1 Topic

WRAPPER feature selection method with SIPINA and R (RWeka package). Comparison with a FILTER approach implemented into TANAGRA.

Feature selection. The feature selection¹ is a crucial aspect of supervised learning process. We must determine the relevant variables for the prediction of the target variable. Indeed, a simpler model is easier to understand and interpret; the deployment will be facilitated, we need less information to collect for prediction; finally, a simpler model is often more robust in generalization i.e. when we want to classify an unseen instance from the population.

Three kinds of approaches are often highlighted into the literature.

The FILTER approaches try to detect the relevant descriptors, independently of the used supervised learning algorithm. The advantage is the quickness and the flexibility. But, there is no guarantee however that the selection based on ad hoc criteria produces the best subset of features whatever the learning method used thereafter. The RANKING methods are certainly the more representative of this family. They calculate an indicator which characterizes the relationship between target attribute and each descriptor (input attribute). We ordered them by the decreasing value of the statistical indicator. Then we choose the best ones. We can also use a statistical hypothesis test in order to select the variables having a significant association with the target variable.

About the EMBEDDED approach, the selection process is integrated into the learning process. The induction of decision trees illustrates perfectly this approach. For instance, with the CART method (Breiman et al., 1984), the Gini index is used to select the segmentation variable on a node, the goal being to obtain the leaves as pure as possible. The algorithm selects automatically the smallest subset of variable in order to obtain them. But consistency does not mean performance. Let us not forget that one aim of the learning process is to produce a classifier with the best generalization capabilities. This is the reason for which CART also used a post-pruning system based on a criterion directly related to performance, different from that used during the tree growing.

The WRAPPER approach uses explicitly a performance criterion during the search of the best subset of descriptors. Most often, this is the error rate. But in reality, any kind of criteria can be used. This may be the cost if we use a misclassification cost matrix. It can be the area under curve (AUC) when we assess the classifier using ROC curves, etc. In this case, the learning method is considered as a black box. We try various subsets of predictors. We will choose the one that optimizes the criterion. In the WRAPPER approach, the result relies heavily on the search algorithm and on the assessment of the performance.

Search strategy. The search strategy is very important in the wrapper approach. We can use

¹ <u>http://jmlr.csail.mit.edu/papers/special/feature03.html</u>

a very simplistic method such as a greedy search, or more sophisticated methods such as genetic algorithm or simulated annealing. But there are two drawbacks to explore a very high number of solutions: we can reach to very specific solution to the used dataset which is not efficient into the population, it is the overfitting problem; the search becomes computationally intractable when we deal with a very large dataset with a large number of descriptors. Thus, hill climbing approaches such as forward search or backward search are in actuality a very good compromise in the most of the situations.

Prediction performance assessment. About the performance assessment, we cannot use the learning set in order to compute the criterion such as the error rate. Indeed, we often favor the complex solution with the largest number of descriptors in this case. Most of the time, to avoid this drawback, we use a validation set (which is not the same as the test set used for the assessment of the final model) or a resampling schema in order to obtain a honest estimation of the error rate during the search process.

Supervised learning algorithm. The learning method is used as a black box in the WRAPPER process. Any method can be implemented. We chose the NAIVE BAYES classifier for several reasons: it is well adapted for categorical predictors; it does not incorporate an internal selection process; and it can be disturbed by irrelevant variables. Thus, the influence of the variable selection on the classifier performance will be particularly discernable.

In this tutorial, we implement the WRAPPER approach with **SIPINA** and **R 2.9.2**. For this last one, we give the source code for a forward search strategy. The readers can easily adapt the program to other dataset. Moreover, a careful reading of the source code for R gives a better understanding about the calculations made internally by SIPINA.

The WRAPPER strategy is a priori the best since it explicitly optimizes the performance criterion. We verify this by comparing the results with those provided by the FILTER approach (FCBF method) available into **TANAGRA**. The conclusions are not as obvious as one can think.

2 Dataset

We use the MUSHROOM.TXT dataset in this tutorial (<u>http://eric.univ-lyon2.fr/~ricco/tanagra/fichiers/mushroom wrapper.zip</u>). It is well known in the machine learning community. We want to predict if a mushroom is edible or not from their characteristics. We have randomly subdivided the data file into a training sample (2000 instances) and a testing sample (6124 instances). This last one is used only to assess the efficiency of the final classifier based on the selected descriptors. It is not used during the search process. The STATUT column is used to discern the two parts of the data file.

3 Wrapper feature subset selection with SIPINA

The WRAPPET strategy is available into SIPINA (<u>http://eric.univ-lyon2.fr/~ricco/sipina.html</u>). This tool is mainly intended to the decision tree learning, but others supervised learning

Та	na	q	٦a
			-

methods are also available.

3.1 Importing the data file

We launch SIPINA, we click on the FILE / OPEN menu. We select the MUSHROOM.TXT data file.

A dialog box appears. We specify the configuration of our data file. In our case, the column separator is the tabulation; the first row corresponds to the variable names.

Import text file	options	1		-		1	
	cap-shape	cap-surface	cap-color	bruises?	odor	gill-attach	gill-spac
	f	s	g	f	n	f	W
	f	У	Y	t	1	f	c
	х	У	Y	t	a	f	c
	f	f	Y	f	f	f	c
	b	f	W	f	n	f	w
	f	У	e	f	У	f	c
	k	s	g	f	n	f	w
	х	У	n	t	n	f	c
	х	У	e	f	f	f	c
•							۴.
- Specification	ns		Delimiters —				
	· · · · · · · · · · · · · · · · · · ·		📀 Tabs <	_			
I First row	is name or attribu	lies	C Same				
First col	umn is label of exa	amples	U space				
Categor	ical attribute		C Other	. 💌			
L						X Annuler	🖌 ок

The data file is loaded.

🔉 File Edit Data Statistics	Induction	method Anal	ysis View	Window	Help			-	E ×
<mark>C B 😫 🕒</mark>									
12	×	cap-shape	cap-surface	cap-color	bruises?	odor	gill-attachme	gill-spacing	gil ^
Attribute selection	1	Ť	s	g	f	п	f	w	b
	2	f	у	у	t	1	f	с	b
	3	x	у	у	t	а	f	с	b
	4	f	f	У	f	f	f	с	b
	5	b	f	w	f	n	f	w	b
	6	f	У	e	f	У	f	с	n
	7	k	s	g	f	п	f	w	b
	8	x	У	п	t	n	f	с	b
	9	×	У	e	f	f	f	с	п
	10	b	f	w	f	n	f	w	b
Learning method	11	x	У	n	f	f	f	с	n
MethodName=Improved ChAID (Tsc 🔺	12	x	f	w	f	n	f	w	b
MethodulassName=IArbreDecisioni Hdl=8	13	k	S	n	f	у	f	с	n
Merge=0.05	14	x	У	e	f	У	f	с	n
Split=0.001	15	f	f	у	f	f	f	с	b
TypeBonterroni=1	16	x	s	у	t	1	f	w	n
Sampling=0	17	k	У	n	f	S	f	с	п
Examples selection	18	f	У	n	f	S	f	С	n
	19	f	f	W	f	n	f	w	b -
								-	•
	Editing	NEW.FDM				Att	ributes : 24	Examples : 8	124
mproved ChAID (Tschuprow Goodr	ness of Spli	t)					Exec. lime: 123	ms.	

3.2 Choosing the learning algorithm

We use the naïve bayes classifier (<u>http://en.wikipedia.org/wiki/Naive Bayes classifier</u>). In spite it relies on an apparent unrealistic assumption, the naive bayes classifier works well in many practical situations. In order to define the learning method under SIPINA, we click on the INDUCTION METHOD / STANDARD ALGORITHM menu. We select the OTHER tab into the dialog settings. We click on the NAÏVE BAYES approach. In the following dialog box, we can define the parameters of the method. We keep the default parameters.

🔉 Sipina Research Version	- [Learni	ng set edi	tor]							
💦 File Edit Data Stat	tistics []	Induction i	method	Analysis V	iew Window	w Help				- 8 ×
<mark>0 8 🐴 </mark>		Stand	lard algorit	hm. 🗕 🗕	-,					
	i x	1	can-sh	ane lean-s	urface can-col	lor bruises	2 lodor	nill-attach	meraill-sna	cipa ail 🔺
Attribute selection S	elect an	induction	method	-						
	Induction	Graph Ru	le Induction	Neural net	work Discrimi	nant analysis	Decision list	Other		
	Naive Ba	ves				-				
	Multi-valu	ied Obliviou	s Tree							
								_		
					Naive Bayes	Parameters	X	J		
					Priors ————————————————————————————————————			1		
					⊖ <u>U</u> ser def	ined				
Learning method					○ <u>S</u> ame of	all classes				
MethodName=Improved Uh4 MethodClassName=TArbreD					Uncondi	tional <u>C</u> lass D	istribtion 🗲 🗕			
Hdl=8						[
Merge=0.05						l				
TypeBonferroni=1									🗸 ОК	🗙 Annuler
ValueBonterroni=1	*	17	k	У	n	f	S	f	c	n
Examples selection	- 15	18	f	У	n	f	S	f	с	n
	-	19	f	f	W	f	п	f	w	b -
		× 🗌								F.
	26	Editing	NEW.FDI	M			At	tributes : 24	Example	es: 8124 🛛 🥂
Improved ChAID (Tschuprov	v Goodn	ess of Split)					Exec.Time :	125 ms.	11

3.3 Partitioning the dataset (train and test samples)

We use the STATUT column in order to subdivide the dataset. We click on the ANALYSIS / SELECT ACTIVE EXAMPLES menu. We select the RULE SELECTION option i.e. the subdivision is based on a logical rule. We set the rule **[STATUT] IN [TRAIN]** then we click on the VALIDATE button.

Sipina Research Version - [Learni	ng set edit	or]							×
💦 File Edit Data Statistics I	Induction n	nethod	Analysis) View	Window Help			-	E ×
B 😫 🕒			Def	ine class	attribute				
12	1	cap-s	Sele	ect activ	e examples 💊	odor	gill-attachme	gill-spacing	gil 🔺
Attribute selection	19	f	Set	weight I	field	n	f	w	b
	20 21 Filter	active exa	mples				f	10	b X
	22	alk-shane			Introduce a r	numerical value		[
	23 st	alk-root alk-surface-	above-		<				
	24 st	alk-surface- alk-color-ab	below- ove-ri		Pick one or s	everal values			
	26 st	alk-color-be eil-type	low-ri		>= train				
	27 ve rir	eil-color ng-number			<>> test		•		
l Learning method	28 rir 29 st	ng-type pore-print-co	blor	E					
MethodName=Naive Bayes	30 ha	opulation abitat			in Generate pro	position			
MethodClassName=TNaiveBayes Hdl=61	31 d	atut asse		+	not in 💿 And	0 Or	Validate.		
Priors=2	32	Condition							N
	34	statut i	n [train]						
	35							Filter method	i i
Examples selection	36							C List	
	4							C Random :	sampling
	Editi			r					1
Naive Bayes		st of exampl	es Rando	m sampling	Rule filter			🗸 ок	🗙 Annuler

We can count the number of instances included into the learning sample by clicking on the COUNT EXAMPLES COVERED contextual menu: 2000 instances among 8124 are used during the search process.

Filter active examples				×
stalk-shape stalk-root stalk-surface-above- stalk-surface-below- stalk-color-above-ri stalk-color-below-ri veil-type veil-color ring-number ring-type spore-print-color population habitat statut classe	< < <	Introduce a numerical value Pick one or several values Itrain test Generate proposition G And	Validate	
E- Condition (2000 examples	covered of 8124)	Remove Condition Remove Proposition Count examples covered	<-	Filter method ⊂ All ⊂ List ⊂ Random sampling ● Rule selection
List of examples Random	n sampling Rul	e filter		🗸 OK 🛛 🗶 Annule

3.4 Defining the target and the input attributes

We click on the ANALYSIS / DEFINE CLASS ATTRIBUTE menu in order to specify the target and the input attributes. Of course, the STATUT column is not used here.

File Edit Data Statistics	Induction m	nethod	Analysis View Window Help	1.199		-	日 >
<mark>C B 🛱 🖒</mark>			Define class attribute 🚄 💻	+-、			and the second
in an an an	×	cap-	Select active examples	odo	gill-attachme	gill-spacing	gil 4
Attribute selection	19	f	Saturialité field	n	f	w	b
	20	x	Set weight neid	f	f	С	b
	21	f	Set priors	n	f	с	b
	22	f 4	Attribute selection	inc. in		E	x
	23	x	Class	_ Vari	iables		
	24	b	classe	car)-shape		<u> </u>
	25	×	,	cap	o-surrace o-color		
	26	x	Attributes	brui	ises?		
	27	k	stalk-surface-below-	gill-	" attachment		
	28	f	stalk-color-below-ri	gill-	spacing size		
Learning method	29	x	veil-type veil-color	gill-	color		
MethodName=Naive Bayes	30	k	ring-number	stal	k-shape k-root		=
Hdl=61	31	f	ring-type	stal	k-surface-above-		
Priors=2	32	f	population	stal	k-surrace-below- k-color-above-ri		
	33	×	habitat	stal	k-color-below-ri		
	34	f		veil	-color		
	35	b	C Only discrete	ring	r-number utune		
Examples selection	36	f	C Only continuous	spo	re-print-color		
2000 examples selected 6124 examples idle	37	x	@ Both	pop hat	bulation bitat		•
	Editing	NEW.			🗸 ок	🗶 Ann	uler
Naive Bayes		L		t	xec. Time : 125	ms.	

A summary of the configuration is available on the left part of the main window.

	⇒×	cap-shape	cap-surface	cap-color	bruises?	odor
Attribute selection	19	f	f	w	f	п
🕞 📭 Class attribute	<u>^</u> 20	x	s	w	t	f
	21	f	S	n	t	п
E SP Predictive attributes	E 22	f	S	e	f	у
Cap-snape	23	x	f	g	t	n
	24	b	У	У	t	а
buises?	25	x	5	w	f	n
D odor	26	x	s	g	f	c
D gill-attachment	27	k	s	n	f	s
D gill-spacing	- 28	f	у	g	t	n
	29	x	s	W	f	n
Learning method		k	s	e	t	n
MethodName=Naive Bayes MethodClassName=TNaiveBayes	31	f	f	у	f	f
Hdl=61	32	f	у	n	f	S
Priors=2	33	×	У	g	t	п
	34	f	У	n	f	У
	35	b	s	У	t	1
	36	f	f	g	f	f
Examples selection	37	×	f	n	t	п
2000 examples selected	38	×	S	e	f	s
6124 examples idle	1					

3.5 Accuracy of the full model

The full model including all the input variables is our reference classifier. We learn the model on

```
Tanagra
```

the learning set by clicking on the ANALYSIS / LEARNING menu. A new window appears. We can view the conditional probabilities for each descriptor. They are used for the classification of the unseen instances.

Induction method Analysis	View Window Help								- 6
L 🗎 🎬 🖬	<u>×</u> + - A				classe				
Autorute selection Class attribute Class attribute Classe Constraints Constrai	Predictive attributes cap-shape cap-shape in [f] cap-shape in [k] cap-shape in [k] cap-shape in [k]	*	p		0.5140 0.4860				
D bruises? D odor D gill-attachment gill-spacing -	cap-shape in [s] cap-shape in [c] B- cap-shape in [c]	E	e p	0.4101 0.4039	0.4371 0.4335	0.0967	0.0464 0.1524	0.0087	0.0010
Learning method MethodName=Naive Bayes MethodClassName=TNaiveBayes Hdi=61 Priors=2									
Examples selection 2000 examples selected 6124 examples idle	stalk-shape stalk-root stalk-surface-above-								

We evaluate the performance by clicking on the ANALYSIS / TEST menu. We select the INACTIVE EXAMPLES OF THE DATABASE (the test sample) into the dialog box. We obtain an unbiased estimation of the generalization error rate because it is computed on the test set.

A Indecion method [A	ingsis view mindow rice	P							
	Define class attribute Select active examples			di	asse				
Class attribute Class attribute Class attribute Cap-shape D cap-surface D cap-color D bruises? D odor	Set weight field Set priors Set costs Set positive class value Learning Stop analysis		Apply classif Apply on C Learnin (* Inactive	g set examples of Datab	ases Annuler				
D gill-spacing	Classification	1.50	e	0.4101	0.4371	0.0967	0.0464	0.0087	0.0010
earning method	Test		<u> </u>		1	1		-	
MethodName=Naive Baye MethodClassName=TNaivo Hdl=61	LIFT ROC curve				Confusion m	atrix: Test se	et on NEW.FE	DM	
Priors=2	Error measurements	(F)		_		e 3119	p 61		_
	Feature selection	- 16		p g		268	26	76	
Examples selection	Personnal tests	•							
1000 examples selected 124 examples idle	I = stalk-root I = stalk-surface-ab I = stalk-surface-be	ove- low-	- 4	Cos	t : 0.0537				1.
Jaiwe Ravier	19 1					Ever	Time : 62 m	-	

The confusion matrix is displayed. The test error rate is 5.37%.

Now, we want to know if we can make better with the WRAPPER feature subset selection process.

3.6 WRAPPER approach with SIPINA

First, we must stop the current analysis session. We click on the ANALYSIS / STOP ANALYSIS menu. The preceding results (windows) are removed.

nduction method	Analysis View Window Help				
3 🖪 📑 🕞	Define class attribute Select active examples		💦 Naive Bayes		
Attribute selection Class attribute Classe Cap-shape Cap-surfa Cap-surfa Cap-solor Distribute Cap-solor Cap-sol	Set weight field Set priors Set costs Set positive class value Learning Stop analysis	e ca f s s f f y y s	+ - A		E
earning method	Classification	Confusio	on matrix : Test set o	n NEW.FDM	
MethodName=Naive MethodClassName=T	Test	sse	<u>.</u>	1	
Hdl=61	LIFT ROC curve	-	e	p	
"fiors=2	Error measurements	+	268	2676	
	Feature selection	E			
Examples selection	Demonsal texts		25		
	ersonnal tests	: 0.0537	1		1.

We activate the ANALYSIS / FEATURE SELECTION / WRAPPER menu for launching the selection process. In the dialog settings, we use the cross validation in order to estimate the error rate of each subset of features. The search strategy is the FORWARD approach i.e. nested subsets of variables are evaluated, from the model with only one descriptor to the model with all the descriptors.

Sipina Research Version		of Females, Spinster, Spin		×
File Edit Data Statistics Induce Image: Statistic statiste statiste statistic statiste statistic statiste stati	tion method	Analysis View Window Help Define class attribute Select active examples Set weight field Set weight field Set costs Set costs Set positive class value Learning Stop analysis Classification Test LIFT ROC curve Error measurements Feature selection		No parameters
Examples selection 2000 examples selected 6124 examples idle	35 36 4	Personnal tests	f f f c l	* 2 *
Naive Bayes			Exec.Time : 47 ms	11

Into the next dialog settings, we set the number of folds for the cross validation.

The calculation is started. For the selected subset at each step (1 variable, 2 variables, etc.), SIPINA displays the selected attributes and the corresponding error rate. The user can interactively stop the process.

Note: Because the seed number of the random number generator is not the same according to the computer, you can obtain a slightly different solution on your computer.

SIPINA highlights a subset with 9 descriptors. The cross validation error rate computed during the search is about 0.9%. But, for obtaining an unbiased estimation of the error rate, we must apply the resulting classifier on the test set.

We want to select the subset with these 9 descriptors (Figure 1). We set a right click on the right column of the grid; we click on the CHOOSE THIS SUBSET FEATURE contextual menu. In the left part of the window, the selected variables for the learning process are modified. **Note**: the best solution incorporates 9 descriptors, but we see into the chart above that solutions with fewer variables are very close according to the error rate.

💦 Induction method 🛛 Analysis	s View Windo	w Help			-	5
D 🖪 📴 🕞						
Attribute selection Attribute selection Class attribute Classe Class attributes Classe C	Stop p 0.25 0.2 0.1 0.05 0	ocess 🚺 🗐		2 . 0 . 0 . 0	number of attrib	outes
		5	10	15	20	Le:
	Error rate	0.0000	9	10	11	14
D stalk-shape	Enterface	odor	odor	ladar	adar	0.
		cap-shape	cap-s CI	noose this subse	et feature 🛛 🛰	
International scientific and	-	gill-size	gill-size	gill-size	gill-size	Igi
MethodName-Naive Paues	-	stalk-surface-	ab staik-surface-a	ab stalk-surface-a	ab stalk-surface-i	abst
MethodClassName=TNaiveBayes		cap-color	cap-color	cap-color	cap-color	CE
MethodClassName=TNaiveBayes		population	population	population	population	pc
Hdl=61			and the second second	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	wail calar	VE
Hdl=61 Priors=2		veil-color	veil-color	veil-color	Veil-COIOI	1.00
Hdl=61 Priors=2		cap-surface	cap-surface	cap-surface	cap-surface	CE
Hdl=61 Priors=2		cap-surface	cap-surface stalk-shape	cap-surface stalk-shape	cap-surface stalk-shape	Ci St
Hdl=61 Priors=2		cap-surface	cap-surface stalk-shape	cap-surface stalk-shape gill-spacing	cap-surface stalk-shape gill-spacing	Ci St gi
Hdl=61 Priors=2		cap-surface	stalk-shape	cap-surface stalk-shape gill-spacing	cap-surface stalk-shape gill-spacing stalk-color-abo	ca st gi
Hdl=61 Yrior≋=2		cap-surface	cap-surface stalk-shape	vell-color cap-surface stalk-shape gill-spacing	cap-surface stalk-shape gill-spacing stalk-color-abo	ci st gi iv st gi
Hdl=61 Priors=2 Examples selection		vell-color cap-surface	Veilsolor cap-surface stalk-shape	veil-color cap-surface stalk-shape gill-spacing	cap-surface stalk-shape gill-spacing stalk-color-abo	ca st gi yv st gi
Hdl=61 Priors=2 Examples selection 2000 examples selected 3124 examples idle		veil-color cap-surface	Veilsolor cap-surface stalk-shape	veil-color cap-surface staik-shape gill-spacing	cap-surface stalk-shape gill-spacing stalk-color-abo	ca st gi iv st gi

Figure 1 – Selecting the "best" subset of features

3.7 Accuracy of the simplified model

We want to assess the classifier with 9 variables on the test set. We click first on the ANALYSIS / LEARNING menu in order to create the classifier on the train set.

File Edit Data Statistics	Induction	method	Analysis Vie	w Window	Help			- 5
) 🖪 📲 🕞			Define cl	ass attribute				
	12	cap-s	Select ac	tive example	:S	odor	6	gill-atta
tribute selection	19	f	Eshivital	L.C.U.		n	1	- ²
Class attribute classe Predictive attributes cap-shape gill-size stalk-surface-above- cap-color population	20	x	Set weigh	nt neid		f	1	Ū.
	21	f	Set priors	5		n	1	8
	22	f	Set costs	eke (У	1	34
	23	x	Set positi	ive class valu	ie	n	1	1
	24	b				а	1	S.
	25	x	Learning	🥌		n	1	13
	26	×	Stop ana	lvsis		C	1	
	27	S. Naive	Bayes		*		_ 0	×
veil-color	28	+ -	A		da	isse		-
cap-surface	29	D. Perdia	i a attributor	e	0.	5140		
staik-shape	31		lor	p	0.4	1860		
	32	• T	odor in [n]					-11-
	33	•	···· odor in [l]					
arning method	34		···· odor in [a]	= <u>e</u>	0.0964	0.1003	0.0010	-11
ethodName=Naive Bayes	35		odor in [f]	p	0.0010	0.0010	0.5280	-11
dl=61	36		····odorin [y] ····odorin [s]					
iors=2	37		odor in [c]					
	38		odor in [p]					
xamples selection	39		···· odor in [m]					
100 examples selected 24 examples idle	40	i ⊂a i gil	ip-shape I-size	+ +				F F

Then we click on the ANALYSIS / TEST menu and we set the INACTIVE EXAMPLES OF DATABASE option in order to compute the confusion matrix on the test set.

Madelion method A	nalysis View Window H	Help		- 6
j 🖪 📲 🕒	Define class attribute Select active examples		1	Ex
ttribute selection				classe
🕞 🕼 Class attribute	Set weight field		e	0.5140
D classe	Set priors		P	0.4860
Predictive attribute	Set costs			
D cap-shape	Set positive class value			
D gill-size	Learning	Apply class	ifier on 📃	×
D cap-color	Stop analysis	C Learni	ina set	
D veil-color	Classification	_ L _ > 🕫 Inactiv	ve examples of Databases	
D cap-surface	Test			
	LIFT ROC curve			
	Error measurements	•		
	Feature selection	S Confu	usion matrix (Test set on NEW.)	FDM 🗖 🔳 💌
earning method	Personnal tests	•	e p	•
ethodName=Naive Baye ethodClassName=TNaiveBa dl=61 riors=2	wes	e	3176 4 72 2	872
xamples selection		Cost : 0.01	124	
)00 examples selected I 24 examples idle				

The "true" test error rate is 1.24%. The simplified model is much better than the full model including all of the descriptors.

4 WRAPPER approach with R

In this section, we give the details of the source code for the forward selection according the wrapper approach under the R software (<u>http://www.r-project.org/</u>). The main advantage is that we can describe each step of the process.

4.1 Importing and partitioning the dataset

First, we load the dataset that we subdivide into train and test samples.

```
#load the data file
mushroom <- read.table(file="mushroom.txt",header=TRUE,sep="\t")
summary(mushroom)
#partitioning into train and test samples
mushroom.train <- as.data.frame(mushroom[mushroom$statut=="train",c(1:22,24)])
mushroom.test <- as.data.frame(mushroom[mushroom$statut=="test",c(1:22,24)])
print(nrow(mushroom.train))
print(nrow(mushroom.test))</pre>
```

R shows the following results.

R R Console	
	*
> summary (musineous)	cehana
b. 452 f. 2300 n. 2284 f. 4748 n. 3528 a. 210 c. 6812 h. 5612 h. 41728 e. 351	6
a, a ,	8
f. 1 g. 1 g .1010 (.0010 f .2100 1.751 w.1512 1.2012 p .1152 (.100	0
k, 828 tr 3244 tr 11072 tr 576 n 1108	
$x_1, y_2, y_3, y_4, y_5, y_5, y_5, y_5, y_5, y_5, y_5, y_5$	
y 1956 b 168 l 400 b 732	
(then): 220 (0then): 484 (0then): 170	
(Utiter): 220 (Utiter): 454 (Utiter): 455 (U	number
2.0464 w .4384 p.8124 p. 96 p.	36
$h_{1,2776}$ $h_{2,372}$ $h_{2,304}$ $h_{2,1767}$ $h_{2,1776}$ $h_{2,$	88
$a_{1} = 556 + 5176 + 42061 + p + 1072 + 10$	00
a 1170 u 24 u 294 n 440 n 512 u 2	
(120 y, 21 y, 201 h 110 h . 110 y, 01 y, 0	
((than), 140 ((than), 155	
(Utili), 140 (Utili), 150	
alore	
$(1,2,1)^{10}$ W .2000 G.301 G.3110 UED .0121 C.1200	
1.100 1.100 1.000 1.900 1.900	
11/290 K :10/2 II: 100 I: 032	
n: 30 n :1032 3:1245 m: 292	
p:3960 r : /2 V:400 p:1144	
D : 40 9:1/12 U: 500	
(Other): 144 W: 142	
> institutioning into twoin and test complex	
> #partitioning into train and test samples	
> mushroom.train < as.deta.trame(mushroom(mushroom(statut="train",c(1:22,24)])	
> mushroom.test (- as.data.frame(mushroom(mushroom(statut"test",G(1:22,24)))	
> print(hrow(mushroom.train))	E
[1] 2000	
(i) (i) (i)	
	-
4	► a

The training set contains 2000 instances, the test set contains 6124 instances.

4.2 The full model – The naïve bayes classifier with the RWeka package

We use the RWeka package (<u>http://cran.r-project.org/web/packages/RWeka/index.html</u>) based on the famous Weka free software (<u>http://www.cs.waikato.ac.nz/ml/weka/</u>).

The **library(.)** command loads the package. Then we load the naïve bayes method with the **make_Weka_classifier(.)** instruction. We call **NB(.)** the method in our source code.

We launch the learning process and we evaluate the classifier on the test set with the **evaluate_Weka_classifier(.)** function.

```
#load the RWeka package
library(RWeka)
#make naive bayes classifier function
NB <- make_Weka_classifier("weka/classifiers/bayes/NaiveBayes")
#training phase
full.model <- NB(classe ~ ., data = mushroom.train)
#evaluation on the test set
test.evaluation <- evaluate_Weka_classifier(full.model,newdata=mushroom.test)
print(test.evaluation)
```

We obtain the following results.

R Console		
=== Summary ===		*
Correctly Classified Instances Incorrectly Classified Instances Kappa statistic Mean absolute error Root mean squared error Relative absolute error Root relative squared error	5792 332 0.8911 0.0531 0.2053 10.6262 % 41.0812 %	94.5787 % 5.4213 %
<pre>Total Number of Instances === Confusion Matrix === a b < classified as 3145 35 a = e 297 2647 b = p > </pre>	6124	

The test error rate is 5.24% when we use all the descriptors.

4.3 Wrapper process under R

First, we write a callback function **search_wrapper(.)** in order to evaluate each subset. We apply this function for each subset with the same cardinal. Then, we obtain the best solution at each step of the forward search i.e. the best subset with one descriptor, the best subset with 2 descriptors, etc., with the corresponding error rate obtained by cross validation.

```
#callback function
#searching the best predictive attribute
#for one step of the wrapper process
search_wrapper <- function(x,cur.dataset,K){
    #current dataset
    working <- cbind(cur.dataset,x)
    #learning the model
    cur.model <- NB(as.formula(paste(colnames(working)[1],"~ .")),data = working)
    #evaluating the model
    cur.eval <- evaluate_Weka_classifier(cur.model,numFolds = K,seed=100)
    #getting the error rate
    return (cur.eval$details["pctIncorrect"])
</pre>
```

We note that the **evaluate_Weka_classifier(.)** function can implement a cross validation. **K** is the number of folds.

Last we can write the function which incorporates the callback function. We adopt a very simplistic code. I think we can make much better (faster) but I prefer a code that the readers can inspect easily.

```
#programming the whole wrapper framework for feature subset selection
#forward selection process
#dataset is the available data (train set only, we do not use the test set
here)
#we assume that the last column is the class attribute
#K is the number of fold in the cross-validation
wrapper <- function(dataset,K=10){</pre>
 #number of predictive attribute
 P <- ncol(dataset)-1</pre>
 #predictive attributes
 predictives <- dataset[1:(ncol(dataset)-1)]</pre>
 #classe attribute
 cur.dataset <- dataset[ncol(dataset)]</pre>
 #current formula
 cur.formula <- paste(colnames(dataset)[P+1],"~")</pre>
 #ordered index of the selected variable
 output <- c()
 #error rate at each step
 error <- c()
 #the whole process
 for (p in 1:P)
  #error rate for this step
  cur.error <- sapply(predictives,search_wrapper,cur.dataset,K)</pre>
  #getting the best error rate
  id.min <- which.min(cur.error)</pre>
  selected.name <- colnames(predictives)[id.min]</pre>
  #adding the id. of the column into the selection
  output[p] <- which.min(match(colnames(dataset),selected.name))</pre>
  #add the attribute to the current dataset
  cur.dataset <- cbind(cur.dataset,predictives[id.min])</pre>
  #removing the attribute to the predictive attributes
  predictives <- predictives[-id.min]</pre>
  #filling out the vector of errors
  error[p] <- min(cur.error)</pre>
 #returning the error rate and the index of variables
 return (list(error=error,output=output))
```

We launch this function on our dataset with the following program.

```
#launching the wrapper process
mushroom.wrapper <- wrapper(mushroom.train)
#plotting the error rate according the number of selected variables
plot(mushroom.wrapper$error,type="b",main="Wrapper process",ylab="Error rate
(%)",xlab="# of selected variables")
```

We get the error rate curve according the cardinal of the selected subset at each step of the process. It is very similar to the curve computed with SIPINA. It is not really surprising.

We can now select the subset related to the "optimal" solution.

```
#getting the number of selected variable
nb.sel <- which.min(mushroom.wrapper$error)
#new dataset -- train and test
new.train <-
mushroom.train[,c(mushroom.wrapper$output[1:nb.sel],ncol(mushroom.train))]
new.test <-
mushroom.test[,c(mushroom.wrapper$output[1:nb.sel],ncol(mushroom.test))]
#printing the name of the selected variables
print("Selected variables : ")
print(colnames(new.train)[1:nb.sel])</pre>
```

The subset with 7 descriptors seems the best.

R C	onsole	- • •	٢.
> pri	int(colnames(new.train)	[1:nb.sell)	*
[1]	"odor"	"cap.shape"	
[3] '	"cap.surface"	"cap.color"	
[5] '	"gill.size"	"stalk.surface.above."	
[7] '	"stalk.color.below.ri"		
>			Ŧ
		Þ	

```
Tanagra
```

4.4 Assessment of the selected subset of descriptors

Last, we compute the classifier on the learning set and we evaluate its performance on the test set. We use the samples with the selected descriptors now (the 7 descriptors detailed above).

```
#training and test on the selected variables
new.model <- NB(classe ~., data = new.train)
new.eval <- evaluate_Weka_classifier(new.model,newdata=new.test)
print(new.eval)
```

The test error rate is 1.29%. Again, the simplified model is definitely better than the full model including all the descriptors.

C				
R R Console				• ×
Summary				
Correctly Classified Instances	6045	98.7	1 %	
Incorrectly Classified Instances	79	1.2	9 %	
Kappa statistic	0.9741			
Mean absolute error	0.0198			
Root mean squared error	0.1112			
Relative absolute error	3.9578 %	ł		
Root relative squared error	22.2627 %	ł		
Total Number of Instances	6124			
Confusion Matrix				
Confusion Matrix				
a b < classified as				
3170 10 a = e				
69 2875 b = p				
>				
>				=
•				Ψ.
×				▶

5 FILTER strategy with TANAGRA

The WRAPPER approach is not available in TANAGRA. But, it provides several FILTER methods for the feature selection process. We use the FCBF method here. It is really efficient and can handle a very large dataset (number of descriptors) quickly (Yu and Liu, 2003; http://www.public.asu.edu/~huanliu/FCBF/FCBFsoftware.html).

It operates before the learning process. There is no assurance that the selected variables are the most relevant for the naive bayes classifier. The interest of this tutorial is precisely to try to assess the efficiency of this approach in relation to the WRAPPER method which optimizes explicitly a performance criterion.

5.1 Importing the dataset

After we launch TANAGRA, we create a new diagram. We click on the FILE / NEW menu. We select the MUSHROOM.TXT data file: 24 columns and 8124 instances are loaded.

TANAGRA 1.4.31	
File Diagram Window H	felp
New	
Creating of the second	gram (empty)
Close	Choose your dataset and start download
Exit Data visualization Feature construction PLS	Diagram title : Default title Data mining diagram file name : [ite\Supports_de_cours\Informatique\R\Tutoriels\wrapper\mushroom.tdm] Dataset (*.txt.*.arff,*.xls) : [rsite\Supports_de_cours\Informatique\R\Tutoriels\wrapper\mushroom.txt]
Spv learning assessment Correlation scatterplot Export dataset	OK Cancel Help
	(Bulisten).

5.2 Partitioning the dataset

We use the STATUT column in order to subdivide the dataset into a train and test samples. We add the DISCRETE SELECT EXAMPLES component (INSTANCE SELECTION) into the diagram. We click on the PARAMETERS contextual menu and we set the following parameters.

TANAGRA 1.4.31 - [Dataset (mushroom.txt		
💇 File Diagram Component Window	Help	_ E ×
Default title	Computation time 32 ms	•
Discrete select examples 1	Allocated memory 267 KB	
1	Parameters cription	E
Data visualization Statisti Feature construction Feature set PLS Cluster Spv learning assessment Scorir Continuous select examples Recove Coiscrete select examples Recove	Execute View Attribute-value examples selection Parameters Attribute: statut Itrain Value: train Value: train	
	OK Cancel] Help

Then we click on the VIEW menu. There are 2000 instances into the learning set.

5.3 Variable selection with the FCBF method

First, we must set the target attribute and the candidate input variables. We add the DEFINE STATUS component using the shortcut into the toolbar. The STATUT column is not used here.

We can now add the FBCF component (FEATURE SELECTION). It aims to detect the most relevant and not redundant input variables for the prediction of the target attribute (CLASSE).

TANAGRA 1.4.31 - [FCBF filte	ring 1]	1.05.46	1000		×
👷 File Diagram Componer	it Window Help				8,
Default title			tribute sele	ction	
) mples 1 B neters	INPUT sel efore filtering fter filtering	ection 22 3		m
Execu View	ite K	eeped i	nto INPUT s	election	1
	1 2 3	sta	odor Ik-surface-above- veil-color		
	C	Components			
Datavisualization Feature construction PLS Spv learning assessment	Statistics Feature selection Clustering Scoring	Nonpara Re Sp As	metric statistics gression v learning sociation	Instance selection Factorial analysis Meta-spv learning	
Z Backward-logit CFS filtering RCBF	filtering	re ranking r filtering	Forward-logit	MODTree filtering	iii, R I∠ S
				ar an	15/0117 a

Only 3 descriptors are selected: ODOR, STALK SURFACE ABOVE and VEIL COLOR. These variables are automatically set as input variables at the output of the FBCF component. CLASSE remains the target attribute. We can insert any supervised learning method after the FBCF filter component.

Learning on the selected variables 5.4

We add the NAÏVE BAYES component (SPV LEARNING). We click on the VIEW menu. We obtain, among others, the resubstitution error rate.

TANAGRA 1.4.31 - [Superv	vised Learning 1 (Naive bayes)		-					x
🕎 File Diagram Compo	nent Window Help						- E	F ×
🗅 🚅 🖪 🖥 🙀								
Defa	ault title							
Dataset (mushroom.	txt) examples 1	Classifie	er per	form	nances	6		
E Discrete select to	1	Error r	ate		0.	0115		H
FCBF filte	ring 1	Values pre	diction		Confus	ion matrix		
Super	vised Learning 1 (Naive bayes) Value Recall	1-Precision	0	е	р	Sum	
1		e 1.0000	0.0219	е	1028	0	1028	
		p 0.9763	0.0000	р	23	949	972	
				Sum	1051	949	2000	
		Components]			,	•
Data visualization	Statistics	Nonparametric stat	istics	Instanc	e selection	l l		
Feature construction	Feature selection	Regression	ĺ	Factor	ial analysis	1		
PLS	Clustering	Spv learning		Meta-s	pv learning	1		
Spv learning assessment	Scoring	Association						
Naive bayes	路 PLS-LDA	🕽 Ra	dial basis fu	nction	Ŀ	<u>≪</u> svm		
器 PLS-DA	Prototype-NN	A. Rr	nd Tree					
•			L.		.III.	11		•
						a adostatie at	a antiantin	141 - 142

5.5 Assessing on the test set

In order to compute an honest estimation of the generalization error rate, we use the test set. To do that, we must specify the target attribute (CLASSE = TARGET) and the prediction of the classifier (PRED_SPV_INSTANCE_1 = INPUT) using the DEFINE STATUS component.

Note that the prediction is computed both on the learning set (the selected instances using the DISCRETE SELECT EXAMPLES component; see section 5.2) and the test set (the unselected instances).

Last, we add the TEST component (SPV LEARNING ASSESSMENT) which creates the confusion matrix and computes the error rate. By default, it operates on the unselected instances i.e. on the test set. This is that we wanted.

The test error rate is 1.58%. We can compare this to the 1.29% obtained with the WRAPPER approach with R, and the 1.24% obtained with SIPINA. The error rates are directly comparable here because we use the same test set for all the tools. We note that, according the generalization error rate, the deviations between the various approaches (FILTER vs. WRAPPER) are not really significant on our dataset.

6 Conclusion

The first goal of the tutorial is to show how to implement the WRAPPER feature selection approach under SIPINA and R. WRAPPER is supposed to be the best selection strategy because it uses explicitly a performance criterion to determine the "optimal" subset of variables for the prediction.

The second goal of this tutorial is to compare the efficiency of the WRAPPER approach with a FILTER strategy for selecting the relevant descriptors in the context of supervised learning. We use the FBCF method which is very fast and well suited to the datasets with a large number of descriptors. On our dataset, we note that, in spite that FBCF does not take into account the characteristics of the subsequent learning method, it produces a classifier which is very competitive in relation to the one computed after a WRAPPER feature subset selection.