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1 Topic

WRAPPER feature selection method with SIPINA and R (RWeka package). Comparison with a
FILTER approach implemented into TANAGRA.

Feature selection. The feature selection® is a crucial aspect of supervised learning process.
We must determine the relevant variables for the prediction of the target variable. Indeed, a
simpler model is easier to understand and interpret; the deployment will be facilitated, we
need less information to collect for prediction; finally, a simpler model is often more robust in
generalization i.e. when we want to classify an unseen instance from the population.

Three kinds of approaches are often highlighted into the literature.

The FILTER approaches try to detect the relevant descriptors, independently of the used
supervised learning algorithm. The advantage is the quickness and the flexibility. But, there is
no guarantee however that the selection based on ad hoc criteria produces the best subset of
features whatever the learning method used thereafter. The RANKING methods are certainly
the more representative of this family. They calculate an indicator which characterizes the
relationship between target attribute and each descriptor (input attribute). We ordered them
by the decreasing value of the statistical indicator. Then we choose the best ones. We can also
use a statistical hypothesis test in order to select the variables having a significant association
with the target variable.

About the EMBEDDED approach, the selection process is integrated into the learning process.
The induction of decision trees illustrates perfectly this approach. For instance, with the CART
method (Breiman et al., 1984), the Gini index is used to select the segmentation variable on a
node, the goal being to obtain the leaves as pure as possible. The algorithm selects
automatically the smallest subset of variable in order to obtain them. But consistency does not
mean performance. Let us not forget that one aim of the learning process is to produce a
classifier with the best generalization capabilities. This is the reason for which CART also used
a post-pruning system based on a criterion directly related to performance, different from that
used during the tree growing.

The WRAPPER approach uses explicitly a performance criterion during the search of the best
subset of descriptors. Most often, this is the error rate. But in reality, any kind of criteria can
be used. This may be the cost if we use a misclassification cost matrix. It can be the area
under curve (AUC) when we assess the classifier using ROC curves, etc. In this case, the
learning method is considered as a black box. We try various subsets of predictors. We will
choose the one that optimizes the criterion. In the WRAPPER approach, the result relies heavily
on the search algorithm and on the assessment of the performance.

Search strategy. The search strategy is very important in the wrapper approach. We can use

! http://imlr.csail.mit.edu/papers/special/feature03.html
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a very simplistic method such as a greedy search, or more sophisticated methods such as
genetic algorithm or simulated annealing. But there are two drawbacks to explore a very high
number of solutions: we can reach to very specific solution to the used dataset which is not
efficient into the population, it is the overfitting problem; the search becomes computationally
intractable when we deal with a very large dataset with a large number of descriptors. Thus,
hill climbing approaches such as forward search or backward search are in actuality a very
good compromise in the most of the situations.

Prediction performance assessment. About the performance assessment, we cannot use
the learning set in order to compute the criterion such as the error rate. Indeed, we often
favor the complex solution with the largest number of descriptors in this case. Most of the
time, to avoid this drawback, we use a validation set (which is not the same as the test set
used for the assessment of the final model) or a resampling schema in order to obtain a
honest estimation of the error rate during the search process.

Supervised learning algorithm. The learning method is used as a black box in the WRAPPER
process. Any method can be implemented. We chose the NAIVE BAYES classifier for several
reasons: it is well adapted for categorical predictors; it does not incorporate an internal
selection process; and it can be disturbed by irrelevant variables. Thus, the influence of the
variable selection on the classifier performance will be particularly discernable.

In this tutorial, we implement the WRAPPER approach with SIPINA and R 2.9.2. For this last
one, we give the source code for a forward search strategy. The readers can easily adapt the
program to other dataset. Moreover, a careful reading of the source code for R gives a better
understanding about the calculations made internally by SIPINA.

The WRAPPER strategy is a priori the best since it explicitly optimizes the performance
criterion. We verify this by comparing the results with those provided by the FILTER approach
(FCBF method) available into TANAGRA. The conclusions are not as obvious as one can think.

2 Dataset

We use the MUSHROOM.TXT dataset in this tutorial (http://eric.univ-
lyon2.fr/~ricco/tanagra/fichiers/mushroom wrapper.zip). It is well known in the machine

learning community. We want to predict if a mushroom is edible or not from their
characteristics. We have randomly subdivided the data file into a training sample (2000
instances) and a testing sample (6124 instances). This last one is used only to assess the
efficiency of the final classifier based on the selected descriptors. It is not used during the
search process. The STATUT column is used to discern the two parts of the data file.

3 Wrapper feature subset selection with SIPINA

The WRAPPET strategy is available into SIPINA (http://eric.univ-lyon2.fr/~ricco/sipina.html).
This tool is mainly intended to the decision tree learning, but others supervised learning
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methods are also available.

3.1 Importing the data file

We launch SIPINA, we click on the FILE / OPEN menu. We select the MUSHROOM.TXT data file.
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The data file is loaded.
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3.2 Choosing the learning algorithm

We use the naive bayes classifier (http://en.wikipedia.org/wiki/Naive Bayes classifier). In

spite it relies on an apparent unrealistic assumption, the naive bayes classifier works well in
many practical situations. In order to define the learning method under SIPINA, we click on the
INDUCTION METHOD / STANDARD ALGORITHM menu. We select the OTHER tab into the dialog
settings. We click on the NAIVE BAYES approach. In the following dialog box, we can define the
parameters of the method. We keep the default parameters.
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3.3 Partitioning the dataset (train and test samples )

We use the STATUT column in order to subdivide the dataset. We click on the ANALYSIS /
SELECT ACTIVE EXAMPLES menu. We select the RULE SELECTION option i.e. the subdivision is
based on a logical rule. We set the rule [STATUT] IN [TRAIN] then we click on the VALIDATE

button.
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We can count the number of instances included into the learning sample by clicking on the
COUNT EXAMPLES COVERED contextual menu: 2000 instances among 8124 are used during

the search process.
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3.4 Defining the target and the input

We click on the ANALYSIS / DEFINE CLASS ATTRIBUTE menu in order to

attributes

the input attributes. Of course, the STATUT column is not used here.
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3.5 Accuracy of the full model

xecTime:125 A

specify the target and

The full model including all the input variables is our reference classifier. We learn the model on
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the learning set by clicking on the ANALYSIS / LEARNING menu. A new window appears. We
can view the conditional probabilities for each descriptor. They are used for the classification of

the unseen instances.
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We evaluate the performance by clicking on the ANALYSIS / TEST menu. We select the
INACTIVE EXAMPLES OF THE DATABASE (the test sample) into the dialog box. We obtain an
unbiased estimation of the generalization error rate because it is computed on the test set.
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The confusion matrix is displayed. The test error rate is 5.37%.

Exec.Time: 62 ms

Now, we want to know if we can make better with the WRAPPER feature

process.

subset selection
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3.6 WRAPPER approach with SIPINA

First, we must stop the current analysis session. We click on the ANALYSIS / STOP ANALYSIS
menu. The preceding results (windows) are removed.
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We activate the ANALYSIS / FEATURE SELECTION / WRAPPER menu for launching the selection
process. In the dialog settings, we use the cross validation in order to estimate the error rate
of each subset of features. The search strategy is the FORWARD approach i.e. nested subsets

of variables are evaluated, from the model with only one descriptor to the model with all the

descriptors.
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Into the next dialog settings, we set the number of folds for the cross validation.
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The calculation is started. For the selected subset at each step (1 variable, 2 variables, etc.),
SIPINA displays the selected attributes and the corresponding error rate. The user can
interactively stop the process.

Note: Because the seed number of the random number generator is not the same according to
the computer, you can obtain a slightly different solution on your computer.
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SIPINA highlights a subset with 9 descriptors. The cross validation error rate computed during
the search is about 0.9%. But, for obtaining an unbiased estimation of the error rate, we must
apply the resulting classifier on the test set.

We want to select the subset with these 9 descriptors (Figure 1). We set a right click on the
right column of the grid; we click on the CHOOSE THIS SUBSET FEATURE contextual menu. In
the left part of the window, the selected variables for the learning process are modified. Note:
the best solution incorporates 9 descriptors, but we see into the chart above that solutions
with fewer variables are very close according to the error rate.
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Figure 1 - Selecting the "best” subset of features

3.7 Accuracy of the simplified model

We want to assess the classifier with 9 variables on the test set. We click first on the ANALYSIS

/ LEARNING menu in order to create the classifier on the train set.
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Then we click on the ANALYSIS / TEST menu and we set the INACTIVE EXAMPLES OF
DATABASE option in order to compute the confusion matrix on the test set.
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The “true” test error rate is 1.24%. The simplified model is much better than the full model
including all of the descriptors.

4 WRAPPER approach with R

In this section, we give the details of the source code for the forward selection according the
wrapper approach under the R software (http://www.r-project.org/). The main advantage is
that we can describe each step of the process.

4.1 Importing and partitioning the dataset

First, we load the dataset that we subdivide into train and test samples.

#l oad the data file
mushroom <- read.tabl e(file="nmushroomtxt", header =TRUE, sep="\t")
sunmar y( mushr oon

#partitioning into train and test sanples

nmushroom train <- as.data.frame(nushroon nushroontstatut=="train",c(1:22,24)])
nmushroom test <- as.data.frane(nushroon] nushroon$statut=="test", c(1:22,24)])
print (nrow nushroomtrain))

print (nrow nushroomtest))
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R shows the following results.

R R Console EI@
> summary (mushroom) i
cap.shape cap.surface cap.coloxr bruises. odor gill.attachment gill.spacing gill.size gill.color stalk.shape
b: 452 £:2320 n ;2284 £:4748 n ;3528 a: 210 c:6812 b:5612 b 1728 e:3516
o a: 4 o t:3376 £ 12160 f:7914 w:1312 n:2512 p 11492 t:4608
f:3152 5:2556 e E] : 576 W 1202
k: 828 v:i3244 ¥ v : 576 n 1048
EJE 32 W a : 400 g 1 752
x:3656 b 1 : 400 h 1 732
{Cther): 220 (Cther): 484 ({Cther) :1170
stalk.root stalk.surface.above. stalk.surface.below. stalk.color.above.ri stalk.color.below.ri veil.type veil.color ring.number
?:2480 f£f: 552 f: €00 W 4464 W 14384 p:8124 n: 96 n: 3&
b:3776 k:2372 k:2304 =] 11872 p 11872 o 13 o:7488
c: 556 s5:5176 =5:4936 g : 576 g : 576 w:T924 t: 600
e:1120 'H 24 y: 284 n : 448 n : 512 'H 8
r: 192 b 432 b 432
o : 19z o i 192
(Cther): 140 (Cther): 156
ring.type spore.print.color population habitat statut classe
e:2776 W a: 384 d:3148 test :6124 e:4208
f: 48 n c: 340 g:2148 train:2000 p:3916
1:129& k n: 400 1: 832
n: 36 h 5:1248 m: 292
p:3968 r v:4040 p:ll44
b = y:r1712 11: 368
(Other): 144 w: 192

into train and test
n <- as.data.frame(m
<- as.data.frame (mushroom [
hroom.train))

wroomfstatut=="train",c(1:2
mshroom$statut=—="test",c(1:22,

m

> print (nrow(mushroom.test)
[1] 6124

>

>

4 b

The training set contains 2000 instances, the test set contains 6124 instances.

4.2 The full model — The naive bayes classifier wit  h the RWeka package

We use the RWeka package (http://cran.r-project.org/web/packages/RWeka/index.html) based
on the famous Weka free software (http://www.cs.waikato.ac.nz/ml/weka/).

The library(.) command loads the package. Then we load the naive bayes method with the
make_Weka_ classifier(.) instruction. We call NB(.) the method in our source code.

We launch the learning process and we evaluate the classifier on the test set with the
evaluate_Weka_ classifier(.) function.

#l oad the RWweka package
I'ibrary(RWka)

#make nai ve bayes classifier function
NB <- make_ Weka_ cl assifier("wekal/cl assifiers/bayes/ Nai veBayes")

#t rai ni ng phase
full.model <- NB(classe ~ ., data = nushroomtrain)

#eval uation on the test set
test.eval uati on <- eval uate_Wka_cl assifier(full.nodel, newdat a=nushroom test)
print(test.eval uation)
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We obtain the following results.

R R Console |5 =]
-

=== Summary ===

Correctly Classified Instances 5792 94.5787 %

Incorrectly Classified Instances 332 5.4213 %

Kappa statistic 0.8911

Mean absolute error 0.0531

Eoot mean sSgquared error 0.2053

Relative absolute error 10.68262 %

Root relative sgquared error 41.0812 %

Total NHumber of Instances 6124

=== Confusion Matrix ===

a b <-- class=sified as
3145 35 | a =g
297 2847 | BE=p

m

>

4 [

The test error rate is 5.24% when we use all the descriptors.

4.3 Wrapper process under R

First, we write a callback function search_wrapper(.) in order to evaluate each subset. We
apply this function for each subset with the same cardinal. Then, we obtain the best solution at
each step of the forward search i.e. the best subset with one descriptor, the best subset with 2
descriptors, etc., with the corresponding error rate obtained by cross validation.

#cal | back function
#searching the best predictive attribute
#for one step of the w apper process
search_wrapper <- function(x, cur.dataset, K){
#current dataset
wor ki ng <- cbind(cur. dataset, x)
#l ear ni ng the node
cur. nodel <- NB(as.fornul a(paste(col nanes(working)[1],"~ .")),data = worki ng)
#eval uating the node
cur.eval <- evaluate_Wka_cl assifier(cur.nodel, nunfFol ds = K, seed=100)
#getting the error rate
return (cur.eval $detail s["pctlncorrect"])

We note that the evaluate_Weka_ classifier(.) function can implement a cross validation. K
is the number of folds.

Last we can write the function which incorporates the callback function. We adopt a very
simplistic code. I think we can make much better (faster) but I prefer a code that the readers
can inspect easily.
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#progranmm ng the whol e wapper franework for feature subset selection
#forward sel ection process
#dataset is the available data (train set only, we do not use the test set
her e)
#we assune that the last colum is the class attribute
#K is the nunber of fold in the cross-validation
wr apper <- function(dataset, K=10){
#nunmber of predictive attribute
P <- ncol (dataset)-1
#predictive attributes
predictives <- dataset[1:(ncol (dataset)-1)]
#classe attribute
cur. dataset <- dataset[ncol (dataset)]
#current formul a
cur.fornul a <- paste(col nanes(dataset)[P+1],"~")
#ordered i ndex of the selected variable
out put <- c()
#error rate at each step
error <- c()
#t he whol e process
for (pin 1:P){
#error rate for this step
cur.error <- sapply(predictives, search_w apper, cur. dataset, K)
#getting the best error rate
id.mn <- which.mn(cur.error)
sel ected. name <- col names(predictives)[id.mn]
#adding the id. of the colum into the selection
out put[p] <- which. m n(match(col nanes(dat aset), sel ect ed. nane))
#add the attribute to the current dataset
cur.dataset <- chind(cur.dataset, predictives[id.nmn])
#renmoving the attribute to the predictive attributes
predictives <- predictives[-id.nin]
#filling out the vector of errors
error[p] <- mn(cur.error)
}
#returning the error rate and the index of variables
return (list(error=error,output=output))

}

We launch this function on our dataset with the following program.

#| aunchi ng t he wrapper process
nmushroom wr apper <- wrapper (nushroomtrain)

#plotting the error rate according the nunber of selected variabl es
pl ot (mushr oom wr apper $error, t ype="b", mai n=" W apper process", yl ab="Error rate
(99", xl ab="# of selected variabl es")

We get the error rate curve according the cardinal of the selected subset at each step of the
process. It is very similar to the curve computed with SIPINA. It is not really surprising.
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We can now select the subset related to the “optimal” solution.

#getting the nunmber of selected variable
nb. sel <- whi ch. m n(nushroom wr apper $error)

#new dataset -- train and test
new.train <-

nmushroom train[, c(nmushroom wr apper $out put [ 1: nb. sel ], ncol (nushroomtrain))]
new. t est <-

nmushroom t est [, c(mushr oom wr apper $out put [ 1: nb. sel ], ncol (nushroom test))]

#printing the nane of the selected variabl es
print("Selected variables : ")

print(col nanes(new.train)[ 1: nb.sel])

The subset with 7 descriptors seems the best.

g

IR R Console =1 [EoR(cX
o~

> print (colnames (new.train) [l:nb.sel])

[1] "odor™ "cap.shape"

[3] "cap.surface™ "cap.color™

[2] "gill.=ize"™ "zralk.surface.above."

[7] "=stalk.color.below.rli"™ |:|
>

F] b
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4.4 Assessment of the selected subset of descriptor s

Last, we compute the classifier on the learning set and we evaluate its performance on the test
set. We use the samples with the selected descriptors now (the 7 descriptors detailed above).

#training and test on the selected variabl es

new. nodel <- NB(classe ~., data = new train)

new. eval <- eval uate_Weka_cl assi fi er (new. nodel , newdat a=new. t est)
print(new eval)

The test error rate is 1.29%. Again, the simplified model is definitely better than the full model
including all the descriptors.

R R Console E@
-

=== SBummary =——

Correctly Claszsified In=stances 6045 93.71 H

Incorrectly Classified Instances 78 1.2% x

Fappa statistic 0.9741

Mean absolute error 0.01%8

Eoot mean sgquared error 0.1112

Relative absolute error 3.9578 %

Eoot relative squared error 22.2627 %

Total Mumber of Instances 6124

=== Confusion Matrix =—=

a b <—-—- classified as
3170 10 | a=e
69 ZBTS | b=nr

A [m

5 FILTER strategy with TANAGRA

The WRAPPER approach is not available in TANAGRA. But, it provides several FILTER methods
for the feature selection process. We use the FCBF method here. It is really efficient and can
handle a very large dataset (number of descriptors) quickly (Yu and Liu, 2003;
http://www.public.asu.edu/~huanliu/FCBF/FCBFsoftware.html).

It operates before the learning process. There is no assurance that the selected variables are
the most relevant for the naive bayes classifier. The interest of this tutorial is precisely to try to
assess the efficiency of this approach in relation to the WRAPPER method which optimizes
explicitly a performance criterion.
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5.1 Importing the dataset

After we launch TANAGRA, we create a new diagram. We click on the FILE / NEW menu. We
select the MUSHROOM.TXT data file: 24 columns and 8124 instances are loaded.

Choose your dataset and $tart download

Diagram title :
Default title

Data mining diagram file name :
I:ite‘LSuppurts_de_murs\lnformatique\F{ITutorielslwrapper\mushrcl-crm.tdm H

Dataset (* bt * arff,* xls)
Data visualization Irsite\Su pports_de_coursiinformatique\R\Tutoriels\wrapperimushroom b *

Feature construction

| |
PLS

Spv learning assessment

oK || cancel || Help |

@'Correlation scatterplot =f—caterpm BT oAt T
Export dataset EScatterplot with label E,_';View multiple scatterplot

5.2 Partitioning the dataset

We use the STATUT column in order to subdivide the dataset into a train and test samples. We
add the DISCRETE SELECT EXAMPLES component (INSTANCE SELECTION) into the diagram.
We click on the PARAMETERS contextual menu and we set the following parameters.

TANAGRA 14,31 - [Dataset (mushroom. o]

Fi iagram Component  Window Help

Ooee B %

I Defaul tile
=[] Dataset {mushroom. bxt)

W Diccrete select examples 1

Computation time 32 ms |
Mlocated memory 267 KB

A Parameters... lg
’
'l Execute
1 View
‘ 3
\\ Attribute-value examples selec
N
N
I N Parameters 1
S I
3
Data visualization N\ | Statistics R ls’tatu’( g 'J |
I Feature construction \\ Feature selectig |
PLS | N clustering |
Spv learning assessment i 1 Scoring value: lh’ﬂN’? E vJ
& Continuous select examples/'”& Recover exal
& Discrete select examples ¢ <& Rule-based
ok || cancel || Hele |

Then we click on the VIEW menu. There are 2000 instances into the learning set.
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5.3 Variable selection with the FCBF method

First, we must set the target attribute and the candidate input variables. We add the DEFINE
STATUS component using the shortcut into the toolbar. The STATUT column is not used here.

Define attribute statuses

| TANAGRA 1.4.31 - [Discrete el —
L i i A d e Parameters
File Diagram Component  Window -
E = (;f:i) Amiimfl “ Target Input Illhstratme
£ F’stalk—surfaoe—below— - classe

I / DB‘FEU’ILHHB\ D stalk-color-above-ri

D stalk-color-below-ri

—IfE Dataset (mushroom.bet) 7’ D veiltyps
T v D veil-color
El,_éf Dizcrete select examplet 1 D ring-number
e = y pa D ring-type
(] Define status 1 - = D eparengntolor

D population = ==
D habitat

Target Input | Hustrative

stalk-shape -
stalk-root
stalk-surface-above-

Data visualization Statisti i stalk-surface-below-
stalk-color-above-ri
Feature se stalk-color-below-ri

= veil-type

Feature construction |
pLS | Clister 5 veil-color
|

ring-number
Scorin | T
spore-print-color

5 population | o
# Continuous select examples Kﬂecwe habitat

& Discrete select examples & Rule-bal e ]

5Spv learning assessment

[ oc | cancet [ Hew |

We can now add the FBCF component (FEATURE SELECTION). It aims to detect the most
relevant and not redundant input variables for the prediction of the target attribute (CLASSE).

TANAGRA 1.4.31 - [FCEF filtering 1]
:. fgra Component Window Help

Do B B
[ Defaul fll
=[5 Dataset (mushroom. txt) INPUT attribute selection

El,g?t Discrete select examples 1 _

E,m Define status 1 Before filtering

Parameters... . B
Bridtide Keeped into INPUT selection
il Attributes
odor
statk-surface-abowve-
veil-color

Statistics | Monparametric statistics

Instance selection

Clustering | Spv learning Meta-spv learning

Feature selection | Regression | Factorial analysis
|

Spv learning assessment Scoring i Aszociation

¥, Backward-logit %% Define status Hll Feature ranking o, Forward-logit H MOLTree filtering
[H CFs filtering H FCEF filtering }~ | Fisher filtering [Hl MiIFs filtering [ Remove constant  [+" St

| 1 J +
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Only 3 descriptors are selected: ODOR, STALK SURFACE ABOVE and VEIL COLOR. These
variables are automatically set as input variables at the output of the FBCF component.
CLASSE remains the target attribute. We can insert any supervised learning method after the
FBCF filter component.

5.4 Learning on the selected variables

We add the NAIVE BAYES component (SPV LEARNING). We click on the VIEW menu. We
obtain, among others, the resubstitution error rate.

(¥ TANAGRA 1431 - (Supenvised Learning 1 (Naive bayes)

E File Diagram Component Window Help :_. 1K x|
(EEX=1E I
| o |

Il Default title: =

| =-EF Dataset {mushroom. txt)

- ¢" Discrete select examples 1 i-:_!
£-#% Define status 1 O
=] g FCEF filtering 1
g Iz‘ Supervised Learning 1 (Naive bayes) |is Sum
1028
97L
2000
il (10 b
Data visualizatio Statistics | MNonparametric statistics | Instance selection
Feature construction Feature selection Regression Factorial analysis
PLS Clustering | Spv learning | Meta-spv learning
Spv learning assessment Scoring | Aszociation |

faNaive bayes wm——" 865 PLS-LDA 4= Radial basis functian [ svm

[ PLS-DA |2a Prototype-NN £ Rnd Tree

|« F m ’

5.5 Assessing on the test set

In order to compute an honest estimation of the generalization error rate, we use the test set.
To do that, we must specify the target attribute (CLASSE = TARGET) and the prediction of the
classifier (PRED_SPV_INSTANCE_1 = INPUT) using the DEFINE STATUS component.

Note that the prediction is computed both on the learning set (the selected instances using the
DISCRETE SELECT EXAMPLES component; see section 5.2) and the test set (the unselected
instances).
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{YE

by Define attribute statuses

Perameters /—\

Attributes.
Target Input | lllustrative

Defout

D ghikcolor-aboveri  + classe
Stalk-color-below-ri
veilype

7 Dataset (mushroom.tet)
5 ¢ Discrete select examples 1
Em Define status 1
&-F] FCBF filtering 1

E||1| Supervised Learning 1{Maive bay| g erm—

:
Tl sl =
—

D veil-color

D ring-number
D ring-type

D spore-print-color
D population

D habitat

D statut

u]

S —

Define attribute statuses

Parameters
Attribut Aﬁ—\
toutes Target Input |

S~ o e )o@

D stalk-color-above-ri = pred_Spvinstance_1
D stalk-color-below-ri

Data visualization Statistics

|
Feature construction | Feature selection
PLS | Clustering

Spv learning assessment Scoring

D veikype
D veilcolor
D ring-number

D ringtype

-
D spore-print-color =
D population Add selected attributes|

D habitat
D statut

g Maive bayes [ PLS-LDA

[ PLS-DA [¢a Pratotype-NN

Clearall Clear selected

[ ok [ cancat [ e ]|

Last, we add the TEST component (SPV LEARNING ASSESSMENT) which creates the confusion
matrix and computes the error rate. By default, it operates on the unselected instances i.e. on

the test set. This is that we wanted.

] E File Diagram Component Window Help

Dw @ 5

[ Delault

Evaluation sef : unselected examples

=5 Dataset (mushroom.txt)
E|,g‘?f Discrete select examples 1
Em Define status 1
&-H FCBF filtering 1

E||I| Supervised Learning 1 (MNaive bayes)

5% Define status 2

iﬂl Test1 ws

Data visualization Statistics

PLS Clustering

Scoring

|
Feature construction | Feature selection
|

Spv learning assessment

Instance selection
Factorial analysis
Spv learning Meta-spv learning

Association

!?I Bias-variance decomposition lﬂi Cross-validation
E?IBooBtrap IFELeave—Dne—Dut

PlTest —
EFHTrain—test
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The test error rate is 1.58%. We can compare this to the 1.29% obtained with the WRAPPER
approach with R, and the 1.24% obtained with SIPINA. The error rates are directly comparable
here because we use the same test set for all the tools. We note that, according the
generalization error rate, the deviations between the various approaches (FILTER vs.
WRAPPER) are not really significant on our dataset.

6 Conclusion

The first goal of the tutorial is to show how to implement the WRAPPER feature selection
approach under SIPINA and R. WRAPPER is supposed to be the best selection strategy because
it uses explicitly a performance criterion to determine the "optimal" subset of variables for the
prediction.

The second goal of this tutorial is to compare the efficiency of the WRAPPER approach with a
FILTER strategy for selecting the relevant descriptors in the context of supervised learning. We
use the FBCF method which is very fast and well suited to the datasets with a large humber of
descriptors. On our dataset, we note that, in spite that FBCF does not take into account the
characteristics of the subsequent learning method, it produces a classifier which is very
competitive in relation to the one computed after a WRAPPER feature subset selection.
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