Subject

Using variable clustering components in TANAGRA.

Variable clustering can be viewed like a clustering of the individuals where we would have transposed the dataset. But, instead of the utilization of the euclidean distance in order to compute the similarities between examples, we use the correlation coefficient (or the squared correlation coefficient).

Variable clustering may be useful in several situations. It can be used in order to detect the main dimensionality in the dataset; it may be used also in a feature selection process, in order to select the most relevant attributes for the subsequent analysis. The synthesized variable which represents a group, the main factor of PCA, may be used also.

Variable clustering around latent components. In the 1.4.16 TANAGRA version, we add some methods about variable clustering. They rely on the same principle: the group is depicted by the first factor of PCA (Principal Components Analysis). It is a weighted average of the variables that explains as much variance as possible. The famous SAS procedure is one of the illustrations of this approach¹. Our implementation is based on the Vigneau and Qannari's works (2003)².

Only methods based on the squared correlation coefficients are available. Thus, for the groups' interpretation, we obtain the usual interpretation of the latent factors i.e. in a group, we can have positive or negative correlation on the factor.

Such as in the cases clustering, we implement several techniques. A bottom-up approach, named VARHCA, which is a hierarchical agglomerative approach. VARKMEANS which rely on the K-MEANS algorithm. The users specify the right number of clusters, the algorithm detects the configuration of greatest possible distinction.

A top down method is also available. It is suggested by the famous VARCLUS procedure. But, the iterative reassignment phase is ignored. When a variable is assigned to a group during the splitting process, we do not check if it is more correlated to other groups. Thus, the hierarchical structure of the tree is not maintained, the graphical representation, i.e. the tree, displays only the succession of the operations.

¹ J.P. Nakache et J. Confais, « Approche Pragmatique de la Classification », TECHNIP, 2005, chapter 9, pages 219 to 239, is our main reference. It is in French. Other reference is the SAS version 8,0 on line documentation (chapter 68). It is available here: http://www2.stat.unibo.it/ManualiSas/stat/chap68.pdf

² E. Vigneau et E. Qannari, « Clustering of variables around latent components », Simulation and Computation, 32(4), 1131-1150.

Dataset

In this tutorial, we use the CRIME_DATASET_FROM_DASL.XLS dataset from the DASL library (The Data Story and Library -- <u>http://lib.stat.cmu.edu/DASL/</u>). It depicts the criminality in US states in the 1960's. There are 47 examples and 14 variables in the file.

Clustering Variables with TANAGRA

Creating a new diagram

The simplest way to make an analysis with TANAGRA is to open the dataset in a spreadsheet software such as EXCEL. With the add-in TANAGRA.XLA³, a new menu appears and we can start the process by selecting the whole dataset and clicking on the menu TANAGRA / EXECUTE TANAGRA.

	🛚 Microsoft Excel - crime_dataset_from_DASL.xls									
	<u>Fi</u> chier <u>E</u> dit	ion.	Affichage Inse	ertion Forma <u>t</u>	<u>O</u> utils <u>D</u> onnées	Fe <u>n</u> être <u>?</u> Ta	anagra			_ 8 ×
	😂 🔲 e	5	👌 🌮 🐰 🛛	b 🛍 💅 🕞) + Ci + 🤮	Σ <i>f</i> * 🕃	Execute Tanaç	jra - 🕐 🎗	Arial	- ×
-	N48	-	= 16	50			ð hou t		14	
	Α		В	С	D	E —	ADOUL	G	Н	
1	CrimeRat	te	Male14-24	Southern	Education	Expend60	Expend59	Labor	Male	PopSize
2	- 7!	9.1	151	1	91	58	56	510	950	3(
3	16	3.5	143	0	113	103	95	583	1012	1:
4	5	7.8	142	1	89	45	44	533	969	18
5	19	6.9	136	0	121	149	141	577	994	15
6	12	3.4	141	0	121	109	101	591	985	18
4	6	8.2	121	U	110	118	115	547	964	2
8	9	6.3 E E	127	1	100	82	79	519	962	
9	10:	0.0 5.6	151	1	109	110	e01 ca	553	969	20
11	7	0.6	1/0	<u> </u>	118	71	68	632	1029	
12	16	74	124	0	105	121	116	580	966	10
13		49	134	0	108	75	71	595	972	4.
14	5	1.1	128	Ō	113	67	60	624	972	28
15	6	6.4	135	0	117	62	61	595	986	21
16	75	9.8	152	1	87	57	53	530	986	3(
17	9.	4.6	142	1	88	81	77	497	956	3(
18	5	3.9	143	0	110	66	63	537	977	1(
19	9:	2.9	135	1	104	123	115	537	978	3
20		75	130	0	116	128	128	EuroView		× 5
21	12:	2.5	125	0	108	113	105	_		- 78
22	7.	4.2	126	0	108	74	67		304	3
23	4.	3.9	157	1	89	4/	44	512	962	
24	12	1.6	132	U 0	96	8/	83	564	953	4
20	5	0.0	131	0	110	70	73	D/4 6/1	1030	1
20		2.J 9.3	130	0	170	160	1/3	631	1071	1
28	3	42	135	0	109	69	71	540	965	
29	12	1.6	152	Ö	112	82	76	571	1018	1
30	10-	4.3	119	0	107	166	157	521	938	16. 💌
	► ► \cri	ime	dataset / de	escription /			•			► I
Deg	isin + 🗟 (3	Formes automa	itiques 🕶 🔨 🦄		4 🗕 🔌 •	- <u>4</u> - <u>A</u> - E	= = ≓ □	-	
Prêt	t						Somme=142	460.9	NUM	

In the following dialog box, we check if the selection is right and we validate the process.

³ See the tutorials about the installation of add-in on the website if it are not installed and activated. The add-in is available since version 1.4.11 of TANAGRA.

N	Microsoft Excel - crime_dataset_from_DASL.xls									
	Fichier Edition	Affichage Inse	rtion Forma <u>t</u> y	<u>D</u> utils <u>D</u> onnées	Fe <u>n</u> être <u>?</u> Ta	anagra			_ 8 ×	
1 Pi	📽 🗖 🚑	Ta 🕾 🐰 🛛	6 R. 🗸 🔽) + (x) + (Q)	$\Sigma f_{\rm H} = \frac{1}{2} \int_{-\infty}^{\infty} f_{\rm H} dt$	AL ZI AN I	00% - 겸 🎽	Arial	- »	
1	Al 🔻	= 16	0							
	A	в	С	D	E	F	G	Н		
1	CrimeRate	Male14-24	Southern	Education	Expend60	Expend59	Labor	Male	PopSize	
2	79.1	151	1	91	58	56	510	950	3(
3	163.5	143	0	113	103	95	583	1012	1:	
4	57.8	142	1	89	45	44	533	969	18	
5	196.9	136	0	121	149	141	577	994	15	
6	123.4	141	0	121	109	101	591	985	18	
7	68.2	121	0	110	118	115	547	964	2!	
8	96.3	127	1	111	82	79	519	982		
9	155.5	131	1	109	115	109	542	969	51	
10	85.6	Execu	te Tanaera					955	3	
11	10.5		to ranagra					1029	10	
12	107.4		Dataset range (i	nduding the nam	e of the attribute	es first row):		966	10	
13	04.9		datudbitde	neidding cho hain				972	4,	
14	66.4		\$M\$1.\$N\$40				_	972	20	
16	79.8				OK			986	2.	
17	94.6				OK		icei	956	3	
18	53.9							977	1	
19	92.9	135	1	104	123	115	537	978	3	
20	75	130	0	116	128	128	536	934	5	
21	122.5	125	0	108	113	105	567	985	76	
22	74.2	126	0	108	74	67	602	984	34	
23	43.9	157	1	89	47	44	512	962	22	
24	121.6	132	0	96	87	83	564	953	4.	
25	96.8	131	0	116	78	73	574	1038		
26	52.3	130	0	116	63	57	641	984	14	
27	199.3	131	0	121	160	143	631	1071		
28	34.2	135	0	109	69	71	540	965	L	
29	121.6	152	0	112	82	76	571	1018	10	
30	104.3	dataset / de	scription /	1071	166	157	521	938	161	
	rein - N Ma	Formos put-			4 1 1	<i>A</i> A =	== -=			
Poir	≥≫ir ¥ k° ⊙ nter	rognes automa	uques • 🔪 🕯		AU 1841 💆 🕶	Somme=142	460.9	NUM -		

TANAGRA is automatically opened, the dataset is downloaded. We check again if we have really 14 variables and 47 examples.

🛣 TANAGRA 1.4.16 - [Dataset (tan46.txt)]								
💯 File Diagram Componen	t Window Help						- 8 ×	
D 📽 🔛 🔛								
Analysis		Ī			Datacot (tap (6 tyt)		~	
				Parameters				
		Databa	se : C:\DOCUME~1	Waison\LOCAL	S~1\Temp\tan46.txt			
					•		-	
					Results			
Download information								
	Datasource processing							
Computation time 0 ms								
	Allocated memory 18 KB							
	Dataset description 14 attribute(s) 47 example(s)							
		Attri	bute Category	Informations				
		CrimeF	Rate Continue	-			~	
			Con	nonents				
Data visualization	Statistic	25	Nonparametri	c statistics	Instance selection	Feature construction		
Feature selection	Regressi	on	Factorial	analysis	PLS	Clustering		
Spv learning	Meta-spv lea	arning	Spv learning a	assessment	Scoring	Association		
Correlation scatterplot								

VARHCA

Defining the analysis

Of course, we must specify first the variables of the analysis. We insert the DEFINE STATUS component in the diagram by using the shortcut on the toolbar.

We set as INPUT all the variables, except the variable CRIME RATE which has a particular status in this dataset, we will use it later.

🎬 TANAGRA 1.4.16 - [Define status 1]								
🛣 File Diagram Componen	t Window Help						-	Ξ×
🗅 🗳 🔚 🎎								
Analysis						Results		^
🖃 🏢 Dataset (tan46.txt)		Attribute	Target	Input	Illustrative			
🔤 👬 Define status 1		CrimeRate	-	-	-			
_	Parameters	Male14-24	-	yes	-			
	Execute	Southern	-	yes	-			
	view	Education	-	yes	-			
		Expend60	-	yes	-			
		Expend59	-	yes	-			
		Labor	-	yes	-			
		Male	-	yes	-	(Ξ
		PopSize	-	yes	-			
		NonWhite	-	yes	-			
		Unemp14-24	-	yes	-			
		Unemp35-39	-	yes	-			
		Famincome	-	yes	-			
		IncUnderMed	-	yes	-)		~
		L			4 .			
Data visualization	Statistics	Nor	nparame	tric st	atistics	Instance selection	Feature construction	
Feature selection	Regression		Factoria	al anat	ysis	PLS	Clustering	
Spv learning	Meta-spv learr	ning Spv	learnin	g asse	ssment	Scoring	Association	
Correlation scatterplot	Scatterplot		20 View	datase	at .	-		-
Export dataset	Scatterplot v	vith label	View	multip	ne scatterpl	lot		
	·							

Then, we add the VARHCA component (CLUSTERING tab) in the diagram, by drag-and-drop operation. To view the results, we activate the contextual menu VIEW.

Reading the results

For a good understanding of the results, we refer to the SAS (version 8.0) on-line documentation, see http://www2.stat.unibo.it/ManualiSas/stat/chap68.pdf

Cluster Summary. It displays the number of clusters, the number of variables in each cluster, the variation explained in clusters and the total variation explained (value and proportion).

Cluster	# Members	Variation Explained	Proportion Explained
1	2	1.7459	0.8730
2	3	2.3843	0.7948
3	6	4.4051	0.7342
4	2	1.5136	0.7568
1	ſotal	10.0489	0.7730

Cluster summary

Cluster members and R-square values.

It details the variables in each cluster. Three indicators are available: R^2 with own cluster, R^2 with the nearest cluster, and the $1-R^2$ ratio. Small value of this ratio indicates good clustering. If this value is larger to 1, it means that the variable has a larger correlation with another cluster than its group.

Cluster	Members	Own Cluster	Next Closest	1-R² ratio
1	Unemp14-24	0.8730	0.0050	0.1277
	Unemp35-39	0.8730	0.0638	0.1357
2	Expend60	0.9334	0.3436	0.1015
	Expend59	0.9260	0.3569	0.1150
	PopSize	0.5249	0.0159	0.4827
3	Southern	0.7441	0.1011	0.2847
	NonWhite	0.6944	0.0213	0.3123
	Male14-24	0.5988	0.2473	0.5331
	Education	0.7396	0.1537	0.3076
	Famincome	0.7798	0.5376	0.4762
	IncUnderMed	0.8485	0.3085	0.2191
4	Labor	0.7568	0.1738	0.2944
	Male	0.7568	0.0811	0.2647

Cluster members and R-square values

In our dataset, VARHCA detects 4 groups. The variables seems well assigned to their groups. The largest $1-R^2$ ratio is 0.533 for MALE14-24 attribute in the third cluster.

Cluster correlations - Structure. This table displays the cluster structure i.e. the correlation of each variable to clusters. It enables to interpret the clusters. We underline the correlations higher than 0.7 or lower than -0.7 (this threshold can be modified) and we count these situations in the MEMBERS column. If the variables are well clustered, each variable must be associated to one and only one cluster.

Attribute	# membership	Cluster 1	Cluster 2	Cluster 3	Cluster 4
Male14-24	1	-0.2511	-0.4973	0.7738	-0.1090
Southern	1	-0.0539	-0.3180	0.8626	-0.4714
Education	1	-0.1057	0.3920	-0.8600	0.5737
Expend60	1	0.0757	0.9661	-0.5862	0.0892
Expend59	1	0.0629	0.9623	-0.5974	0.0743
Labor	1	-0.3479	0.0546	-0.4169	0.8699
Male	1	0.1783	-0.1019	-0.2848	0.8699
PopSize	1	0.1243	0.7245	-0.1259	-0.3071
NonWhite	1	-0.0404	-0.1460	0.8333	-0.3842
Unemp14-24	1	0.9343	-0.0502	-0.1286	0.0704
Unemp35-39	1	0.9343	0.2255	0.0133	-0.2526
FamIncome	2	0.0733	0.7332	-0.8830	0.2726
IncUnderMed	1	-0.0258	-0.5554	0.9211	-0.2512

Cluster correlations -- Structure

In our dataset, we obtain a good association between variables and their cluster. Only FAMINCOME seems highly correlated to the second and the third cluster. We see in the next subsection that these clusters are themselves correlated.

Inter-cluster correlations. An another way to evaluate the orthogonality between the clusters is to compute the correlation between the components. They represent the clusters, they correspond

to the first factor of the PCA in each group. TANAGRA automatically computes these factors. They are available for the subsequent operators in the diagram.

We add again the DEFINE STATUS component into the diagram, using the shortcut. We set as INPUT these new variables.

Then we add the LINEAR CORRELATION component (STATISTICS tab) into the diagram. We modify the default settings, we want to compute the correlations between the INPUT attributes.

We note that, except the cluster 2 and 3, the components are poorly correlated.

🖉 TANAGRA 1.4.16 - [Linear correlation 1]									
Tile Diagram Component	Window Help							-	Ξ×
🗅 📽 🔛 🔤									
Analysis				Lin	ear correlation	1			
🖃 🏢 Dataset (tan46.txt)					Parameters				
🖃 🎦 Define status 1	Cro	Cross-tab parameters						•	
		Sort res	Sort results non						
🖃 👬 Define st	🖻 🎦 Define status 2		t Cross-input (Y x X))					
- Einea	ir correlation i								
					Results				
		,	у х	r	r²	t	Pr(> t)		=
		VCHca_	1_1 VCHca_1_2	0.093	8 0.0088	0.6322	0.5305		
		VCHca_	1_1 VCHca_1_3	-0.061	7 0.0038	-0.4150	0.6801		
		VCHca_	1_1 VCHca_1_4	-0.097	5 0.0095	-0.6571	0.5145		
		VCHca_	1_2 VCHca_1_3	-0.516	9 0.2672	-4.0503	0.0002		
		VCHca_	1_2 VCHca_1_4	-0.027	2 0.0007	-0.1826	0.8559		
		VCHca_	1_3 VCHca_1_4	-0.403	0.1626	-2.9565	0.0049		
		Computa	ation time : U ms.						<u> </u>
			Compone	ents			_		
Data visualization	Statistic	22	Nonparametric stati	stics	Instance selec	tion	Feature const	ruction:	
Feature selection	Regressi	n	Factorial analysi	s	PLS		Clusteri	ng	
Spv learning	Meta-spv lea	irning	Spv learning assessr	nent	Scoring		Associati	ion	
Bartlett's test	🚠 Fisher's te	st	🔚 Group expl	oration	💒 Linear	correlation	• <u>^</u> N	ormality Test	:
🛱 Brown - Forsythe's test	🚺 Group cha	naracterization 🛛 🗛 Levene's test 🛛 🗹 More Univariate cont stat 🕍 One-way ANC					ne-way ANO∖	/A	
<									>
								2	

Using supplementary variables. Now we want to insert the CRIME RATE in the analysis. We want to know which dimension gives the best explanation of this variable.

We add a new DEFINE STATUS component. We set as TARGET the CRIME RATE attribute, and as INPUT the factors of the clusters.

Then we insert component LINEAR CORRELATION again. We do not modify the default settings. We see that the CRIME RATE variable is mainly correlated to the second cluster.

Dendrogram. Such as in the cases clustering, we can produce a tree diagram of the cluster structure. We can see at each node the variables which are merged, the distance between the two groups, and the aggregating index.

A low-level merging distance means that the merged groups are rather similar. Using the distance between each stage of the dendrogram, we intuitively choose 4, 3 or 2 groups here.

Note that the subdivision into two groups is often not relevant. The merging distance is mechanically large because it is the first partitioning of the variables.

By clicking on the nodes of the tree, we can visualize the list of variables. We can thus follow the aggregating process.

The selected groups correspond to white colored nodes.

Selecting the optimal number of clusters. TANAGRA selects 4 clusters in the VARHCA approach. How it proceeds ?

The detection of the right number of clusters is an opened problem. I think the software must only propose the most probable right number of clusters. Searching the "knee" in the explained variation curve is a very popular approach. TANAGRA produces a table (DETAILED RESULTS

Section) with the explained variation for each number of clusters, the angle between the semi tangents at each point (in fact, the angle between the two interpolation lines). The right number of clusters would be associated to area with a large value of this angle. The best solution is in green, and the two following one are gray.

Detailed Results

Variation Explained and Determination of the Number of Clusters

# clusters	Var.Expl.	Dif.	Cos	Angle	Moving Avg.
1	5.6518	0.0000	0.0000	0.0000	0.0000
2	7.3885	1.7367	0.9978	0.0670	0.0623
3	8.8839	1.4955	0.9928	0.1199	0.1671
4	10.0489	1,1650	0.9510	0.3142	0.1754
5	10.6582	0.6093	0.9958	0.0921	0.1362
6	11.1475	0.4893	1.0000	0.0023	0.0368
7	11.6340	0.4864	0.9999	0.0160	0.1047
8	12,1008	0.4668	0.9566	0.2959	0.1430
9	12.2426	0.1418	0.9931	0.1172	0.1408
10	12.5066	0.2640	1.0000	0.0093	0.0488
11	12.7607	0.2541	0.9998	0.0200	0.0839
12	12.9936	0.2329	0.9754	0.2224	0.0808
13	13.0000	0.0064	0.0000	0.0000	0.0000

If we copy and paste the results in a spreadsheet, we can draw the curve, it seems the proposed solutions are appropriate for this dataset. In order to avoid undesirable local variation, we compute the moving average of the values on 3 points. The criterion is better smoothed.

According to TANAGRA, the proposed optimal number of clusters are 4, 3 and 8. The user can check these solutions with the domain knowledge.

Detailed Results

Variation Explained and Determination of the Number of Clusters

# clusters	Var.Expl.	Dif.	Cos	Angle	Moving Avg.
1	5.6518	0.0000	0.0000	0.0000	0.0000
2	7.3885	1.7367	0.9978	0.0670	0.0623
3	8.8839	1.4955	0.9928	0.1199	0.1671
4	10.0489	1,1650	0.9510	0.3142	0.1754
5	10.6582	0.6093	0.9958	0.0921	0.1362
6	11.1475	0.4893	1.0000	0.0023	0.0368
7	11.6340	0.4864	0.9999	0.0160	0.1047
8	12,1008	0.4668	0.9566	0.2959	0.1430
9	12.2426	0.1418	0.9931	0.1172	0.1408
10	12.5066	0.2640	1.0000	0.0093	0.0488
11	12.7607	0.2541	0.9998	0.0200	0.0839
12	12.9936	0.2329	0.9754	0.2224	0.0808
13	13.0000	0.0064	0.0000	0.0000	0.0000

User-defined number of clusters. In some situations, the user want to set the desired number of cluster. To do that, we click on the PARAMETERS menu and modify the cluster selection option. We insert the right number of clusters.

We obtain the following results.

Cluster summary

Cluster	# Members	Variation Explained	Proportion Explained
1	2	1.7459	0.8730
2	8	4.7537	0.5942
З	3	2.3843	0.7948
	Total	8.8839	0.6834

Cluster members and R-square values

Cluster	Members	Own Cluster	Next Closest	1-R² ratio
1	Unemp14-24	0.8730	0.0025	0.1274
	Unemp35-39	0.8730	0.0508	0.1338
2	Southern	0.7671	0.1011	0.2591
	NonWhite	0.6898	0.0213	0.3169
	Male14-24	0.5232	0.2473	0.6334
	Education	0.7944	0.1537	0.2429
	FamIncome	0.7295	0.5376	0.5850
	IncUnderMed	0.7852	0.3085	0.3107
	Labor	0.2965	0.0030	0.7056
	Male	0.1680	0.0104	0.8407
3	Expend60	0.9334	0.3017	0.0954
	Expend59	0.9260	0.3102	0.1072
	PopSize	0.5249	0.0038	0.4769

VARKMEANS

VARKMEANS is a variable clustering approach based on the K-MEANS framework. The number of clusters is fixed a priori. The "centroids" of the clusters is the first factor of PCA in our algorithm. In the first pass, the groups are randomly built. Then, we associate each variable to the nearest component. The "centroids" are refreshed and we check all the variables again. The algorithm stopped when there is no modifications of the clusters' structure.

VARKMEANS produce the same report as the other variable clustering methods.

We add the VARKMEANS (CLUSTERING tab) after the DEFINE STATUS 1 component into the diagram. We activate the PARAMETERS menu in order to specify the number of clusters. Other parameters about the optimization process, the maximum number of iterations and the number of trials can be also modified.

We click on the VIEW menu, the clustering process is started and the results are available in a new window.

We note that we obtain similar results to VARHCA approach. The variation explained is a little bit small but the difference is not really significant.

Cluster characterization

Cluster summary

Cluster	# Members	Variation Explained	Proportion Explained
1	4	3.1578	0.7895
2	4	3.1594	0.7899
3	2	1.7459	0.8730
4	3	1.7211	0.5737
Total		9.7843	0.7526

VARCLUS

VARCLUS is a top down approach which is similar to the SAS procedure. A detailed description of the original approach is available here (<u>http://www2.stat.unibo.it/ManualiSas/stat/chap68.pdf</u>).

In comparison to the previous approaches (VARHCA and VARKMEANS), this method is much more fast when the number of variables is large. The process stops when there is no relevant subdivision of the groups.

Unlike the original procedure, we do not proceed to reassignment at each stage of the algorithm, this operation being very (too much) time consuming. The hierarchical structure is thus not preserved. For this reason, the tree does not correspond to a dendrogram, it details only the succession of the splitting operations.

We add the VARCLUS component after DEFINE STATUS 1 into the diagram. We click on the VIEW menu. The results are available with the standard presentation mode.

We obtain the same groups as VARHCA. In the SLIPPTING SEQUENCE tab, we can follow the successive subdivisions of the variables. By clicking on the nodes, we can observe the local list of the variables and their correlation with the latent factor.

N.B. : Be careful again, the level of the nodes does not correspond to aggregation distance here.

Conclusion

Variable clustering is useful in various situations. It enables to summarize quickly the main dimensions in a large dataset. It can be used also as a variable-reduction technique. The interpretation of the groups is as easy as the interpretation of the factors of Principal Components Analysis.