
Tanagra

30/03/2010 1/21

1 Topic

WRAPPER feature selection method with SIPINA and R (RWeka package). Comparison with a

FILTER approach implemented into TANAGRA.

Feature selection. The feature selection1 is a crucial aspect of supervised learning process.

We must determine the relevant variables for the prediction of the target variable. Indeed, a

simpler model is easier to understand and interpret; the deployment will be facilitated, we

need less information to collect for prediction; finally, a simpler model is often more robust in

generalization i.e. when we want to classify an unseen instance from the population.

Three kinds of approaches are often highlighted into the literature.

The FILTER approaches try to detect the relevant descriptors, independently of the used

supervised learning algorithm. The advantage is the quickness and the flexibility. But, there is

no guarantee however that the selection based on ad hoc criteria produces the best subset of

features whatever the learning method used thereafter. The RANKING methods are certainly

the more representative of this family. They calculate an indicator which characterizes the

relationship between target attribute and each descriptor (input attribute). We ordered them

by the decreasing value of the statistical indicator. Then we choose the best ones. We can also

use a statistical hypothesis test in order to select the variables having a significant association

with the target variable.

About the EMBEDDED approach, the selection process is integrated into the learning process.

The induction of decision trees illustrates perfectly this approach. For instance, with the CART

method (Breiman et al., 1984), the Gini index is used to select the segmentation variable on a

node, the goal being to obtain the leaves as pure as possible. The algorithm selects

automatically the smallest subset of variable in order to obtain them. But consistency does not

mean performance. Let us not forget that one aim of the learning process is to produce a

classifier with the best generalization capabilities. This is the reason for which CART also used

a post-pruning system based on a criterion directly related to performance, different from that

used during the tree growing.

The WRAPPER approach uses explicitly a performance criterion during the search of the best

subset of descriptors. Most often, this is the error rate. But in reality, any kind of criteria can

be used. This may be the cost if we use a misclassification cost matrix. It can be the area

under curve (AUC) when we assess the classifier using ROC curves, etc. In this case, the

learning method is considered as a black box. We try various subsets of predictors. We will

choose the one that optimizes the criterion. In the WRAPPER approach, the result relies heavily

on the search algorithm and on the assessment of the performance.

Search strategy. The search strategy is very important in the wrapper approach. We can use

1 http://jmlr.csail.mit.edu/papers/special/feature03.html

Tanagra

30/03/2010 2/21

a very simplistic method such as a greedy search, or more sophisticated methods such as

genetic algorithm or simulated annealing. But there are two drawbacks to explore a very high

number of solutions: we can reach to very specific solution to the used dataset which is not

efficient into the population, it is the overfitting problem; the search becomes computationally

intractable when we deal with a very large dataset with a large number of descriptors. Thus,

hill climbing approaches such as forward search or backward search are in actuality a very

good compromise in the most of the situations.

Prediction performance assessment. About the performance assessment, we cannot use

the learning set in order to compute the criterion such as the error rate. Indeed, we often

favor the complex solution with the largest number of descriptors in this case. Most of the

time, to avoid this drawback, we use a validation set (which is not the same as the test set

used for the assessment of the final model) or a resampling schema in order to obtain a

honest estimation of the error rate during the search process.

Supervised learning algorithm. The learning method is used as a black box in the WRAPPER

process. Any method can be implemented. We chose the NAIVE BAYES classifier for several

reasons: it is well adapted for categorical predictors; it does not incorporate an internal

selection process; and it can be disturbed by irrelevant variables. Thus, the influence of the

variable selection on the classifier performance will be particularly discernable.

In this tutorial, we implement the WRAPPER approach with SIPINA and R 2.9.2. For this last

one, we give the source code for a forward search strategy. The readers can easily adapt the

program to other dataset. Moreover, a careful reading of the source code for R gives a better

understanding about the calculations made internally by SIPINA.

The WRAPPER strategy is a priori the best since it explicitly optimizes the performance

criterion. We verify this by comparing the results with those provided by the FILTER approach

(FCBF method) available into TANAGRA. The conclusions are not as obvious as one can think.

2 Dataset

We use the MUSHROOM.TXT dataset in this tutorial (http://eric.univ-

lyon2.fr/~ricco/tanagra/fichiers/mushroom_wrapper.zip). It is well known in the machine

learning community. We want to predict if a mushroom is edible or not from their

characteristics. We have randomly subdivided the data file into a training sample (2000

instances) and a testing sample (6124 instances). This last one is used only to assess the

efficiency of the final classifier based on the selected descriptors. It is not used during the

search process. The STATUT column is used to discern the two parts of the data file.

3 Wrapper feature subset selection with SIPINA

The WRAPPET strategy is available into SIPINA (http://eric.univ-lyon2.fr/~ricco/sipina.html).

This tool is mainly intended to the decision tree learning, but others supervised learning

Tanagra

30/03/2010 3/21

methods are also available.

3.1 Importing the data file

We launch SIPINA, we click on the FILE / OPEN menu. We select the MUSHROOM.TXT data file.

A dialog box appears. We specify the configuration of our data file. In our case, the column

separator is the tabulation; the first row corresponds to the variable names.

The data file is loaded.

Tanagra

30/03/2010 4/21

3.2 Choosing the learning algorithm

We use the naïve bayes classifier (http://en.wikipedia.org/wiki/Naive_Bayes_classifier). In

spite it relies on an apparent unrealistic assumption, the naive bayes classifier works well in

many practical situations. In order to define the learning method under SIPINA, we click on the

INDUCTION METHOD / STANDARD ALGORITHM menu. We select the OTHER tab into the dialog

settings. We click on the NAÏVE BAYES approach. In the following dialog box, we can define the

parameters of the method. We keep the default parameters.

Tanagra

30/03/2010 5/21

3.3 Partitioning the dataset (train and test samples)

We use the STATUT column in order to subdivide the dataset. We click on the ANALYSIS /

SELECT ACTIVE EXAMPLES menu. We select the RULE SELECTION option i.e. the subdivision is

based on a logical rule. We set the rule [STATUT] IN [TRAIN] then we click on the VALIDATE

button.

We can count the number of instances included into the learning sample by clicking on the

COUNT EXAMPLES COVERED contextual menu: 2000 instances among 8124 are used during

the search process.

Tanagra

30/03/2010 6/21

3.4 Defining the target and the input attributes

We click on the ANALYSIS / DEFINE CLASS ATTRIBUTE menu in order to specify the target and

the input attributes. Of course, the STATUT column is not used here.

A summary of the configuration is available on the left part of the main window.

3.5 Accuracy of the full model

The full model including all the input variables is our reference classifier. We learn the model on

Tanagra

30/03/2010 7/21

the learning set by clicking on the ANALYSIS / LEARNING menu. A new window appears. We

can view the conditional probabilities for each descriptor. They are used for the classification of

the unseen instances.

We evaluate the performance by clicking on the ANALYSIS / TEST menu. We select the

INACTIVE EXAMPLES OF THE DATABASE (the test sample) into the dialog box. We obtain an

unbiased estimation of the generalization error rate because it is computed on the test set.

The confusion matrix is displayed. The test error rate is 5.37%.

Now, we want to know if we can make better with the WRAPPER feature subset selection

process.

Tanagra

30/03/2010 8/21

3.6 WRAPPER approach with SIPINA

First, we must stop the current analysis session. We click on the ANALYSIS / STOP ANALYSIS

menu. The preceding results (windows) are removed.

We activate the ANALYSIS / FEATURE SELECTION / WRAPPER menu for launching the selection

process. In the dialog settings, we use the cross validation in order to estimate the error rate

of each subset of features. The search strategy is the FORWARD approach i.e. nested subsets

of variables are evaluated, from the model with only one descriptor to the model with all the

descriptors.

Into the next dialog settings, we set the number of folds for the cross validation.

Tanagra

30/03/2010 9/21

The calculation is started. For the selected subset at each step (1 variable, 2 variables, etc.),

SIPINA displays the selected attributes and the corresponding error rate. The user can

interactively stop the process.

Note: Because the seed number of the random number generator is not the same according to

the computer, you can obtain a slightly different solution on your computer.

SIPINA highlights a subset with 9 descriptors. The cross validation error rate computed during

the search is about 0.9%. But, for obtaining an unbiased estimation of the error rate, we must

apply the resulting classifier on the test set.

We want to select the subset with these 9 descriptors (Figure 1). We set a right click on the

right column of the grid; we click on the CHOOSE THIS SUBSET FEATURE contextual menu. In

the left part of the window, the selected variables for the learning process are modified. Note:

the best solution incorporates 9 descriptors, but we see into the chart above that solutions

with fewer variables are very close according to the error rate.

Tanagra

30/03/2010 10/21

Figure 1 – Selecting the “best” subset of features

3.7 Accuracy of the simplified model

We want to assess the classifier with 9 variables on the test set. We click first on the ANALYSIS

/ LEARNING menu in order to create the classifier on the train set.

Tanagra

30/03/2010 11/21

Then we click on the ANALYSIS / TEST menu and we set the INACTIVE EXAMPLES OF

DATABASE option in order to compute the confusion matrix on the test set.

The “true” test error rate is 1.24%. The simplified model is much better than the full model

including all of the descriptors.

4 WRAPPER approach with R
In this section, we give the details of the source code for the forward selection according the

wrapper approach under the R software (http://www.r-project.org/). The main advantage is

that we can describe each step of the process.

4.1 Importing and partitioning the dataset

First, we load the dataset that we subdivide into train and test samples.

#load the data file
mushroom <- read.table(file="mushroom.txt",header=TRUE,sep="\t")
summary(mushroom)

#partitioning into train and test samples
mushroom.train <- as.data.frame(mushroom[mushroom$statut=="train",c(1:22,24)])
mushroom.test <- as.data.frame(mushroom[mushroom$statut=="test",c(1:22,24)])
print(nrow(mushroom.train))
print(nrow(mushroom.test))

Tanagra

30/03/2010 12/21

R shows the following results.

The training set contains 2000 instances, the test set contains 6124 instances.

4.2 The full model – The naïve bayes classifier wit h the RWeka package

We use the RWeka package (http://cran.r-project.org/web/packages/RWeka/index.html) based

on the famous Weka free software (http://www.cs.waikato.ac.nz/ml/weka/).

The library(.) command loads the package. Then we load the naïve bayes method with the

make_Weka_classifier(.) instruction. We call NB(.) the method in our source code.

We launch the learning process and we evaluate the classifier on the test set with the

evaluate_Weka_classifier(.) function.

#load the RWeka package
library(RWeka)

#make naive bayes classifier function
NB <- make_Weka_classifier("weka/classifiers/bayes/NaiveBayes")

#training phase
full.model <- NB(classe ~ ., data = mushroom.train)

#evaluation on the test set
test.evaluation <- evaluate_Weka_classifier(full.model,newdata=mushroom.test)
print(test.evaluation)

Tanagra

30/03/2010 13/21

We obtain the following results.

The test error rate is 5.24% when we use all the descriptors.

4.3 Wrapper process under R

First, we write a callback function search_wrapper(.) in order to evaluate each subset. We

apply this function for each subset with the same cardinal. Then, we obtain the best solution at

each step of the forward search i.e. the best subset with one descriptor, the best subset with 2

descriptors, etc., with the corresponding error rate obtained by cross validation.

#callback function
#searching the best predictive attribute
#for one step of the wrapper process
search_wrapper <- function(x,cur.dataset,K){
 #current dataset
 working <- cbind(cur.dataset,x)
 #learning the model
 cur.model <- NB(as.formula(paste(colnames(working)[1],"~ .")),data = working)
 #evaluating the model
 cur.eval <- evaluate_Weka_classifier(cur.model,numFolds = K,seed=100)
 #getting the error rate
 return (cur.eval$details["pctIncorrect"])
}

We note that the evaluate_Weka_classifier(.) function can implement a cross validation. K

is the number of folds.

Last we can write the function which incorporates the callback function. We adopt a very

simplistic code. I think we can make much better (faster) but I prefer a code that the readers

can inspect easily.

Tanagra

30/03/2010 14/21

#programming the whole wrapper framework for feature subset selection
#forward selection process
#dataset is the available data (train set only, we do not use the test set
here)
#we assume that the last column is the class attribute
#K is the number of fold in the cross-validation
wrapper <- function(dataset,K=10){
 #number of predictive attribute
 P <- ncol(dataset)-1
 #predictive attributes
 predictives <- dataset[1:(ncol(dataset)-1)]
 #classe attribute
 cur.dataset <- dataset[ncol(dataset)]
 #current formula
 cur.formula <- paste(colnames(dataset)[P+1],"~")
 #ordered index of the selected variable
 output <- c()
 #error rate at each step
 error <- c()
 #the whole process
 for (p in 1:P){
 #error rate for this step
 cur.error <- sapply(predictives,search_wrapper,cur.dataset,K)
 #getting the best error rate
 id.min <- which.min(cur.error)
 selected.name <- colnames(predictives)[id.min]
 #adding the id. of the column into the selection
 output[p] <- which.min(match(colnames(dataset),selected.name))
 #add the attribute to the current dataset
 cur.dataset <- cbind(cur.dataset,predictives[id.min])
 #removing the attribute to the predictive attributes
 predictives <- predictives[-id.min]
 #filling out the vector of errors
 error[p] <- min(cur.error)
 }
 #returning the error rate and the index of variables
 return (list(error=error,output=output))
}

We launch this function on our dataset with the following program.

#launching the wrapper process
mushroom.wrapper <- wrapper(mushroom.train)

#plotting the error rate according the number of selected variables
plot(mushroom.wrapper$error,type="b",main="Wrapper process",ylab="Error rate
(%)",xlab="# of selected variables")

We get the error rate curve according the cardinal of the selected subset at each step of the

process. It is very similar to the curve computed with SIPINA. It is not really surprising.

Tanagra

30/03/2010 15/21

5 10 15 20

1
2

3
4

5

Wrapper process

of selected variables

E
rr

or
 ra

te
 (%

)

We can now select the subset related to the “optimal” solution.

#getting the number of selected variable
nb.sel <- which.min(mushroom.wrapper$error)

#new dataset -- train and test
new.train <-
mushroom.train[,c(mushroom.wrapper$output[1:nb.sel],ncol(mushroom.train))]
new.test <-
mushroom.test[,c(mushroom.wrapper$output[1:nb.sel],ncol(mushroom.test))]

#printing the name of the selected variables
print("Selected variables : ")
print(colnames(new.train)[1:nb.sel])

The subset with 7 descriptors seems the best.

Tanagra

30/03/2010 16/21

4.4 Assessment of the selected subset of descriptor s

Last, we compute the classifier on the learning set and we evaluate its performance on the test

set. We use the samples with the selected descriptors now (the 7 descriptors detailed above).

#training and test on the selected variables
new.model <- NB(classe ~., data = new.train)
new.eval <- evaluate_Weka_classifier(new.model,newdata=new.test)
print(new.eval)

The test error rate is 1.29%. Again, the simplified model is definitely better than the full model

including all the descriptors.

5 FILTER strategy with TANAGRA
The WRAPPER approach is not available in TANAGRA. But, it provides several FILTER methods

for the feature selection process. We use the FCBF method here. It is really efficient and can

handle a very large dataset (number of descriptors) quickly (Yu and Liu, 2003;

http://www.public.asu.edu/~huanliu/FCBF/FCBFsoftware.html).

It operates before the learning process. There is no assurance that the selected variables are

the most relevant for the naive bayes classifier. The interest of this tutorial is precisely to try to

assess the efficiency of this approach in relation to the WRAPPER method which optimizes

explicitly a performance criterion.

Tanagra

30/03/2010 17/21

5.1 Importing the dataset

After we launch TANAGRA, we create a new diagram. We click on the FILE / NEW menu. We

select the MUSHROOM.TXT data file: 24 columns and 8124 instances are loaded.

5.2 Partitioning the dataset

We use the STATUT column in order to subdivide the dataset into a train and test samples. We

add the DISCRETE SELECT EXAMPLES component (INSTANCE SELECTION) into the diagram.

We click on the PARAMETERS contextual menu and we set the following parameters.

Then we click on the VIEW menu. There are 2000 instances into the learning set.

Tanagra

30/03/2010 18/21

5.3 Variable selection with the FCBF method

First, we must set the target attribute and the candidate input variables. We add the DEFINE

STATUS component using the shortcut into the toolbar. The STATUT column is not used here.

We can now add the FBCF component (FEATURE SELECTION). It aims to detect the most

relevant and not redundant input variables for the prediction of the target attribute (CLASSE).

Tanagra

30/03/2010 19/21

Only 3 descriptors are selected: ODOR, STALK SURFACE ABOVE and VEIL COLOR. These

variables are automatically set as input variables at the output of the FBCF component.

CLASSE remains the target attribute. We can insert any supervised learning method after the

FBCF filter component.

5.4 Learning on the selected variables

We add the NAÏVE BAYES component (SPV LEARNING). We click on the VIEW menu. We

obtain, among others, the resubstitution error rate.

5.5 Assessing on the test set

In order to compute an honest estimation of the generalization error rate, we use the test set.

To do that, we must specify the target attribute (CLASSE = TARGET) and the prediction of the

classifier (PRED_SPV_INSTANCE_1 = INPUT) using the DEFINE STATUS component.

Note that the prediction is computed both on the learning set (the selected instances using the

DISCRETE SELECT EXAMPLES component; see section 5.2) and the test set (the unselected

instances).

Tanagra

30/03/2010 20/21

Last, we add the TEST component (SPV LEARNING ASSESSMENT) which creates the confusion

matrix and computes the error rate. By default, it operates on the unselected instances i.e. on

the test set. This is that we wanted.

Tanagra

30/03/2010 21/21

The test error rate is 1.58%. We can compare this to the 1.29% obtained with the WRAPPER

approach with R, and the 1.24% obtained with SIPINA. The error rates are directly comparable

here because we use the same test set for all the tools. We note that, according the

generalization error rate, the deviations between the various approaches (FILTER vs.

WRAPPER) are not really significant on our dataset.

6 Conclusion

The first goal of the tutorial is to show how to implement the WRAPPER feature selection

approach under SIPINA and R. WRAPPER is supposed to be the best selection strategy because

it uses explicitly a performance criterion to determine the "optimal" subset of variables for the

prediction.

The second goal of this tutorial is to compare the efficiency of the WRAPPER approach with a

FILTER strategy for selecting the relevant descriptors in the context of supervised learning. We

use the FBCF method which is very fast and well suited to the datasets with a large number of

descriptors. On our dataset, we note that, in spite that FBCF does not take into account the

characteristics of the subsequent learning method, it produces a classifier which is very

competitive in relation to the one computed after a WRAPPER feature subset selection.

