# Subject

A Multilayer Perceptron for a classification task (neural network): comparison of TANAGRA, SIPINA and WEKA.

When we want to train a neural network, we have to follow these steps:

- Import the dataset;
- Select the discrete target attribute and the continuous input attributes;
- Split the dataset into learning and test set;
- Choose and parameterize the learning algorithm;
- Execute the learning process;
- Evaluate the performance of the model on the test set.

# Dataset

We use the IONOSPHERE.ARFF from UCI IRVINE (ARFF is the WEKA file format). The attributes are standardized. There are 351 examples, 33 continuous descriptors, and a binary class attribute.

# Training a neural network with TANAGRA

### **Dataset importation**

We click on the FILE/NEW menu in order to create a new diagram and import the dataset.



#### Splitting the dataset into learning and test set

In the next step, we have to split the dataset into a learning set, which is used for the computation of the neural network weights, and a test set, which is used for the model performance evaluation.

We add the SAMPLING component; we use 66% of examples for the learning phase.



### Select the class and the predictive attributes

We add the DEFINE STATUS in the diagram, we use the shortcut in the toolbar, we set CLASS as TARGET, and all continuous attributes as INPUT.



### Learning algorithm

We want to add a Multiplayer Perceptron in the diagram. In the first step, we add a learning implementation algorithm (SUPERVISED LEARNING from the META-SPV LEARNING TAB).

| 💯 TANAGRA 1.4.5 - [Dat                   | taset (ionosphere.arff)] |              |                     |           |              |            |                      |    |
|------------------------------------------|--------------------------|--------------|---------------------|-----------|--------------|------------|----------------------|----|
| Tile Diagram Componer                    | nt Window Help           |              |                     |           |              |            | -                    | Б× |
| D 📽 🖪   🍇                                |                          |              |                     |           |              |            |                      |    |
|                                          | Default title            |              | a08                 | Continue  | -            |            |                      | ^  |
| 🖃 🏢 Dataset (ionospher                   | re.arff)                 |              | a09                 | Continue  | -            |            |                      |    |
| 🖃 💉 Sampling 1                           |                          |              | a10                 | Continue  | -            |            |                      |    |
| 🖻 🎎 Define stati                         | us 1                     |              | a11                 | Continue  | -            |            |                      |    |
| Supervi:                                 | sed Learning 1           |              | a12                 | Continue  | -            |            |                      |    |
|                                          |                          |              | a13                 | Continue  |              |            |                      |    |
| l î                                      |                          |              | a14                 | Continue  | -            |            |                      |    |
|                                          |                          |              | a15                 | Continue  | -            |            |                      |    |
|                                          |                          |              | a16                 | Continue  | -            |            |                      |    |
|                                          | ·                        |              | a17                 | Continue  | -            |            |                      |    |
|                                          |                          |              | a18                 | Continue  | -            |            |                      | ~  |
|                                          |                          |              | <                   | <u>``</u> |              |            |                      | >  |
|                                          |                          |              | Componen            | its       | •            |            |                      |    |
| Data visualization                       | Statistics               | Nonpara      | metric stat         | istics    | Instance set | ection     | Feature construction |    |
| Feature selection                        | Regression               | <b>F</b> act | orial analys        | is        | PLS          |            | Clustering           |    |
| Spv learning Meta-spv learning Spv learn |                          |              | ning assessment Sco |           | Scoring      |            | Association          |    |
| 🕨 Aggregating 🚺                          | Arcing [Arc-x4] 🕨 Ba     | gging        | Þ                   | Boosting  |              | Supervised | d Learning           |    |
|                                          |                          |              |                     |           |              |            |                      |    |
|                                          |                          |              |                     |           |              |            |                      |    |

In the second step, we embed in the first one, a learning method algorithm i.e. the MULTILAYER PERCEPTRON from the SPV LEARNING tab.

| 💯 TANAGRA 1.4.5 - [Dat           | aset (ionosphere.arff)]      |                |              |                           |               |                      |         |
|----------------------------------|------------------------------|----------------|--------------|---------------------------|---------------|----------------------|---------|
| 🏆 File Diagram Componen          | t Window Help                |                |              |                           |               |                      | _ 8 ×   |
| D 📽 🖬   👪                        |                              |                |              |                           |               |                      |         |
|                                  | Default title                |                | a08          | Continue                  | -             |                      | ^       |
| 🖃 🏢 Dataset (ionospher           | e.arff)                      |                | a09          | Continue                  | -             |                      |         |
| 🖻 🖍 Sampling 1                   |                              |                | a10          | Continue                  | -             |                      |         |
| 🖃 🐔 Define statu                 | us 1                         |                | a11          | Continue                  | -             |                      |         |
| ·····( <u>*</u> ] Supervis       | ed Learning 1 (Wultilayer pe | rceptron)      | a12          | Continue                  | -             |                      |         |
|                                  |                              | •              | a13          | Continue                  | -             |                      |         |
|                                  | •                            |                | a14          | Continue                  | -             |                      |         |
|                                  |                              | <b>`</b>       | a15          | Continue                  | -             |                      |         |
|                                  |                              | <b>`</b> 、     | a16          | Continue                  | -             |                      | ~       |
|                                  |                              |                | <            |                           | 1111          |                      |         |
|                                  |                              | Comp           | oments       |                           |               |                      |         |
| Data visualization               | Statistics                   | Nonparametri   | c statistics | Instar                    | nce selection | n Feature constr     | ruction |
| Feature selection                | Regression                   | Factorial a    | analysis     |                           | PLS           | Clusterin            | g       |
| Spv learning                     | Meta-spv learning            | Spv learning a | ssessment    |                           | Scoring       | Associatio           | on [    |
| Harse Binary logistic regression | in 🧟 C-RT                    |                | 🖧 ID3        |                           | _             |                      | Ē       |
| 🚓 C4.5 🔣 c-svc                   |                              |                | 🔄 K-NN       |                           |               | Multilayer perceptro | i -     |
| 🔀 C-PLS                          | 🕍 Linear di                  | scriminant     | analysis     | 1+2×MUltil omial Legistic | Regression 🔋  |                      |         |
| <                                |                              |                |              |                           |               |                      | >       |
| L                                |                              |                |              |                           |               |                      | .:      |

#### Setting the parameters

There are several kinds of parameters. The first ones are the neural architecture parameters (NETWORK tab). We use a hidden layer with two neurons.

| ML | P parameters                   |  |
|----|--------------------------------|--|
| ſ  | Parameters                     |  |
|    | Network Learning Stopping rule |  |
|    | 🗹 Use hidden layer 🛛 🗲 🗕 🗕     |  |
|    | Number of neurons : 2          |  |
|    |                                |  |
|    |                                |  |
|    |                                |  |
|    | OK Cancel Help                 |  |

The next ones are the learning parameters (LEARNING tab). We set the LEARNING RATE to 0.15.

We can define a validation set. This sub-sample enables to compute the error rate on a part of the learning set which is not used for the computation of weights. In this analysis, we do not use a validation set – VALIDATION SET PROPORTION = 0.15.

Last, because we have already standardized descriptors, we set ATTRIBUTE TRANSFORMATION to NONE.

| MLP parameters                                                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameters Network Learning Stopping rule Learning rate : 0.1500 Validation set proportion : 0 Attribute transformation Onone Centered Standardized Normalized |
| OK Cancel Help                                                                                                                                                 |

In the last tab, STOPPING RULE, we set the parameters which enables to stop the learning process: MAX ITERATION is the max number of epochs; ERROR RATE THRESHOLD enables to stop the learning process if the resubstitution error rate is lower than this threshold.

It is possible to stop the learning phase when we note a stagnation of the validation error rate on GAP TEST STAGNATION epochs. But it is not a very efficient option, check only this option if you are confident about the behavior of neural network.

| M | .P parameters                  |   |
|---|--------------------------------|---|
|   | Parameters                     |   |
|   | Network Learning Stopping rule | L |
|   | Maxiteration : 100             | Ļ |
|   | Error rate thresold : 0.01     | ŀ |
|   | Test error stagnation          | L |
|   | Gap test stagnation : 20       | L |
|   |                                | L |
|   |                                |   |
|   | OK Cancel Help                 |   |

### **Reading the results**

We select the VIEW menu, the weights are computed and a new window appears.



## **Classifier performances**

| Error rate |          |             | 0.0260           |      |     |     |  |  |  |
|------------|----------|-------------|------------------|------|-----|-----|--|--|--|
| ٧a         | lues pre | ediction    | Confusion matrix |      |     |     |  |  |  |
| ∀alue      | Recall   | 1-Precision |                  | good | bad | Sum |  |  |  |
| good       | 1.0000   | 0.0403      | good             | 143  | 0   | 143 |  |  |  |
| bad        | 0.9318   | 0.0000      | bad              | 6    | 82  | 88  |  |  |  |
|            |          |             | Sum              | 149  | 82  | 231 |  |  |  |

In the first part of the window, we can see a summary of the network parameters and the resubstitution confusion matrix (0.026). We know that this estimation of the error rate is often highly optimistic.

In the second part of the window, the weights of the network are displayed. We can copy and paste theses values in a spreadsheet.

The ATTRIBUTE CONTRIBUTION part computes the error rate of the Perceptron when we remove one attribute. TANAGRA compares this error rate with the error rate of the whole model in order to evaluate the importance of each attribute in the prediction.

| Excluded attribute | Error rate | Difference | Statistics |
|--------------------|------------|------------|------------|
| none               | 0.0260     | -          |            |
| a01                | 0.1169     | 0.0909     | 8.6868-    |
| a03                | 0.0433     | 0.0173     | 1.6546     |
| a04                | 0.0519     | 0.0260     | 2,4819     |
| a05                | 0.0563     | 0.0303     | 2.8956     |
| a06                | 0.0563     | 0.0303     | 2.8956     |
| a07                | 0.0260     | 0.0000     | 0.0000     |

## Attribute contribution

For instance, we see in this table that the error rate of the whole Perceptron is 0.026. If we remove the "a01" attribute -- i.e. we use the average of the attribute instead of the true values -- the error rate becomes 0.1169. The difference is 0.0909, if we use a statistical comparison between these two proportions; the t-value is 8.6868, it seems highly significant.

In the last part of the window, the ERROR RATE DECREASING shows the error rate during the learning process. We can copy and paste this table in a spreadsheet and create a graphical representation of the error rate progression.



#### Evaluate the network on a test set

We want to compute the test error rate on the 120 remaining examples. We add again the DEFINE STATUS component in the diagram. We set CLASS as TARGET, the prediction of the neural network (PRED\_SPVINSTANCE\_1) as INPUT.

| TANAGRA 1.4.5 - [Sam<br>File Diagram Component                                                                                      | npling 1]<br>Window Help                                                     |                                                                                                              | - 0        |
|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------|
| Dataset (ionospheri<br>Sampling 1<br>Sampling 1<br>Supervis<br>Supervis<br>Supervis<br>Supervis<br>Supervis<br>Supervis<br>Supervis | Default title [<br>e.arff]<br>us 1<br>ed Learning 1 (Multilay<br>re status 2 | Perameters  Attributes:  Target Input Illustrative  pred_SpvInstance_1  a30  a31  a32  a33  a34  base        |            |
| Data visualization<br>Feature selection<br>Spv learning<br>Correlation scatterplot                                                  | Statistics<br>Regression<br>Meta-spv learning<br>Reference dataset           | Image: Description of the selection       Image: Description of the selection       OK       Clear selection | catterplot |

Then, we add the TEST component (SPV LEARNING ASSESMENT tab). The error rate must be computed on the test (unselected examples) set.

| 💯 TANAGRA 1.4.5 - [Sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mpling 1]                                   |                                         |                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-----------------------------------------|--------------------|
| 🏆 File Diagram Componer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nt Window Help                              |                                         | _ 8 ×              |
| 🗅 🛩 🖪   🎎                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                             |                                         |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Default title                               |                                         | Sampling 1         |
| 🖃 🏢 Dataset (ionosphe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | re.arff)                                    |                                         | Parameters         |
| 😑 🧪 Sampling 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                             |                                         |                    |
| 😑 🚰 Define stat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | us 1                                        | Define evaluation set                   |                    |
| 😑 🕩 Supervi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | sed Learning 1 (Multilayer pe               | C6 Parameters                           |                    |
| Contraction of the second seco | ine status 2 Test 1 Parameters Execute View | Used examples<br>Selected<br>Unselected | Cancel Help        |
| Data visualization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Statistics                                  | Nonparametric statistics                | Instance selection |
| Feature construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Feature selection                           | Regression                              | Factorial analysis |
| PLS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Clustering                                  | Spv learning                            | Meta-spv learning  |
| Spv learning assessment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Scoring                                     | Association                             |                    |
| Bias-variance decompo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | sition 12 Cross validation                  | <mark>₿?</mark> Train-test              |                    |

We click on the VIEW menu; the test error rate is 0.125.

| Test 1                                      |          |             |                  |            |     |     |  |  |  |
|---------------------------------------------|----------|-------------|------------------|------------|-----|-----|--|--|--|
| Parameters                                  |          |             |                  |            |     |     |  |  |  |
| Evaluation set : <b>unselected</b> examples |          |             |                  |            |     |     |  |  |  |
|                                             |          |             |                  |            |     |     |  |  |  |
| Results                                     |          |             |                  |            |     |     |  |  |  |
|                                             |          | pr          | ed_Spv           | Instance_1 |     |     |  |  |  |
|                                             | Error    | rate        | 0.1250           |            |     |     |  |  |  |
| Va                                          | lues pro | ediction    | Confusion matrix |            |     |     |  |  |  |
| Value                                       | Recall   | 1-Precision |                  | good       | bad | Sum |  |  |  |
| good                                        | 0.9634   | 0.1319      | good             | 79         | 3   | 82  |  |  |  |
| bad                                         | 0.6842   | 0,1034      | bad              | 12         | 26  | 38  |  |  |  |
|                                             |          |             | Sum              | 91         | 29  | 120 |  |  |  |

#### Modifying the network parameters

We can improve the power of the neural network when we modify the number of neurons in the hidden layer. We set this parameter to 10. A priori, we should obtain a more efficient network.



We click again on the VIEW menu. The resubstitution error rate is 0.0206.

|                                                                                                          | and Learning 4. (Multilla |                             |             |                  |                      |          |
|----------------------------------------------------------------------------------------------------------|---------------------------|-----------------------------|-------------|------------------|----------------------|----------|
| File Diagram Component Wi                                                                                | odow Help                 | ver perception)]            |             |                  |                      |          |
|                                                                                                          |                           |                             |             |                  |                      | ~        |
|                                                                                                          |                           |                             |             |                  |                      |          |
| Default titl                                                                                             | e                         | MLP architecture            |             |                  |                      | <u>^</u> |
| 🖃 🏢 Dataset (ionosphere.arfl                                                                             | f)                        | Use hidden layer            | yes         |                  |                      | _        |
| □- 🖋 Sampling 1                                                                                          |                           | Neurons in the hidden layer | 10 🧲        |                  |                      |          |
| Define status 1                                                                                          | and a tabulation of       | Learning paramete           | <b>'5</b>   |                  |                      |          |
| Supervised Le                                                                                            | Parameterc                | Validation set proportion   | 0.00        |                  |                      |          |
| I Test                                                                                                   | Supervised parameters     | Learning rate               | 0.15        |                  |                      |          |
| \$** * · · · · ·                                                                                         | Execute                   | Attribute transformation    | none        |                  |                      |          |
|                                                                                                          | View                      | Stopping rule               |             |                  |                      |          |
| -                                                                                                        |                           | Max iteration               | 100         |                  |                      |          |
|                                                                                                          |                           | Error rate thresold         | 0.0100      |                  |                      |          |
|                                                                                                          |                           | Verifiy error stagnation    | no          |                  |                      |          |
|                                                                                                          |                           |                             |             |                  |                      | _        |
|                                                                                                          |                           |                             | Res         | utts             |                      |          |
|                                                                                                          |                           | Classifier pe               | rforman     | ces              |                      |          |
|                                                                                                          |                           | Error rate                  |             | 0.0260           |                      |          |
|                                                                                                          |                           | Values prediction           |             | Confusion matrix |                      |          |
|                                                                                                          |                           | Value Recall 1-Precisio     | n goo       | d bad            | Sum                  |          |
| <                                                                                                        | >                         | <                           | •           |                  |                      | >        |
|                                                                                                          |                           | Components                  |             |                  |                      |          |
| Data visualization                                                                                       | Statistics                | Nonparametric statistics    | Instance se | lection          | Feature construction |          |
| Feature selection                                                                                        | Regression                | Factorial analysis          | PLS         |                  | Clustering           |          |
| Spv learning                                                                                             | Meta-spv learning         | Spv learning assessment     | Scorin      | g                | Association          |          |
| 8     Bias-variance decomposition       8     P       8     P       8     P       9     Cross-validation | 79 Test<br>99 Train-test  |                             |             |                  |                      |          |

When we click on the VIEW menu of the TEST component, the test error rate is 0.1083.

| TANAGRA 1.4.5 - [Tes                    | t 1]                          |           |                  |            |            |                    |               |              |             |     |
|-----------------------------------------|-------------------------------|-----------|------------------|------------|------------|--------------------|---------------|--------------|-------------|-----|
| 💇 File Diagram Componen                 | t Window Help                 |           |                  |            |            |                    |               |              | -           | Ξ×  |
| D 📽 🖬   🎎                               |                               |           |                  |            |            |                    |               |              |             |     |
| Defa                                    | ault title                    |           |                  |            |            |                    |               |              |             | ~   |
| 🖃 🏢 Dataset (ionospher                  | e.arff)                       | 11 -      |                  |            |            | Bana               | est 1         |              |             |     |
| 🛓 🥢 🖍 Sampling 1                        |                               | Eva       | aluation set     | : un       | selected e | xamples            | meters        |              |             |     |
| 📄 👬 Define statu                        | ıs 1                          |           |                  |            |            |                    |               |              |             |     |
| 🖹 🕨 🕨 Supervis                          | ed Learning 1 (Multilayer per |           |                  |            |            | Re                 | sutts         |              |             |     |
| 🖻 🚮 Defir                               | ne status 2                   |           |                  |            | р          | red_Spy            | linstance_1   | 1            |             |     |
| ····· • • • • • • • • • • • • • • • • • | Parameters                    |           | Erre             | ог га      | ate        | -                  |               | 0.1083       |             |     |
|                                         | Execute                       |           | Values           | prec       | diction    |                    | Confe         | ision matrix | <b>_</b>    |     |
|                                         | View                          | 3         | Value Reca       | ม 1        | -Precision |                    | good          | bad          | Sum         |     |
|                                         |                               |           | good 0.97        | 56         | 0.1209     | good               | - 80          | 2            | 82          |     |
|                                         |                               |           | bad 0.710        | )5         | 0.0690     | bad                | 11            | 27           | 38          |     |
|                                         |                               |           |                  |            |            | Sum                | 91            | 29           | 120         |     |
| <                                       | >                             |           |                  |            |            |                    |               |              |             |     |
|                                         | , <u> </u>                    |           |                  | _          |            |                    |               |              |             |     |
| Data visualization                      | Chablabian                    | (<br>Nana | Componen         | ts<br>-+-+ | intin a    | Instas             |               | -            |             |     |
|                                         | Statistics                    | ΝΟΠμ      | Deeneed          | 51dl       | ISCIUS     | Instance selection |               |              |             |     |
| Peature construction                    | Clusteries                    |           | Cerrelean        | on<br>!    |            | Factorial analysis |               |              |             |     |
| PLS                                     | Clustering                    |           | Spv learn        | Ing        |            | /Weta              | -spv learning | 8            |             |     |
| Spv learning assessment                 | Scoring                       |           | Associati        | on         |            |                    |               |              |             |     |
| Bias-variance decomposition             |                               |           | Cross-validation |            |            | ? Test             |               |              | 88 <b>1</b> |     |
| <                                       |                               |           |                  |            |            |                    |               |              |             | >   |
|                                         |                               |           |                  |            |            |                    |               |              |             |     |
|                                         |                               |           |                  |            |            |                    |               |              |             | .:: |

We have a small test set, the results suffers of a strong variability. This difference is not really significant. We have tried some other algorithms such as Linear Support Vector Machine or Linear Discriminant Analysis. We see in the following screenshot the accuracy on the same test set.





# Training a neural network with SIPINA

#### Importing the dataset

In order to import the dataset, we click on the FILE/OPEN menu.



#### Splitting the dataset

We want to use the 66% of the dataset as learning set. We select the ANALYSIS / SELECT ACTIVE EXAMPLES menu, we select the RANDOM SAMPLING option.

| Sipina Research Version                                                                   |                                                  |              |                                                  |
|-------------------------------------------------------------------------------------------|--------------------------------------------------|--------------|--------------------------------------------------|
| File Edit Data Statistics Induction method                                                | Analysis View Window He                          | elp          |                                                  |
| 🖸 🗎 🐂 🐚                                                                                   | Define class attribute<br>Select active examples |              |                                                  |
| Attribute selection                                                                       | Set weight field                                 |              |                                                  |
| Filter active examples                                                                    |                                                  |              |                                                  |
| Size of sample                                                                            | i.e 231 of                                       | 351 examples |                                                  |
| Sampling strategy                                                                         |                                                  |              |                                                  |
| Merodulassvam<br>Hdl=8<br>Merge=0.05<br>Split=0.01<br>TypeBorferroni=<br>ValueBonferroni= |                                                  |              | Eilter method                                    |
| Examples selecti                                                                          |                                                  |              | All<br>List<br>Random sampling<br>Bule releating |
| Improved ChAID (List of examples Rando                                                    | m sampling Rule filter                           | J            | 🗸 OK 🛛 🗶 Annuler                                 |

The subsets size appears in a window.

| 🔉 Sipina Research Version                                          |              |               |            |       |       |       |       |
|--------------------------------------------------------------------|--------------|---------------|------------|-------|-------|-------|-------|
| File Edit Data Statistics Induc                                    | ion method A | Analysis View | v Window I | Help  |       |       |       |
| 🖰 🖹 📲 h 🕨                                                          |              |               |            |       |       |       |       |
| Attribute selection                                                | 🗉 📶 🔊 🔊      | rning set e   | ditor      |       |       |       |       |
|                                                                    |              | a01           | a03        | a04   | a05   | a06   | a07   |
|                                                                    | 1            | 0.35          | 0.72       | -0.24 | 0.48  | -0.21 | 0.57  |
|                                                                    | 2            | 0.35          | 0.72       | -0.53 | 0.63  | -1.03 | -1.34 |
|                                                                    | 3            | 0.35          | 0.72       | -0.17 | 0.77  | -0.25 | 0.91  |
| <u>,</u>                                                           | 4            | 0.35          | 0.72       | -1.12 | 0.77  | 1.92  | 0.32  |
| Learning method                                                    | 5            | 0.35          | 0.72       | -0.15 | 0.65  | -0.10 | 0.75  |
| MethodName=Improved ChAID (I sc<br>MethodClassName=TArbreDecision) | <u>6</u>     | 0.35          | -1.25      | -0.12 | -1.35 | -0.51 | -1.14 |
| Hdl=8                                                              | 7            | 0.35          | 0.68       | -0.35 | 0.67  | -0.71 | 0.77  |
| Merge=0.05                                                         | 8            | -2.87         | -1.29      | -0.10 | -1.16 | -0.25 | 0.91  |
| Split=U.U1 U<br>TupePonferroni=1                                   | 9            | 0.35          | 0.64       | -0.26 | 0.77  | -0.56 | 0.91  |
| ValueBonferroni=1                                                  | 10           | 0.35          | -1.33      | -0.28 | -1.16 | -0.25 | -1.12 |
| Sampling=0                                                         | ✓ 11         | 0.35          | 0.72       | 0.06  | 0.77  | -0.64 | 0.91  |
| Examples selection                                                 | 12           | 0.35          | 0.72       | -1.32 | 0.77  | -2.42 | 0.91  |
| 231 examples selected                                              | 13           | 0.35          | 0.72       | -0.46 | 0.77  | -0.47 | 0.91  |
| 120 examples idle                                                  | 14           | 0.35          | 0.72       | -2.07 | 0.77  | 0.23  | 0.61  |
| M                                                                  | <            |               |            |       |       |       |       |
| Improved ChAID (Tschuprow Goodnes                                  | ss of Split) |               |            |       |       |       |       |

### Defining the class and the predictive attributes

We click on the ANALYSIS / DEFINE CLASS ATTRIBUTE menu in order to define the role of attributes. We use drag-and-drop in order to define the TARGET and the INPUT attributes.

| Didacticiel - Etudes de o                                          | cas             |                                    |                    |      |       |       |                   |       | R.F       |
|--------------------------------------------------------------------|-----------------|------------------------------------|--------------------|------|-------|-------|-------------------|-------|-----------|
| 🔉 Sipina Research Version                                          |                 |                                    |                    |      |       |       |                   |       |           |
| File Edit Data Statistics Induction n                              | method A        | nalysis View                       | Window He          | lp   |       |       |                   |       |           |
| <u>۲</u> 🖹 🚔 🖡 🌬                                                   |                 | Define class at<br>Select active e | tribute<br>xamples |      |       |       |                   |       |           |
| Attribute selection                                                | 🔊 Le            | Set weight field                   | ł                  | -04  | 1.05  |       | lage              | 6.00  |           |
|                                                                    | 1               | Attribute sel                      | ection             | 804  | Taus  |       | 1407              | Tauo  |           |
|                                                                    | 2<br>3          | Class                              |                    |      |       |       | Variables -       |       |           |
|                                                                    | <u>4</u><br>5   | class                              |                    |      |       |       | a15<br>a16        |       | <u> </u>  |
|                                                                    | 6               | Attributes                         |                    |      |       |       | a17<br>a18<br>a19 |       |           |
|                                                                    | 8               | a01<br>a03                         |                    |      | ^     |       | a20<br>a21        |       |           |
|                                                                    | 9<br>10         | a04<br>a05<br>a06                  |                    |      |       |       | a22<br>a23        |       |           |
|                                                                    | <u>11</u><br>12 | a07<br>a08                         | H                  |      |       |       | a24<br>a25        |       | 1         |
|                                                                    | 13              | a09<br>a10                         |                    |      |       |       | a20<br>a27<br>a28 |       |           |
| Learning method                                                    | 14<br>15        | a11<br>a12                         |                    |      | ~     |       | a29<br>a30        |       |           |
| MethodName=Improved ChAID (I sc<br>MethodClassName=TArbreDecisionI | 16<br>17        | C Only di                          | iscrete            |      |       |       | a31<br>a32        |       |           |
| Merge=0.05                                                         | <u>18</u><br>19 | C Only c                           | ontinuous          |      |       |       | a33<br>a34        |       |           |
| TypeBonferroni=1<br>ValueBonferroni=1                              | 20              | © Both                             |                    |      |       |       | Class             |       |           |
| Sampling=0                                                         | 21              |                                    |                    |      |       |       |                   | 🖌 пк  | 🗙 Annuler |
| 231 examples selected                                              | 23              | 0.07                               | 0.00               | 0.47 |       | 0.07  | 4.45              |       |           |
| 120 examples idle                                                  | 24<br><         | -2.87                              | -3.30              | 2.17 | -1.16 | -0.25 | -1.12             | -0.23 | -2.98 1   |
| Improved ChAID (Tschuprow Goodness of                              | Split)          |                                    |                    |      |       |       |                   |       |           |

The attributes selection appears on the left part of the window. The type of the attributes is displayed.

|                                 | rinication P | -indiy313 vicvv | In the International Internationa<br>International International Internatio | Help  |       |       |       | - |
|---------------------------------|--------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|-------|-------|---|
| 🕒 📫 🤷 🕒                         |              |                 | ******                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | icip  |       |       |       |   |
|                                 |              |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |       |       |       |   |
| ×                               |              |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |       |       |       |   |
| ribute selection                | AN Lea       | rning set ed    | nor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |       |       |       |   |
| 📭 Class attribute ү 🔼           |              | a01             | a03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | a04   | a05   | a06   | a07   |   |
| Class                           | 1            | 0.35            | 0.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.24 | 0.48  | -0.21 | 0.57  |   |
| Predictive attributes           | 2            | 0.35            | 0.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.53 | 0.63  | -1.03 | -1.34 |   |
| aui                             | 3            | 0.35            | 0.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.17 | 0.77  | -0.25 | 0.91  |   |
| -04                             | 4            | 0.35            | 0.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1.12 | 0.77  | 1.92  | 0.32  |   |
| 2 304                           | 5            | 0.35            | 0.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.15 | 0.65  | -0.10 | 0.75  |   |
| 2 305                           | 6            | 0.35            | -1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.12 | -1.35 | -0.51 | -1.14 |   |
| - a07                           | 7            | 0.35            | 0.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.35 | 0.67  | -0.71 | 0.77  |   |
| ans                             | 8            | -2.87           | -1.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.10 | -1.16 | -0.25 | 0.91  |   |
| a09                             | 9            | 0.35            | 0.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.26 | 0.77  | -0.56 | 0.91  |   |
| a10                             | 10           | 0.35            | -1.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.28 | -1.16 | -0.25 | -1.12 |   |
| a11                             | 11           | 0.35            | 0.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.06  | 0.77  | -0.64 | 0.91  |   |
| a12                             | 12           | 0.35            | 0.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1.32 | 0.77  | -2.42 | 0.91  |   |
| - C a13                         | 13           | 0.35            | 0.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.46 | 0.77  | -0.47 | 0.91  |   |
| - C a14                         | 14           | 0.35            | 0.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -2.07 | 0.77  | 0.23  | 0.61  |   |
| - C a15                         | 15           | 0.35            | 0.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.06  | 0.77  | -0.19 | 0.91  |   |
| <b>C</b> a16                    | 16           | 0.35            | -0.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -2.23 | 0.77  | 0.33  | -1.20 |   |
| 🔚 🚺 a17 🛛 🖌 💌                   | 17           | 0.35            | 0.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.04  | 0.77  | -0.27 | 0.87  |   |
| aming method                    | 18           | -2.87           | -1.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.10 | -3.08 | -2.42 | 0.91  |   |
| thodName=Improved ChAID (Tsc A) | 19           | 0.35            | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.03 | 0.13  | -0.14 | 0.04  |   |
| thodClassName=TArbreDecision    | 20           | -2.87           | 0.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -2.37 | -1.16 | -0.25 | -1.12 |   |
| H8 0.05                         | 21           | 0.35            | 0.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.12 | 0.77  | -0.47 | 0.91  |   |
| rge=0.05                        | 22           | -2.87           | 0.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.17  | -1.16 | -0.25 | -1.12 |   |
| eBonferroni=1                   | 23           | 0.35            | 0.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.06  | 0.77  | -0.16 | 0.91  |   |
| ueBonferroni=1                  | 24           | -2.87           | -3.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.17  | -1.16 | -0.25 | -1.12 |   |
| mpling=U 🕑                      | 25           | 0.35            | 0.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.24 | 0.77  | -0.19 | 0.91  |   |
| amples selection                | 26           | 0.35            | 0.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.21  | 0.77  | -2.42 | 0.91  |   |
| examples selected               | 27           | 0.35            | 0.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.30 | 0.77  | -0.62 | 0.65  |   |
| ) examples ible                 |              | 10.07           | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.07  |       | 0.05  | 0.00  |   |

### Learning algorithm and parameters settings

The INDUCTION METHOD / STANDARD ALGORITHM menu enables us to choose the learning algorithm. We select the NEURAL NETWORK tab and click on MULTILAYER PERCEPTRON method.

| 🔉 Sipina Research Ver     | sion                           |                |                             |                  |                  |                   |       |           |          |
|---------------------------|--------------------------------|----------------|-----------------------------|------------------|------------------|-------------------|-------|-----------|----------|
| File Edit Data Statistics | Induction                      | method 🖌       | Analysis View               | Window H         | Help             |                   |       |           |          |
| <u>B 🗟 😫 h </u>           | Standa                         | rd algorithr   | n 🕇                         |                  |                  |                   |       |           |          |
|                           | Boostin                        | ig strategie   | s                           |                  |                  |                   |       |           | <u> </u> |
| Attribute selection       |                                | INA Lea        | rnnig s <mark>et e</mark> o | ditor            |                  |                   |       |           |          |
| 🖃 📭 Class attribute       | ^                              |                | a01                         | a03              | a04              | a05               | a06   | a07       |          |
| D class                   |                                | 1              | 0.35                        | 0.72             | -0.24            | 0.48              | -0.21 | 0.57      |          |
| Predictive attributes     |                                | 2              | 0.35                        | 0.72             | -0.53            | 0.63              | -1.03 | -1.34     |          |
|                           | Select an i                    | induction n    | nethod                      |                  |                  |                   |       |           |          |
| a03                       | Induction Gr                   | aph Ì Rule Ind | Juction Neural ne           | etwork secrimina | ant analysis Dec | sision list Other | 1     |           |          |
| a05                       | Single-Layer                   | Perceptron     | W                           | N-               |                  |                   |       |           | _ =      |
| a06                       | Multi-Layer F<br>Multi-Layer F | Perceptron     | st Firor rate contro        | )                |                  |                   |       |           |          |
| - C a07                   |                                |                |                             | ,<br>,           |                  |                   |       |           |          |
| - <b>C</b> a08            |                                |                |                             |                  |                  |                   |       |           |          |
| — <mark>C</mark> a09      |                                |                |                             |                  |                  |                   |       |           |          |
| <b>C</b> a10              |                                |                |                             |                  |                  |                   |       |           |          |
| a11                       |                                |                |                             |                  |                  |                   |       |           |          |
| a12                       |                                |                |                             |                  |                  |                   |       |           | _        |
| Learning method           | -                              |                |                             | Multi-Lay        | er Perceptron    |                   |       |           | -        |
| MethodName=Improved ChA   | I                              |                |                             |                  |                  |                   | 🗸 ОК  | 🗙 Annuler |          |
| MethodClassName=TArbreDe  |                                | 16             | 0.35                        | -0.26            | -2.23            | 0.77              | 0.33  | -1.20     |          |
| Merge=0.05                | E                              | 17             | 0.35                        | 0.72             | 0.04             | 0.77              | -0.27 | 0.87      |          |
| Split=0.01                |                                | 18             | -2.87                       | -1.29            | -0.10            | -3.08             | -2.42 | 0.91      |          |
| TypeBonferroni=1          |                                | 19             | 0.35                        | 0.06             | -0.03            | 0.13              | -0.14 | 0.04      |          |
| Sampling=0                | ~                              | 20             | -2.87                       | 0.72             | -2.37            | -1.16             | -0.25 | -1.12     | _        |
| Examples selection        |                                | 21             | 0.35                        | 0.72             | -0.12            | 0.77              | -0.47 | 0.91      | _        |
| 231 examples selected     |                                | 22             | -2.87                       | 0.72             | 2.17             | -1.16             | -0.25 | -1.12     | _        |
| 120 examples idle         |                                | 23             | 0.35                        | 0.64             | 0.06             | 0.77              | -0.16 | 0.91      | ~        |
|                           |                                | <              |                             |                  |                  |                   |       |           | >        |
| Improved ChAID (Tschuprow | Goodness of                    | f Split)       |                             |                  |                  |                   |       |           |          |

When we click on the OK button, a new dialog box appears. We can set the architecture of the perceptron and the training parameters.

| MLP parameter            |                 |
|--------------------------|-----------------|
| Max. Error 0.01 Max iter | ation   5000 🚖  |
| MLP Structure            | Nodes per layer |
| Hidden layer 1 文         | 2               |
| Learning rate 0.15       |                 |
|                          | 🗸 ок            |

We note that we choose a high MAX ITERATION (5000). That does not matter because we can view the error rate decreasing and interactively stop the learning process in SIPINA.

| 🔉 Sipina Research Version           |             |           |            |       |       |       | ×  |  |  |  |
|-------------------------------------|-------------|-----------|------------|-------|-------|-------|----|--|--|--|
| File Edit Data Statistics Induction | method Anal | ysis View | Window Hel | p     |       |       |    |  |  |  |
| 🖰 🗃 👺 🐴 🕒                           |             |           |            |       |       |       |    |  |  |  |
| Attribute selection                 |             |           |            |       |       |       |    |  |  |  |
| 🖃 🗊 Class attribute 🛛 🔼             |             | a01       | a03        | a04   | a05   | a06   |    |  |  |  |
| 📃 🛄 class 📃                         | 1           | 0.35      | 0.72       | -0.24 | 0.48  | -0.21 |    |  |  |  |
| Predictive attributes               | 2           | 0.35      | 0.72       | -0.53 | 0.63  | -1.03 |    |  |  |  |
| a01                                 | 3           | 0.35      | 0.72       | -0.17 | 0.77  | -0.25 |    |  |  |  |
| aU3                                 | 4           | 0.35      | 0.72       | -1.12 | 0.77  | 1.92  |    |  |  |  |
| au4                                 | 5           | 0.35      | 0.72       | -0.15 | 0.65  | -0.10 |    |  |  |  |
| a05                                 | 6           | 0.35      | -1.25      | -0.12 | -1.35 | -0.51 |    |  |  |  |
| Learning method                     | 7           | 0.35      | 0.68       | -0.35 | 0.67  | -0.71 |    |  |  |  |
| MethodName-Multi-Layer Perceptron   | 8           | -2.87     | -1.29      | -0.10 | -1.16 | -0.25 |    |  |  |  |
| Hdl=21                              | 9 🛌         | 0.35      | 0.64       | -0.26 | 0.77  | -0.56 |    |  |  |  |
| Max Iter=5000                       | 10          | 0.35      | -1.33      | -0.28 | -1.16 | -0.25 |    |  |  |  |
| Max Error=0.01                      | 117         | 0.35      | 0.72       | 0.06  | 0.77  | -0.64 |    |  |  |  |
| Layers=1                            | 12          | 0.35      | 0.72       | -1.32 | 0.77  | -2.42 |    |  |  |  |
| Layer_1=2                           | 13          | 0.35      | 0.72       | -0.46 | 0.77  | -0.47 |    |  |  |  |
|                                     | 14          | 0.35      | 0.72       | -2.07 | 0.77  | 0.23  |    |  |  |  |
| 1 1                                 | 15          | 0.35      | 0.72       | 0.06  | 0.77  | -0.19 |    |  |  |  |
| Examples selection                  | 16          | 0.35      | -0.26      | -2.23 | 0.77  | 0.33  |    |  |  |  |
| 231 examples selected               | 17          | 0.35      | 0.72       | 0.04  | 0.77  | -0.27 |    |  |  |  |
| 120 examples idle                   | 18          | -2.87     | -1.29      | -0.10 | -3.08 | -2.42 | ~  |  |  |  |
|                                     | <           |           |            |       |       | >     |    |  |  |  |
| Multi-Layer Perceptron              |             |           |            |       |       |       | // |  |  |  |

### Learning process

We select the ANALYSIS / LEARNING menu. A new window appears, we can follow the error rate progression. A STOP button enables us to stop the processing.



**Error rate evolution** shows the error rate progression, we see that we obtain an error rate of 0.009 at the iteration 624. The confusion matrix is at the right part of the window.

The **STOP PROCESS** button is very important. We can stop the processing when we think that we cannot obtain a significant improvement in the remaining iterations.

In the bottom part of the window, when we select a neuron, the associated weights are displayed.

### Test error rate

In order to apply the prediction model on the test set, we click on the ANALYSIS / TEST menu.

| Analysis Now W      |                                                  |  |  |  |  |  |  |
|---------------------|--------------------------------------------------|--|--|--|--|--|--|
| Define class attril | Define class attribute<br>Select active examples |  |  |  |  |  |  |
|                     | inpies                                           |  |  |  |  |  |  |
| Set weight held     |                                                  |  |  |  |  |  |  |
| Set costs           |                                                  |  |  |  |  |  |  |
| Learning            |                                                  |  |  |  |  |  |  |
| Stop analysis       |                                                  |  |  |  |  |  |  |
| Classification      | •                                                |  |  |  |  |  |  |
| Test                |                                                  |  |  |  |  |  |  |
| LIFT ROC curv       | e                                                |  |  |  |  |  |  |
| Error measureme     | nts 🕨 🕨                                          |  |  |  |  |  |  |
| Feature selection   | •                                                |  |  |  |  |  |  |
| Personnal tests     | •                                                |  |  |  |  |  |  |

In the subsequent dialog box, we set the following option.

| Apply classifier on            |           |  |  |  |  |  |  |
|--------------------------------|-----------|--|--|--|--|--|--|
| Apply on                       |           |  |  |  |  |  |  |
| C Learning set                 |           |  |  |  |  |  |  |
| Inactive examples of Databases |           |  |  |  |  |  |  |
| 🗸 ок                           | X Annuler |  |  |  |  |  |  |

The confusion matrix appears in a new window. The test error rate is 0,0917.

| 😹 Confusion ma |      |     |  |  |  |  |  |  |  |
|----------------|------|-----|--|--|--|--|--|--|--|
| - class        |      |     |  |  |  |  |  |  |  |
|                | good | bad |  |  |  |  |  |  |  |
| good           | 76   | 0   |  |  |  |  |  |  |  |
| bad            | 11   | 33  |  |  |  |  |  |  |  |
|                |      |     |  |  |  |  |  |  |  |
|                |      |     |  |  |  |  |  |  |  |
|                |      |     |  |  |  |  |  |  |  |
|                |      |     |  |  |  |  |  |  |  |
| Cost : 0.0917  |      |     |  |  |  |  |  |  |  |

#### Using a validation set

We can follow the learning process in SIPINA; the utilization of the validation set is more interesting. We can stop the learning process when the validation error rate does not decrease. The learning set is thus split into two parts: the first, says "training set", is used for the computation of the weights of the network; the second, says "validation set", is used for a "honest" evaluation of the error rate.

We close all the windows the WINDOW / CLOSE ALL menu. In order to include the utilization of a validation set in the learning process, we select a new algorithm: INDUCTION METHOD / STANDARD ALGORITHM menu, MULTILAYER PERCEPTRON (TEST ERROR RATE CONTROL) option.



The learning set size is 231. We set 70% of them as a training set (70% of 231 = 161 examples), and the remaining as validation set (231 - 161 = 70 examples).



We click on the ANALYSIS / LEARNING menu in order to execute the learning process. Two curves appear now in the chart. In some cases, the validation error rate may increase when we have overfitting.



The confusion matrix on the test set gives the following results (ANALYSIS / TEST menu).

| 🔉 Confusion ma | atrix : Test set o | n NEW.FDM 🔳 🗖 🔀 |
|----------------|--------------------|-----------------|
| - class        |                    |                 |
|                | dooq               | bad             |
| good           | 76                 | 0               |
| bad            | 11                 | 33              |
|                |                    |                 |
| Cost : 0.0917  |                    |                 |

# Training a neural network with WEKA

When we execute WEKA (<u>http://www.cs.waikato.ac.nz/ml/weka/</u>), a dialog bow appears, which allows us to choose the execution mode of the software. We select the **KNOWLEDGE FLOW** mode. We have used the **3.5.1** version in this tutorial.



## Importing the dataset

The ARFF LOADER component enables to import the dataset.



## Splitting the dataset

The TRAINTEST SPLITMAKER (EVALUATION tab) enables to split the dataset into learning and test set.



We connect the ARFF LOADER component to this new component; we use the DATASET connection.

| 🔹 Weka KnowledgeFlow Environment |                 |                  |                              |                         |               |                      |         |          |  |
|----------------------------------|-----------------|------------------|------------------------------|-------------------------|---------------|----------------------|---------|----------|--|
|                                  | ataSources D    | ataSinks 🛛 Filte | rs Classifiers Clu           | sterers Associ          | iations Evalu | ation Visualiza      | ation   | R        |  |
|                                  | Evaluation      |                  |                              |                         |               |                      |         | 2        |  |
|                                  |                 |                  |                              |                         |               |                      |         |          |  |
| 6                                | Training        | TestSet          | CrossValidation<br>FoldWater | TrainTest<br>SolitWakar | Class         | ClassValue<br>Dicker | Cl      |          |  |
| :                                | Seculater       | Maker            | rolanaker                    | opriceater              | Assigner      | FICKEI               | Perrorm |          |  |
| Knowled                          | lge Flow Layou  | rt               |                              |                         |               |                      |         |          |  |
|                                  |                 |                  |                              |                         |               |                      |         | <u>^</u> |  |
|                                  |                 |                  |                              |                         |               |                      |         |          |  |
|                                  |                 |                  | _                            |                         |               |                      |         | =        |  |
|                                  |                 |                  |                              |                         |               |                      |         |          |  |
|                                  | 4               | edata            | dataSet                      |                         |               |                      |         | _        |  |
|                                  |                 | ARFF             |                              | NA COD                  |               |                      |         |          |  |
|                                  | A               | Edit             | elete                        | TrainTest               |               |                      |         |          |  |
|                                  |                 | c                | onfigure                     | opiiteakei              |               |                      |         |          |  |
|                                  |                 | Conn             | ections                      |                         |               |                      |         |          |  |
|                                  |                 | a in             | stabet                       |                         |               |                      |         |          |  |
|                                  |                 | Actio            | ns                           |                         |               |                      |         | ~        |  |
| <                                |                 | S                | art loading                  |                         |               |                      | >       |          |  |
| _<br>Status —                    |                 |                  |                              |                         |               |                      |         |          |  |
| Welcom                           | e to the Weka k | (nowledge Flo    | N                            |                         |               |                      | Lo      | g        |  |

#### Learning algorithm and parameters

In WEKA, the last column of the dataset is the default class attribute; the other columns are the predictive attributes. If we have not this configuration, we must use the CLASS ASSIGNER component.

The supervised learning methods are in the CLASSIFIERS tab. We add the MULTILAYER PERCEPTRON component in the diagram. We click on the CONFIGURE menu in order to set the right parameters.



We set two neurons in the hidden layer (HIDDENLAYERS); the learning rate is 0.15 (LEARNING RATE); we do not use attribute transformation (NORMALIZE ATTRIBUTES = FALSE); the max number of iteration is set to 100 (TRAINING TIME); and we do not use a validation set (VALIDATION SET SIZE = 0).

We connect twice the TRAINTEST SPLITMAKER to this new component; we use the "training set" (1) and the "test set" (2) connections.



In order to visualize the weights of the network, we add the TEXT VIEWER component from the VISUALIZATION tab. We use the TEXT connection.



To launch the learning process, we click on the START LOADING menu of the ARFF LOADER component (1). And to display the results, we click on the SHOW RESULTS menu of TEXT VIEWER (2).



The weights of the Multilayer Perceptron appear in a new window.

| 👉 Text Viewer                  |                                |   |  |  |  |
|--------------------------------|--------------------------------|---|--|--|--|
| Result list                    | _ Text                         |   |  |  |  |
| 13:54:38 - Model: MultilayerPe | === Classifier model ===       | ^ |  |  |  |
|                                | Scheme: MultilayerPerceptron   |   |  |  |  |
|                                | Relation: std_ionosphere.arff  |   |  |  |  |
|                                | Sigmoid Node O                 | _ |  |  |  |
|                                | Inputs Weights                 |   |  |  |  |
|                                | Threshold -4.244848248550268   |   |  |  |  |
|                                | Node 2 4.168023899769535       |   |  |  |  |
|                                | Node 3 4.474384831290525       |   |  |  |  |
|                                | Sigmoid Node 1                 |   |  |  |  |
|                                | Inputs Weights                 |   |  |  |  |
|                                | Threshold 4.244855092664962    |   |  |  |  |
|                                | Node 2 -4.149867185140021      |   |  |  |  |
|                                | Node 3 -4.491785451471164      |   |  |  |  |
|                                | Sigmoid Node 2                 |   |  |  |  |
|                                | Inputs Weights                 |   |  |  |  |
|                                | Threshold 0.270235840429924    |   |  |  |  |
|                                | Attrib a01 2.7367610444517725  |   |  |  |  |
|                                | Attrib a03 -0.7144783417552728 | ~ |  |  |  |
|                                |                                | > |  |  |  |

#### Test error rate

We must add two new components in the diagram in order to apply the network on the test set and visualize the confusion matrix. First, we add the CLASSIFIER PERFORMANCE EVALUATOR (EVALUATION tab) in the diagram and we use the BATCH CLASSIFIER connection.



Second, we add a new TEXT VIEWER component to visualize the results (TEXT connection).



We must execute again the learning process (START LOADING of the ARFF LOADER component). We click on the SHOW RESULTS menu of TEXT in order to display the results.

| 🖢 Text Viewer                  |                                                                    |                             |        |                        |           |       |          |
|--------------------------------|--------------------------------------------------------------------|-----------------------------|--------|------------------------|-----------|-------|----------|
| Result list                    | Text                                                               |                             |        |                        |           |       |          |
| 14:07:42 - MultilayerPerceptro | === Evaluation re                                                  | sult ===                    |        |                        |           |       | ^        |
|                                | Scheme: Multilaye<br>Relation: std_ion                             | rPerceptron<br>osphere.arff |        |                        |           |       |          |
|                                | Correctly Classified Instances<br>Incorrectly Classified Instances |                             |        | 98<br>22               | 81.6667 % |       |          |
|                                | Kappa statistic 0.6162                                             |                             |        |                        |           |       |          |
|                                | Mean absolute error 0.2005                                         |                             |        | 0.2005                 |           |       |          |
|                                | Root mean squared error 0.395                                      |                             |        | 0.3938<br>40 6467 %    |           |       |          |
|                                | Relative absolute error 40.0407                                    |                             |        | 40.0407 %<br>79.7035 % |           |       |          |
|                                | Total Number of Instances 120                                      |                             |        | 120                    | . 🔳       |       |          |
|                                |                                                                    |                             |        |                        |           |       |          |
|                                | === Detailed Accuracy By Class ===                                 |                             |        |                        |           |       |          |
|                                | TP Rate FP Rate                                                    | Precision                   | Recall | F-Measure              | ROC Area  | Class |          |
|                                | 0.955 0.358                                                        | 0.771                       | 0.955  | 0.853                  | 0.792     | good  |          |
|                                | 0.642 0.045                                                        | 0.919                       | 0.642  | 0.756                  | 0.792     | bad   |          |
|                                | === Confusion Mat                                                  | rix ===                     |        |                        |           |       |          |
|                                | a b < clas                                                         | sified as                   |        |                        |           |       |          |
|                                | 643 a=goo                                                          | a 丿                         |        |                        |           |       |          |
|                                | 1934   b = bad                                                     |                             |        |                        |           |       |          |
|                                |                                                                    |                             |        |                        |           | ) -   | <u> </u> |
|                                |                                                                    |                             |        |                        |           | J .   | 7        |

There are 120 examples in the test set. The test error rate is 18.33%.

# Conclusion

We note in this tutorial that the logic of the training and the evaluation of a neural network is the same one, whatever the software used.

The implementation of a perceptron is finally rather simple. The interpretation of the results, in particular the comprehension of the weights of the network, is definitely more complicated.