Tanagra - Tutorials R.R.

1 Topic

Describing the post-pruning process during the induction of decision trees (CART algorithm,
Breiman and al., 1984 — C-RT component into TANAGRA).

Determining the appropriate size of the tree is a crucial task in the decision tree learning process. It
determines its performance during the deployment into the population (the generalization process).
There are two situations to avoid: the under-sized tree, too small, poorly capturing relevant
information in the training set; the over-sized tree capturing specific information of the training set,
which specificities are not relevant to the population. In both cases, the prediction model performed

poorly during the generalization phase.

The trade-off between the tree size and the generalization performance is often illustrated by a
graphical representation where we see that there is an “optimal” size of the tree (Figure 1). While the
error on the training sample decreases as the tree size increases, the true error rate is stagnant, then

deteriorates when the tree is oversized.
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Figure 1 - Tree size and generalization error rate (Source: http://fr.wikipedia.org/wiki/Arbre _de_décision)

Determining the appropriate size of the tree is thus to select, among the many solutions, the more
accurate tree with the smallest size. Simplifying decision tree is advantageous, beyond the
generalization performance point of view. Indeed, a simpler decision is easier to deploy and the

interpretation of the tree is also easier.

In their book, Breiman and al. (CART method, 1984) are the first which identify clearly the overfitting
problem in the induction tree context. They propose the post-pruning process to avoid this problem.

This idea was implemented later by Quinlan in the C4.5 method (1993), but in a different way.

Basically, the construction is performed in two steps. First, during the growing phase, in a top down

approach, we create the tree by splitting recursively the nodes. Second, during the pruning phase, in
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a bottom up approach, we prune the tree by removing the irrelevant branches i.e. we transform a
node to a leaf by removing the subsequent nodes. This is during this second step that we try to

select the most performing tree.

In the simplest version of CART, the training set is subdivided into two parts: the growing set, which
used during the growing phase; and the pruning set, which used during the pruning phase. The aim

is to search the optimal tree on this pruning set.

To avoid the overfitting on the pruning set, CART implements two strategies. (1) CART does not
evaluate all the candidate subtrees in order to detect the best one. It uses the cost complexity
pruning approach in order to highlight the candidate trees for the post-pruning. This process
enables above all to insert a kind a smoothing in the exploration of the solutions. (2) Instead of the
selection of the best subtree, this one which minimizes the error rate, CART selects the simplest tree
based on the 1-SE rule i.e. the simplest tree for which the error rate is not upper than the best
pruning error rate plus the standard error of the error rate. It enables to obtain a simpler tree and, in

the same time, by preserving the generalization performance.

In this tutorial, we show to implement the CART approach into TANAGRA. We show also how to set
the settings in order to control the tree size. We will study their influence on the generalization error

rate.

2 Dataset

We use the ADULT_CART_DECISION_TREES.XLS" from the UCI Repository?.

There are 48,842 instances and 14 variables. The target attribute is CLASS. We try to predict the
salary of individuals (is the annual income is higher to 50,000% or not) from their characteristics (age,

education, etc.).

The training set size is 10,000. They are used for the construction of the tree. In the CART process,
this dataset will be subdivided into growing and pruning set. The test set size is 38,842. They are
only used for the evaluation of the generalization error rate. We note that this part of the dataset
(the test set) is never used during the construction of the tree, neither for the growing phase, neither
for the pruning phase. The INDEX column enables to specify the belonging of an instance to the

train or the test set.

Our goal is to learn, based on the CART methodology, a decision tree that is both effective (with the

lowest generalization error rate) and simple (with the fewest leaves - rules - as possible).

* Accessible en ligne : http://eric.univ-lyon2.fr/~ricco/tanagraffichiers/adult cart decision trees.zip
* http://archive.ics.uci.edu/ml/datasets/Adult
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3 Learning a decision tree with the CART approach

3.1

icrosoft Excel - adult rees.xls
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Importing the data file and creating a diagram

The simplest way to launch Tanagra is to open the data file into Excel. We select the data range;
then we click on the Tanagra menu installed with the TANAGRA.XLA add-in®. After we checked the

coordinates of the selected cells, we click on OK button.
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3 See http://data-mining-tutorials.blogspot.com/2008/10/excel-file-handling-using-add-in.html
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TANAGRA is automatically launched and the dataset imported. We have 48,842 instances and 15

columns (including the INDEX column).

i TANAGRA 1.4.22 - [Dataset (tan49. txt)]
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3.2 Specifying the train and the test sets

We add the DISCRETE SELECT EXAMPLES component (INSTANCE SELECTION tab). We click on

the PARAMETERS menu. We set INDEX = LEARNING in order to select the train set.

" TANAGRA 1.4.22 - [Dataset (tan49.txt)]

3 (X)

E File Disgram Component ‘window Help ==
=
— o beettessyC
= L s
~
B Database : C\DOCUME~1WaisomLOCA LS= 1" Tempitandd, txt
m Attribute-value examples selection,
~
Execute ~
N
tew P\ Feremeters |
Mtrbute - | index v‘g
e, e — (]
ok [ caneel [ Helo |
Attribute Category Informations
age Continue
winrleelass Nicrrata 2 ualies M
Components
Data wisualization Statistics Manparametric statistics Instance selection Feature construction
Feature selection Regression Factorial analysis PLS Clustering
Spw learning. eta-spy learning Spy learning assessment Scoring Association

&Recwer examples

,Q’:D‘screte select examples

#"Continuous select examples/ 4~ Rule-based selection

fSampling
fStratiﬁed sampling

2 janvier 2010

Page 4 sur 14



Tanagra - Tutorials

R.R.

Then, we click on the VIEW menu: 10,000 examples are selected for the induction process.
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3.3 Target variable and input variables

We want to specify the problem to analyze.

We add the DEFINE STATUS component into the diagram. We set CLASS as TARGET; all the other

variables (except the INDEX column) as INPUT.
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3.4 Learning a decision tree with the C-RT component

The C-RT component is an implementation of the CART algorithm, as it is described in the Breiman's

book (Breiman and al., 1984). We use the GINI index as an indicator of goodness of split in the

growing phase, and a separate pruning set is used in the post-pruning process.

We add the C-RT component (SPV LEARNING tab) into the diagram. We click on the VIEW menu.
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Let us describe the various sections of the report supplied by Tanagra.

3.4.1 Confusion matrix

Classifier performances

Error rate 0.1490

Values prediction Confusion matrix

Valus Recall T-recision  more  less  Sum

more 0,547
less 0.9453

0.2431 more 1298 1073 2371
0.1295 [less| 417 7212 7629
Sum 1715 5285 10000

The confusion matrix is computed on the whole training set (growing + pruning). On our dataset, the

error rate is 14.9%. We know that because it is computed on the learning set, the resubstitution
error rate is often (not always) optimistic.
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3.4.2 Subdivision of the learning set into growing and pruning sets

Data partition

Grawing set

Pruning =et

&700
F300

Next, Tanagra displays the repartition of the learning set (10,000 instances) into growing (6,700) and

pruning sets (3,300).

3.4.3 Trees sequence

32
28
20

1

Trees sequence (¥ 32)

1 0.2363
4 0. 1444
39 01193
205 0.0904

H" #Leaves Err{growing set) Err {pruning set)

0.2355
0.1539
0.1479
0.1700

The next table shows the candidate trees for the final model selection. For each tree, we have the

number of leaves, the error rate on the growing set, and the error rate on the pruning set:

e The largest tree has 205 leaves, with an error rate of 9.04% on the growing set, and 17% on the

pruning set.

e The optimal tree according to the pruning set contains 39 leaves, with an error rate of 14.79%.

e But, C-RT, based on the 1-SE principle, prefers the tree with 6 leaves with an error rate of 15.39%

(on the pruning set). According the CART authors, this procedure enables to reduce dramatically

the size of the selected tree (the initial tree contains 205 leaves!), without a diminution of the

generalization performance. We will describe more deeply this approach below.

3.4.4 Tree description

Tree description

Mumber of nodes 11

Mumber of leaves 4]

Decision tree

= education in

& relationship in [Husband,w'ife]
& education in [Masters,Bachelors,Doctarate Prof-schoal] then salary = more (73,15 % of 209 examples)

[Fth-8th,H5-grad,5ome-colege Assoc-voc,Assoc-acdm, 1 1th, 10th,Preschool, 12th, 1st-dth,9th, 5th-&th)
& capital_gain = RO95, 5000
& capital_lozs < 1794.0000 then zalary = less (72,94 % of 1963 examples)
& capital_lozs == 1794,0000 then salary = more (71,79 % of 73 examples)
® capital_gain == BO9E, 8000 then salary = more (94,45 % of 112 examples)
# relationship in Mot-in-family ,Own-child,Unmar ried,Other-relative]
& capital_gain < 7073, 8000 then salary = less (24,87 % of 3608 examples)
& capital_gain == 7073.5000 then zalary = nwore (93,22 % of 59 examples)

The final section of the report describes the induced decision tree.
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Evaluation on the test set

{ TAMAGRA 1.4.22 - [Supervised Learning 1 (C-RT)]

Both the growing and the pruning sets are used during the tree construction. They cannot give an

honest estimate of the error rate. For this reason, we use a third part of the dataset for the model
assessment: this is the test set.

We insert the DEFINE STATUS component into the diagram, we set SALARY as TARGET, and the
predicted values computed from the decision tree (PRED_SPVINSTANCE_1) as INPUT.
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1 TANAGRA 1.4.22 - [Test 1]

Then, we add the TEST component (SPV LEARNING ASSESSMENT tab). By default, it computes the

confusion matrix, and thus the error rate, on the previously unselected instances i.e. the test set.

EF”E Diagram  Component  “Window  Help

=0 4
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E
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= BB Dataser fran®h ol L eaamees
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M
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h Execute
' , Yoo Recall threcision  more  less  Sum
i
} more 0.5437 02413 [more| 5065 4251 9318
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H
1 Sum G676 32166 36842
1
1
I Computation time : 0 ms,
: Created at 27 f02 f2008 D&:41:40
s
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E?EEias-vaﬁance decomposition I?ELeave-One-Out
E?EEDDtstraD q?HTsst
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We click on the VIEW menu. The test error rate is 15.09%, computed on 38,842 instances.

This is an estimated value of course. But it is rather reliable since it is computed on a large sample;

the confidence interval of the error rate is [0.1473; 0.1545] for a 95% confidence level.

4 Some variants about the tree selection

4.1 The x-SE RULE principle

Why do we not select the optimal tree on the pruning set?

The first reason is that we must not transfer the overfitting from the growing set to the pruning set.
The second reason is that a deeper study of the error rate curve according to the tree size shows that
we can select many solutions. It is more suitable to select the simplest tree for the deployment and

the interpretation.

4.1.1  Errorrate curve according to the tree size

To obtain the detailed values of the error rate according to the tree size, we click on the
SUPERVISED PARAMETERS menu of the SUPERVISED LEARNING 1 (C-RT) component. We
activate the SHOW ALL TREE SEQUENCE option.

1 TANAGRA 1.4.22 - [Test 1]

m File Diagram Component window Help E
B %
Andlysis C-RT parameters
=] Dataset (tandd.txt) Parameters
= #" Discrete select examples 1 Evaluation set : unsele
=% Define status 1 hin size of node to split
ERDN 5uperiised Lear Pruning set size (%)
= %4 Define status 2 Parameters... wsERUe 1
H;H Test 1 Supervised parameters >
. Randaorm number generator
view dictior O Randorn
¥alue Recall 1-Preci @8
more 01,5437 0.
Show all tree sequence (even if > 15) g
less 0,945 0.
ok [ canesl ][ Heln ]
Computation time : O ms.
Created at 27 /0272008 06:41:40
Components
Data wisualization Statistics MNonparametric statistics Instance selection Feature construction
Feature selection Regression Factorial analysis PLS Clustering
Spw learning Meta-spy learning Spy learming assessment Scoring Association

E?EBias-var‘iance decomposition I?ELeave-One-Out
frlBootstrap o Test
E?ECross-vaHdatw‘on H?HTrain-test

We click on the VIEW menu. The detailed values of the error rate are given in the “Tree Sequence”

table now (Tableau 1). We can obtain a graphical representation of these values (Figure 2).

We note that the tree with 6 leaves is very close, according the pruning error rate, to the optimal

tree. The difference seems not significant.
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N© # Leaves Err (growing| Err (pruning
set) set)

32 1 0.2363 0.2388
31 3 0.1748 0.1806
30 4 0.1593 0.1664
29 5 0.1516 0.1567
28 6 0.1466 0.1539
27 7 0.1446 0.1497
26 11 0.1391 0.1488
25 16 0.1340 0.1488
24 21 0.1293 0.1485
23 22 0.1284 0.1488
22 28 0.1248 0.1485
21 33 0.1221 0.1494
20 39 0.1193 0.1479
19 43 0.1176 0.1479
18 46 0.1164 0.1506
17| 51 0.1148 0.1521
16 73 0.1082 0.1552
15 80 0.1064 0.1558
14 83 0.1057 0.1555
13 91 0.1039 0.1552
12 94 0.1033 0.1552
11 107 0.1009 0.1567
10 116 0.0994 0.1570
9 139 0.0960 0.1606
8 154 0.0942 0.1642
7 158 0.0937 0.1642
6 168 0.0927 0.1648
5 174 0.0921 0.1670
4 188 0.0910 0.1679
3 194 0.0907 0.1691
2 199 0.0906 0.1700
1 205 0.0904 0.1700

Tableau 1 - Tree sequence description - Growing / pruning error rate

0.23

0.21

Error rate according to the tree complexity

—e— Err. Growing set
—e— Err. Pruning set

20 40 60 80 100

120 140

# leaves

160 180

200

220

Figure 2 - Evolution of the error rate according to the tree size
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4.1.2 The 1-SE RULE tree selection

How C-RT selects the tree with 6 leaves? The idea is to select the simplest tree for which the pruning
error rate is not significantly higher than the one of optimal tree. For this, it computes a value which

is similar to the higher limit of the confidence interval of the error rate of the optimal tree.

In our case, the optimal tree has 39 leaves, with an error rate of &=0.1479. The estimated

standard error is

=0.00617977

n 3300

oe \/gx (L-¢) _ \/0.1479>< (1-0.1479)

The upper limit defined by the 1-SE RULE (0 =1) is

c.n=E+0x0o=c+1x0c=0.1541

seuil

Thus, we search in the table above the simplest tree for which the pruning error rate is not higher

than this limit. It is the tree n°28 with 6 leaves; the pruning error rate is 0.1539.

4.1.3 Accuracy of the o-SE RULE (0 = o) tree on the test set

We see above that the test error rate of the tree defined by the 1-SE rule is 15.07% (section 3.5).

What about the performance of the optimal tree (with 39 leaves)? Is it better or worse?

We click on the SUPERVISED PARAMETERS menu of the SUPERVISED LEARNING 1 (C-RT). We
specify the o-SE RULE for the tree selection.

1 TAMAGRA 1.4.22 - [Supervised Learning 1 (C-RT)]

BfBaatstrap
Brfcrossvatidation

E?ﬂE\‘as—uan‘ance decomposition E?ELeaue—One—Out

Pl Test
Bl Trir-test

E File Diagram Component ‘Window Help - 8%
H %
— -RT parametars
= B Datsset [tand2.txt) P P
= ¢ Discrete select examples 1 3 3 Parameters
(= £ Define status 1
Execute
View ..R aderm number ge ot
O Random
i 16
(%) Sandard
24 21
N = ) Shanw o rae sequence fevan i > 15)
2z 5
21 33
= - oK Help.
19 a 1174 n.1479 v
< ¥
Components
Data visualization Statistics Monparametric statistics Instance selection Feature construction
Feature selection Regression Factorial analysis PLS Clustering
Spy learning Mhetaspy learning Spv learning assessment Scoring Aszaciation

We click on the VIEW menu. Not surprisingly, the optimal tree is the selected tree (39 leaves).
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Trees sequence (# 32)

H*® # Leaves Err {growing set) Err ({pruning set)

3z 1 0.2363 0,2385
oy 3 01748 0. 1806
30 4 0.1593 0. 1664
29 5 01518 01867
28 & 0. 1dee 0.1839
27 7 0.14de 0.1497
26 1 0.1391 0.1488
2h 16 0,1340 0.1488
24 21 0.1293 0.1485
23 22 0.1284 0.1488
22 28 01248 0.1485
21 33 01221 0.1494
20 39 0.1193 0.1479

The error rate on the whole learning set (growing + pruning) is 0.1287.

Classifi

er perform dnces

¥alues prediction

more 0.6326
less 0.9455

Confusion matrix

0.2171 1800 871

0.1077 [tess| 418
sum 1516

237
Toiq
10000

F213
G054

To obtain the test error rate, we click on the VIEW menu of the TEST 1 component into the diagram.

i TANAGRA 1.4.22 - [Test 1]
E File Diagram Component ‘Window Help

S =

Analysis

= Dataset (tandd txt)
- & Discrete select examples 1
= ¥4 Define status 1

B IZ‘ Supendsed Learning 1 (C-RT)

Elﬁ'i Define status 2
Hﬂﬂ Test 1

Execute

Parameters...

Evaluation set : unselected examples

__thps predll!ﬂun-_ Confusion matrix

k=

more 06020 02547 [more 5405 3708 5316
tess 09353 01184 |less | 1911 27615 29526
[sum 7513 31323 36842

Computation time : 0 ms.
Created at 27 /02 2008 06:56:36

Components
Data visualization | Statistics | Nonparametrc statistics ‘ Instance selection ‘ Feature construction |
Feature selection | Regression | Factorial analysis ‘ PLS ‘ Clustering |
Spw learning | Metaspv learning | I Spw learning assessment ‘ Scoring ‘ hssociation |

E?EBias-var‘iance decomposition I’E Leave-One-Out
E?EBthstrap H?HTest
Brfcrossatidation Pl Train-test
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The test error rate of the optimal tree (with 39 leaves) is 0.1447. Its confidence interval for the 95%
confidence level is [0.1412; 0.1482]. This tree, which is much larger than the tree defined with the 1-
SE rule principle (39 leaves vs. 6 leaves), is not significantly better (Section 3.5, page 8 — the

confidence interval was [0.1473; 0.1545]).
4.2 Selection of a specific tree

Another way to select the final tree is to use the error rate curve above (Figure 2). According to the
error rate related to each candidate tree (Tableau 1) and our domain knowledge, we can set the

appropriate value 0 in order to obtain a specific tree.

4.2.1  Specifying the parameter 0

Given the error curve (Figure 2), we want to obtain the tree with 7 leaves (tree n°27). Its pruning error
rate is 0.1497. To obtain this tree, we define the parameter theta 0 so that the threshold lies
between the tree with 7 leaves (pruning error rate = 0.1497) and the tree with 6 leaves (pruning error
rate = 0.1539). Through trial and error, it appears that theta = 0.7 is a suitable value, the upper limit

becomes

£y, =0.1479+0.7x0.006 = 0.1522.

We click on the SUPERVISED PARAMETERS of the SUPERVISED LEARNING 1 (C-RT) component,

we set 0 =0.7.

i TANAGRA 1.4.22 - [Test 1]

E File Diagram Component ‘Window Help
E s
C-RT parameters.
Analysis
- P il
= Dataset (tand?.txt) arameters
= & Discrete select examples 1 Evaluation set : unselect
" X Min size of node to split: |10
=% Define status 1
EBD Supervised Learning 1 (C-RT) Pruning set size (%) 7
=-%§ Define status 2 Parameters... — = _> «SERulz: [o7 H
o Test 1 e 3 .
andom number gensrator
Execute rate
- O Random
Vigw ediction|
@ Standard
ore) Selzy 22 [¥] Showw sll tres ssquencs (svan if > 15)
less 0.9353 a.
ok [ cancel J[ Hen
Computation time : 0 ms.
Created at 27022005 06:56:36
Components
Data wisualization Statistics Monparametrc statistics Instance selection Feature construction
Feature selection Regression Factarial analysis PLS Clustering
Spv learning Meta-spy learning Spw learning assessment Scorng fszociation
E?EBias-var‘iance decomposition I?ELeave-One-Out
BrfBontstrap Pl Test
E?ECross-\taHdation H?HTrain-test

The obtained contains actually 7 leaves.
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Tree description

Mumber of nodes 15

Mumber of leaves 7

Decision tree

& relationzship in [Husband,Wife]
# education in [Masters,Bachelors,Doctorate,Prof-school] then salary = more (73,15 % of 209 examples)
» education in
[Fth-8th,H:-grad,~ome-college, Assoc-voo Assoc-acdm, 1 1th, 10th,Preschoal, 12th, 1st-4th,9th, 5th-&th]
® capital_gain < 5095, 5000
» capital_loss = 1794.0000 then salary = less (72,94 % of 1953 examples)
® capital_losz == 1794,0000
& capital_loss < 1989,5000 then zalary = more (91,23 % of 57 examplas)
& capital_loss == 1989.5000 then zalary = less (50,95 % of 21 examples)
® capital_gain == 095, 6000 then salary = more (96,43 % of 112 examplas)
& relationzhip in Mot-in-family,Own-child ,Unmar ried ,Other- relative]
# capital_gain < 7073,5000 then zalary = less (94,87 % of 3608 examples)
» capital_gain == 7073,8000 then salary = more (93.22 % of 59 examples)

Note: According to the tools, we can handle another parameter than theta (e.g. the complexity
parameter for R software, “rpart” package). But, in all cases, the goal is to select the "suitable" tree
from the error rate curve.

4.2.2 Generalization performance of the tree with 6 = 0.7

Last, we want to evaluate this tree on the test set. We click on VIEW menu of TEST 1. We obtain

0.1489. Its confidence interval at the g5% confidence level is [0.1454; 0.1524].

The following table summarizes the various evaluated configurations.

Theta-SE RULE #lLeaves Err.Test 95% Conf.Interval
1 6 0.1509 0.1473; 0.1545
0.7 7 0.1489 0.1454 ; 0.1524
0 39 0.1447 0.1412 ;0.1482

Clearly, the tree with 6 leaves (0 = 1) is enough to get a sufficient level of performance.

5 Conclusion

Among the many variants of decision trees learning algorithms, CART is probably the one that

detects better the right size of the tree.

In this tutorial, we describe the selection mechanism used by CART during the post-pruning process.
We show also how to set the appropriate value of the parameter of the algorithm in order to obtain

a specific (a user-defined) tree.
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