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1 Topic 

WRAPPER feature selection method with SIPINA and R (RWeka package). Comparison with a 

FILTER approach implemented into TANAGRA. 

Feature selection. The feature selection1 is a crucial aspect of supervised learning process. 

We must determine the relevant variables for the prediction of the target variable. Indeed, a 

simpler model is easier to understand and interpret; the deployment will be facilitated, we 

need less information to collect for prediction; finally, a simpler model is often more robust in 

generalization i.e. when we want to classify an unseen instance from the population. 

Three kinds of approaches are often highlighted into the literature. 

The FILTER approaches try to detect the relevant descriptors, independently of the used 

supervised learning algorithm. The advantage is the quickness and the flexibility. But, there is 

no guarantee however that the selection based on ad hoc criteria produces the best subset of 

features whatever the learning method used thereafter. The RANKING methods are certainly 

the more representative of this family. They calculate an indicator which characterizes the 

relationship between target attribute and each descriptor (input attribute). We ordered them 

by the decreasing value of the statistical indicator. Then we choose the best ones. We can also 

use a statistical hypothesis test in order to select the variables having a significant association 

with the target variable. 

About the EMBEDDED approach, the selection process is integrated into the learning process. 

The induction of decision trees illustrates perfectly this approach. For instance, with the CART 

method (Breiman et al., 1984), the Gini index is used to select the segmentation variable on a 

node, the goal being to obtain the leaves as pure as possible. The algorithm selects 

automatically the smallest subset of variable in order to obtain them. But consistency does not 

mean performance. Let us not forget that one aim of the learning process is to produce a 

classifier with the best generalization capabilities. This is the reason for which CART also used 

a post-pruning system based on a criterion directly related to performance, different from that 

used during the tree growing. 

The WRAPPER approach uses explicitly a performance criterion during the search of the best 

subset of descriptors. Most often, this is the error rate. But in reality, any kind of criteria can 

be used. This may be the cost if we use a misclassification cost matrix. It can be the area 

under curve (AUC) when we assess the classifier using ROC curves, etc. In this case, the 

learning method is considered as a black box. We try various subsets of predictors. We will 

choose the one that optimizes the criterion. In the WRAPPER approach, the result relies heavily 

on the search algorithm and on the assessment of the performance. 

Search strategy. The search strategy is very important in the wrapper approach. We can use 

                                           

1 http://jmlr.csail.mit.edu/papers/special/feature03.html 
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a very simplistic method such as a greedy search, or more sophisticated methods such as 

genetic algorithm or simulated annealing. But there are two drawbacks to explore a very high 

number of solutions: we can reach to very specific solution to the used dataset which is not 

efficient into the population, it is the overfitting problem; the search becomes computationally 

intractable when we deal with a very large dataset with a large number of descriptors. Thus, 

hill climbing approaches such as forward search or backward search are in actuality a very 

good compromise in the most of the situations. 

Prediction performance assessment. About the performance assessment, we cannot use 

the learning set in order to compute the criterion such as the error rate. Indeed, we often 

favor the complex solution with the largest number of descriptors in this case. Most of the 

time, to avoid this drawback, we use a validation set (which is not the same as the test set 

used for the assessment of the final model) or a resampling schema in order to obtain a 

honest estimation of the error rate during the search process. 

Supervised learning algorithm. The learning method is used as a black box in the WRAPPER 

process. Any method can be implemented. We chose the NAIVE BAYES classifier for several 

reasons: it is well adapted for categorical predictors; it does not incorporate an internal 

selection process; and it can be disturbed by irrelevant variables. Thus, the influence of the 

variable selection on the classifier performance will be particularly discernable. 

In this tutorial, we implement the WRAPPER approach with SIPINA and R 2.9.2. For this last 

one, we give the source code for a forward search strategy. The readers can easily adapt the 

program to other dataset. Moreover, a careful reading of the source code for R gives a better 

understanding about the calculations made internally by SIPINA. 

The WRAPPER strategy is a priori the best since it explicitly optimizes the performance 

criterion. We verify this by comparing the results with those provided by the FILTER approach 

(FCBF method) available into TANAGRA. The conclusions are not as obvious as one can think. 

2 Dataset 

We use the MUSHROOM.TXT dataset in this tutorial (http://eric.univ-

lyon2.fr/~ricco/tanagra/fichiers/mushroom_wrapper.zip). It is well known in the machine 

learning community. We want to predict if a mushroom is edible or not from their 

characteristics. We have randomly subdivided the data file into a training sample (2000 

instances) and a testing sample (6124 instances). This last one is used only to assess the 

efficiency of the final classifier based on the selected descriptors. It is not used during the 

search process. The STATUT column is used to discern the two parts of the data file. 

3 Wrapper feature subset selection with SIPINA 

The WRAPPET strategy is available into SIPINA (http://eric.univ-lyon2.fr/~ricco/sipina.html). 

This tool is mainly intended to the decision tree learning, but others supervised learning 
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methods are also available. 

3.1 Importing the data file 

We launch SIPINA, we click on the FILE / OPEN menu. We select the MUSHROOM.TXT data file. 

 

A dialog box appears. We specify the configuration of our data file. In our case, the column 

separator is the tabulation; the first row corresponds to the variable names. 

 

The data file is loaded. 
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3.2 Choosing the learning algorithm 

We use the naïve bayes classifier (http://en.wikipedia.org/wiki/Naive_Bayes_classifier). In 

spite it relies on an apparent unrealistic assumption, the naive bayes classifier works well in 

many practical situations. In order to define the learning method under SIPINA, we click on the 

INDUCTION METHOD / STANDARD ALGORITHM menu. We select the OTHER tab into the dialog 

settings. We click on the NAÏVE BAYES approach. In the following dialog box, we can define the 

parameters of the method. We keep the default parameters. 
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3.3 Partitioning the dataset (train and test samples ) 

We use the STATUT column in order to subdivide the dataset. We click on the ANALYSIS / 

SELECT ACTIVE EXAMPLES menu. We select the RULE SELECTION option i.e. the subdivision is 

based on a logical rule. We set the rule [STATUT] IN [TRAIN] then we click on the VALIDATE 

button. 

 

We can count the number of instances included into the learning sample by clicking on the 

COUNT EXAMPLES COVERED contextual menu: 2000 instances among 8124 are used during 

the search process. 
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3.4 Defining the target and the input attributes 

We click on the ANALYSIS / DEFINE CLASS ATTRIBUTE menu in order to specify the target and 

the input attributes. Of course, the STATUT column is not used here. 

 

A summary of the configuration is available on the left part of the main window. 

 

3.5 Accuracy of the full model 

The full model including all the input variables is our reference classifier. We learn the model on 
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the learning set by clicking on the ANALYSIS / LEARNING menu. A new window appears. We 

can view the conditional probabilities for each descriptor. They are used for the classification of 

the unseen instances. 

 

We evaluate the performance by clicking on the ANALYSIS / TEST menu. We select the 

INACTIVE EXAMPLES OF THE DATABASE (the test sample) into the dialog box. We obtain an 

unbiased estimation of the generalization error rate because it is computed on the test set. 

 

The confusion matrix is displayed. The test error rate is 5.37%. 

Now, we want to know if we can make better with the WRAPPER feature subset selection 

process. 
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3.6 WRAPPER approach with SIPINA 

First, we must stop the current analysis session. We click on the ANALYSIS / STOP ANALYSIS 

menu. The preceding results (windows) are removed. 

 

We activate the ANALYSIS / FEATURE SELECTION / WRAPPER menu for launching the selection 

process. In the dialog settings, we use the cross validation in order to estimate the error rate 

of each subset of features. The search strategy is the FORWARD approach i.e. nested subsets 

of variables are evaluated, from the model with only one descriptor to the model with all the 

descriptors. 

 

Into the next dialog settings, we set the number of folds for the cross validation. 
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The calculation is started. For the selected subset at each step (1 variable, 2 variables, etc.), 

SIPINA displays the selected attributes and the corresponding error rate. The user can 

interactively stop the process.  

Note: Because the seed number of the random number generator is not the same according to 

the computer, you can obtain a slightly different solution on your computer. 

 

SIPINA highlights a subset with 9 descriptors. The cross validation error rate computed during 

the search is about 0.9%. But, for obtaining an unbiased estimation of the error rate, we must 

apply the resulting classifier on the test set. 

We want to select the subset with these 9 descriptors (Figure 1). We set a right click on the 

right column of the grid; we click on the CHOOSE THIS SUBSET FEATURE contextual menu. In 

the left part of the window, the selected variables for the learning process are modified. Note: 

the best solution incorporates 9 descriptors, but we see into the chart above that solutions 

with fewer variables are very close according to the error rate. 
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Figure 1 – Selecting the “best” subset of features 

3.7 Accuracy of the simplified model 

We want to assess the classifier with 9 variables on the test set. We click first on the ANALYSIS 

/ LEARNING menu in order to create the classifier on the train set. 
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Then we click on the ANALYSIS / TEST menu and we set the INACTIVE EXAMPLES OF 

DATABASE option in order to compute the confusion matrix on the test set. 

 

The “true” test error rate is 1.24%. The simplified model is much better than the full model 

including all of the descriptors. 

4 WRAPPER approach with R 
In this section, we give the details of the source code for the forward selection according the 

wrapper approach under the R software (http://www.r-project.org/). The main advantage is 

that we can describe each step of the process. 

4.1 Importing and partitioning the dataset 

First, we load the dataset that we subdivide into train and test samples. 

 

#load the data file 
mushroom <- read.table(file="mushroom.txt",header=TRUE,sep="\t") 
summary(mushroom) 
 
#partitioning into train and test samples 
mushroom.train <- as.data.frame(mushroom[mushroom$statut=="train",c(1:22,24)]) 
mushroom.test <- as.data.frame(mushroom[mushroom$statut=="test",c(1:22,24)]) 
print(nrow(mushroom.train)) 
print(nrow(mushroom.test)) 



Tanagra 

30/03/2010  12/21 

R shows the following results. 

 

The training set contains 2000 instances, the test set contains 6124 instances. 

4.2 The full model – The naïve bayes classifier wit h the RWeka package 

We use the RWeka package (http://cran.r-project.org/web/packages/RWeka/index.html) based 

on the famous Weka free software (http://www.cs.waikato.ac.nz/ml/weka/).  

The library(.) command loads the package. Then we load the naïve bayes method with the 

make_Weka_classifier(.) instruction. We call NB(.) the method in our source code. 

We launch the learning process and we evaluate the classifier on the test set with the 

evaluate_Weka_classifier(.) function. 

 

#load the RWeka package 
library(RWeka) 
 
#make naive bayes classifier function 
NB <- make_Weka_classifier("weka/classifiers/bayes/NaiveBayes") 
 
#training phase 
full.model <- NB(classe ~ ., data = mushroom.train) 
 
#evaluation on the test set 
test.evaluation <- evaluate_Weka_classifier(full.model,newdata=mushroom.test) 
print(test.evaluation) 
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We obtain the following results.  

 

The test error rate is 5.24% when we use all the descriptors. 

4.3 Wrapper process under R 

First, we write a callback function search_wrapper(.) in order to evaluate each subset. We 

apply this function for each subset with the same cardinal. Then, we obtain the best solution at 

each step of the forward search i.e. the best subset with one descriptor, the best subset with 2 

descriptors, etc., with the corresponding error rate obtained by cross validation. 

 

#callback function 
#searching the best predictive attribute 
#for one step of the wrapper process 
search_wrapper <- function(x,cur.dataset,K){ 
  #current dataset 
  working <- cbind(cur.dataset,x) 
  #learning the model 
  cur.model <- NB(as.formula(paste(colnames(working)[1],"~ .")),data = working) 
  #evaluating the model 
  cur.eval <- evaluate_Weka_classifier(cur.model,numFolds = K,seed=100) 
  #getting the error rate 
  return (cur.eval$details["pctIncorrect"]) 
} 

 

We note that the evaluate_Weka_classifier(.) function can implement a cross validation. K 

is the number of folds. 

Last we can write the function which incorporates the callback function. We adopt a very 

simplistic code. I think we can make much better (faster) but I prefer a code that the readers 

can inspect easily. 

 



Tanagra 

30/03/2010  14/21 

 

#programming the whole wrapper framework for feature subset selection 
#forward selection process 
#dataset is the available data (train set only, we do not use the test set 
here) 
#we assume that the last column is the class attribute 
#K is the number of fold in the cross-validation 
wrapper <- function(dataset,K=10){ 
 #number of predictive attribute 
 P <- ncol(dataset)-1 
 #predictive attributes 
 predictives <- dataset[1:(ncol(dataset)-1)] 
 #classe attribute 
 cur.dataset <- dataset[ncol(dataset)] 
 #current formula 
 cur.formula <- paste(colnames(dataset)[P+1],"~") 
 #ordered index of the selected variable 
 output <- c() 
 #error rate at each step 
 error <- c() 
 #the whole process 
 for (p in 1:P){ 
  #error rate for this step 
  cur.error <- sapply(predictives,search_wrapper,cur.dataset,K) 
  #getting the best error rate  
  id.min <- which.min(cur.error) 
  selected.name <- colnames(predictives)[id.min] 
  #adding the id. of the column into the selection 
  output[p] <- which.min(match(colnames(dataset),selected.name)) 
  #add the attribute to the current dataset 
  cur.dataset <- cbind(cur.dataset,predictives[id.min]) 
  #removing the attribute to the predictive attributes 
  predictives <- predictives[-id.min] 
  #filling out the vector of errors 
  error[p] <- min(cur.error) 
 } 
 #returning the error rate and the index of variables  
 return (list(error=error,output=output)) 
} 

 

We launch this function on our dataset with the following program. 

 

#launching the wrapper process 
mushroom.wrapper <- wrapper(mushroom.train) 
 
#plotting the error rate according the number of selected variables 
plot(mushroom.wrapper$error,type="b",main="Wrapper process",ylab="Error rate 
(%)",xlab="# of selected variables") 

 

We get the error rate curve according the cardinal of the selected subset at each step of the 

process. It is very similar to the curve computed with SIPINA. It is not really surprising. 
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We can now select the subset related to the “optimal” solution. 

 

#getting the number of selected variable 
nb.sel <- which.min(mushroom.wrapper$error) 
 
#new dataset -- train and test 
new.train <- 
mushroom.train[,c(mushroom.wrapper$output[1:nb.sel],ncol(mushroom.train))] 
new.test <- 
mushroom.test[,c(mushroom.wrapper$output[1:nb.sel],ncol(mushroom.test))] 
 
#printing the name of the selected variables 
print("Selected variables : ") 
print(colnames(new.train)[1:nb.sel]) 

 

The subset with 7 descriptors seems the best. 
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4.4 Assessment of the selected subset of descriptor s 

Last, we compute the classifier on the learning set and we evaluate its performance on the test 

set. We use the samples with the selected descriptors now (the 7 descriptors detailed above). 

 

#training and test on the selected variables 
new.model <- NB(classe ~., data = new.train) 
new.eval <- evaluate_Weka_classifier(new.model,newdata=new.test) 
print(new.eval) 

 

The test error rate is 1.29%. Again, the simplified model is definitely better than the full model 

including all the descriptors. 

 

 

 

5 FILTER strategy with TANAGRA 
The WRAPPER approach is not available in TANAGRA. But, it provides several FILTER methods 

for the feature selection process. We use the FCBF method here. It is really efficient and can 

handle a very large dataset (number of descriptors) quickly (Yu and Liu, 2003; 

http://www.public.asu.edu/~huanliu/FCBF/FCBFsoftware.html). 

It operates before the learning process. There is no assurance that the selected variables are 

the most relevant for the naive bayes classifier. The interest of this tutorial is precisely to try to 

assess the efficiency of this approach in relation to the WRAPPER method which optimizes 

explicitly a performance criterion. 



Tanagra 

30/03/2010  17/21 

5.1 Importing the dataset 

After we launch TANAGRA, we create a new diagram. We click on the FILE / NEW menu. We 

select the MUSHROOM.TXT data file: 24 columns and 8124 instances are loaded. 

 

5.2 Partitioning the dataset 

We use the STATUT column in order to subdivide the dataset into a train and test samples. We 

add the DISCRETE SELECT EXAMPLES component (INSTANCE SELECTION) into the diagram. 

We click on the PARAMETERS contextual menu and we set the following parameters. 

 

Then we click on the VIEW menu. There are 2000 instances into the learning set.   
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5.3 Variable selection with the FCBF method 

First, we must set the target attribute and the candidate input variables. We add the DEFINE 

STATUS component using the shortcut into the toolbar. The STATUT column is not used here. 

 

We can now add the FBCF component (FEATURE SELECTION). It aims to detect the most 

relevant and not redundant input variables for the prediction of the target attribute (CLASSE). 
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Only 3 descriptors are selected: ODOR, STALK SURFACE ABOVE and VEIL COLOR. These 

variables are automatically set as input variables at the output of the FBCF component. 

CLASSE remains the target attribute. We can insert any supervised learning method after the 

FBCF filter component. 

5.4 Learning on the selected variables 

We add the NAÏVE BAYES component (SPV LEARNING). We click on the VIEW menu. We 

obtain, among others, the resubstitution error rate. 

 

5.5 Assessing on the test set 

In order to compute an honest estimation of the generalization error rate, we use the test set. 

To do that, we must specify the target attribute (CLASSE = TARGET) and the prediction of the 

classifier (PRED_SPV_INSTANCE_1 = INPUT) using the DEFINE STATUS component. 

Note that the prediction is computed both on the learning set (the selected instances using the 

DISCRETE SELECT EXAMPLES component; see section 5.2) and the test set (the unselected 

instances). 
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Last, we add the TEST component (SPV LEARNING ASSESSMENT) which creates the confusion 

matrix and computes the error rate. By default, it operates on the unselected instances i.e. on 

the test set. This is that we wanted. 
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The test error rate is 1.58%. We can compare this to the 1.29% obtained with the WRAPPER 

approach with R, and the 1.24% obtained with SIPINA. The error rates are directly comparable 

here because we use the same test set for all the tools. We note that, according the 

generalization error rate, the deviations between the various approaches (FILTER vs. 

WRAPPER) are not really significant on our dataset. 

6 Conclusion 

The first goal of the tutorial is to show how to implement the WRAPPER feature selection 

approach under SIPINA and R. WRAPPER is supposed to be the best selection strategy because 

it uses explicitly a performance criterion to determine the "optimal" subset of variables for the 

prediction. 

The second goal of this tutorial is to compare the efficiency of the WRAPPER approach with a 

FILTER strategy for selecting the relevant descriptors in the context of supervised learning. We 

use the FBCF method which is very fast and well suited to the datasets with a large number of 

descriptors. On our dataset, we note that, in spite that FBCF does not take into account the 

characteristics of the subsequent learning method, it produces a classifier which is very 

competitive in relation to the one computed after a WRAPPER feature subset selection. 

 


