

kjki

ky

ji

k

k

xx
n

xx
n

xxxx
n

S

,,1,)(:)(:
2

)(:

,,1,

,,

)(:

)()(
1

)()(
1

)()(
1

All entries are additive! In fact, it is possible to create arbitrarily M groups of individuals regardless of

their belonging to the classes, perform the calculations in parallel, to carry out consolidations for

each group "k" prior to the calculation of the conditional average and covariance. But the objects for

the calculations are duplicated M times. The memory occupation becomes:

M x [8 x K x p x (p + 1)]

Thus, with M = 4 threads for the MIT FACE IMAGES dataset, the memory occupation for the

calculations is:

4 x [8 x 2 x 361 x (361 + 1)] 8 Mo

It remains quite reasonable.

The interest of this strategy is that: (1) we can set the value of M according to the resources that we

want to devote to the calculations; (2) by sending the same number of instances (n / M) for each

thread, the utilization of the cores is perfectly balanced.

2 Considering the fact that the matrix is symmetric, we can reduce the size of Sk to [

].

Didacticiel - Études de cas R.R.

29 septembre 2013 Page 3

3 LDA with SIPINA

The use of the single-threaded and the memory parsimonious multithreaded approaches is described

in the previous tutorial3. We focus on the load balanced version available in Sipina 3.11 here.

3.1 Importing the dataset

We want to process the MIT FACE IMAGE dataset. First, we import the data file (TXT, tab delimited

text file format).

We specify the settings into the wizard. We validate.

The duration of the processing of the 513,455 individuals and the 362 variables is 87 seconds.

3 Tanagra Tutorials, « Multithreading for linear discriminant analysis », may 2013.

http://data-mining-tutorials.blogspot.fr/2013/05/multithreading-for-linear-discriminant.html

Didacticiel - Études de cas R.R.

29 septembre 2013 Page 4

3.2 Specifying the role of the variables

To define the role of the variables, we click on the ANALYSIS / DEFINE CLASS ATTRIBUTE menu. By

drag-and-drop, we set FACE as class-attribute, and all the others as predictive attributes.

We click on the OK button. The variables included in the analysis appear of the left part of the main

window (D for discrete attribute, C for continuous one).

Didacticiel - Études de cas R.R.

29 septembre 2013 Page 5

3.3 Load balancing of the multithreaded algorithm

To select the method, we click on the INDUCTION METHOD / STANDARD ALGORITHM (1) menu.

Into the DISCRIMINANT ANALYSIS tab (2), we pick the MULITHREAD LINEAR DISCIMINANT ANALYSIS

(LOAD BALANCED) algorithm (3). We validate the choice (4). Into the dialog settings, we can set the

number of threads to use (5). We set 4 threads, knowing that it is possible to know the number of

available cores on the machine by clicking the button “Get number of cores”. We confirm with the

OK button (6).

We can launch the analysis by clicking on the ANALYSIS / LEARNING menu. We obtain the results in

37.752 seconds. The classification functions are displayed in a new window.

(1)

(2)

(3)

(4)

(5)

(5)
(6)

Didacticiel - Études de cas R.R.

29 septembre 2013 Page 6

Note: We use the user time, by computing the difference between two calls to the GetTickCount()

function. Thus, if all the cores are used, and in the same time another application is running (e.g.

flash player in a browser), the measurement may be disturbed.

We monitored Windows Task Manager. Really, all the resources (99%) are allocated to the

calculation under Sipina.

3.4 Experiments on various databases

To evaluate the behavior of this new approach against the two previous ones (memory parsimonious

multithreaded approach, single-threaded approach), we measure the computation time on various

databases described in the preceding paper4. Let us remember their characteristics. For the WAVE

datasets, we have always K = 3 balanced classes: WAVE500K with n = 500,000 instances and p = 21

descriptors; WAVE500KLARGE with n = 500,000 instances and p = 121 descriptors (100 additional

descriptors); WAVE2M with n = 2,000,000 instances and p = 21 descriptors. These are all artificial

databases that we can modify as we want. The idea is to study the impact of varying the number of

instances and the number of descriptors on the calculation time.

We have also process the COVTYPE5 dataset with K = 7 classes, but rather unbalanced (2 classes of

the target variable concentrated a large part of the observations); and MIT FACE IMAGE6 dataset,

with K = 2 very unbalanced classes.

4 http://data-mining-tutorials.blogspot.fr/2013/05/multithreading-for-linear-discriminant.html

5 http://archive.ics.uci.edu/ml/datasets/Covertype

6 http://c2inet.sce.ntu.edu.sg/ivor/cvm.html (Extended MIT face + non-face images data set).

http://data-mining-tutorials.blogspot.fr/2013/05/multithreading-for-linear-discriminant.html
http://archive.ics.uci.edu/ml/datasets/Covertype
http://c2inet.sce.ntu.edu.sg/ivor/cvm.html

Didacticiel - Études de cas R.R.

29 septembre 2013 Page 7

We described below the computing time (in seconds). We set as reference the single-threaded

version. The ratio, corresponding to the reduction of the calculation time, is defined as follows:

For instance, Ratio = 3 = (1.30 / 0.44) for the WAVE500K dataset means that the memory

parsimonious multithreaded approach is 3 times faster than the single-threaded program (the

execution time is divided by 3).

Our testing machine has a Quad-core Q9400 processor. For the load balanced multithreaded

approach, we use systematically M = 4 threads.

These results suggest some comments:

 The performances of the multithreaded version parsimonious in memory, especially their

relationships with the characteristics of the data, have widely been detailed in our previous

paper. We note mainly that in particularly unfavorable configurations (e.g. ratio = 1.1 for MIT

FACE IMAGES), the gain is almost zero.

 It is otherwise with regard to the "load balanced" version. The computation time is disconnected

from the dataset characteristics. The ratio is almost the same regardless of the base. The

execution time reduction for MIT FACE IMAGES is particularly impressive.

 But the ratio is not equal to 4 because (1) we use the user time to measure the execution time,

the system has continuously performed other tasks in the same time; (2) a part of the treatments

is in a single-threaded mode (e.g. the inversion of the pooled covariance matrix).

Conclusion. Compared to the previous version (memory parsimonious approach), we obtained

exactly what we wanted now: the number of threads to use is configurable, the loads are well

balanced. But, the additional cost is an increase of the memory occupation. It seems however that

this constraint is quite reasonable on the majority of database.

3.5 Influence of the number of threads used

To what extent using additional threads can improve performance? In the graph below, we show

ratios depending on the number of thread used for the "WAVE500K Large" dataset.

Dataset K n p

SIPINA

(multithread)

Load balanced

SIPINA

(multithread)

Memory

Parsimonious

SIPINA

 (s ingle thread)

Wave 500k 3 500000 21 0.38 0.44 1.30

Wave 500k Large 3 500000 121 4.87 6.13 19.19

Wave 2M 3 2000000 21 1.39 1.83 5.16

Covtype 7 581012 52 1.44 2.67 5.30

Face Images 2 513455 361 37.75 135.46 142.73

Wave 500k 3.5 3.0

Wave 500k Large 3.9 3.1

Wave 2M 3.7 2.8

Covtype 3.7 2.0

Face Images 3.8 1.1

Ratio against single thread

Didacticiel - Études de cas R.R.

29 septembre 2013 Page 8

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

0 1 2 3 4 5 6 7 8 9

R
at
io

of threads

Ratio against the single-thread version

Quad core machine

Wave 500k
Large

On a Quad-core machine (4 cores), adding a thread improves the processing time while M < 4. Note

that the ratio's evolution is linear according to the number of threads i.e. the overall calculation is

well divided into as many cores used. The ratio is not perfect however. It will be very slightly less

than M because, among other reasons, a part of calculations is single-threaded (e.g. the calculation

of the pooled covariance matrix and its inversion).

Beyond M = 4, one additional thread brings nothing. But it does not degrade the performances,

which are really limited by the number of available cores.

3.6 Comparison with SAS

SAS is a state-of-the-art statistical tool which can handle easily large datasets. We have used the proc

discrim of SAS 9.3 on the same databases. E.g.

proc discrim data = mesdata.wave500k;

 class onde;

 priors proportional;

run;

We compare the computation time with those of Sipina (load balanced multithreaded version).

We observe that:

 Sipina is systematically better. Use of all available machine resources using the threads is

beneficial.

 This result is all the more remarkable that SIPINA, because of its internal structures, is

disadvantaged when the database includes a large number of variables (e.g. WAVE500KLARGE,

MIT FACE IMAGES...). The use of the multithreaded approach allows to overcome this drawback.

Dataset K n p

SIPINA

(threads)

Load balanced SAS

Wave 500k 3 500000 21 0.38 1.65

Wave 500k Large 3 500000 121 4.87 9.09

Wave 2M 3 2000000 21 1.39 6.19

Covtype 7 581012 52 1.44 4.29

Face Images 2 513455 361 37.75 39.12

Didacticiel - Études de cas R.R.

29 septembre 2013 Page 9

Note: I know that it is possible to switch to multithreading under SAS using the THREADS option. But

it is available only for some methods at the moment (SAS 9.2). I think that the modification of the

'proc discrim' will occur at one time or another.

4 Conclusion

Very excited by a first multithreaded version of the discriminant analysis implemented in SIPINA 3.10,

I tried to improve the procedure by disconnecting its performance to the characteristics of dataset to

be processed. Now available in SIPINA 3.11, this version uses better the machine resources by using

all available cores, and by better dividing up the loads.

http://support.sas.com/documentation/cdl/en/lrdict/64316/HTML/default/viewer.htm#a002197022.htm

