In some circumstances, the goal of the supervised learning is not to classify examples but rather to organize them in order to point up the most interesting individuals. For instance, in the direct marketing campaign, we want to detect the customers which are the most likely to respond to the solicitation. In this context, the confusion matrix is not really suitable for the evaluation of the predictive model. It is more valuable to use another tool, more appropriate for the evaluation of the respondents corresponding to the number of reached individuals: this is the "lift curve" ("gain chart").

In this tutorial, we use the binary logistic regression for the construction of the gain chart. We show also that the variable selection is really useful in the context of dealing with large number of predictive variables.

Dataset

In this tutorial, we use a real/realistic dataset from the following website <u>http://www.ssc.ca/documents/case_studies/2000/datamining_e.html</u>. It contains 2158 examples and 200 predictive attributes. The objective variable is a response variable indicating whether or not a consumer responded to a direct mail campaign for a specific product.

We transform the dataset in a XLS spreadsheet file format¹. We add a new attribute (EXSTATUS) which specify whether an instance belong or not to the training sample part (train sample: 1158 examples, test sample: 1000 examples).

Binary logistic regression and lift curve

Accessing to the dataset and creating a new diagram

After starting TANAGRA, we create a new diagram by activating the FILE/NEW menu.

TANAGRA 1.4.21					
le Diagram Window Help					
) 🛎 🔳 🛛 🖬					
	gam (empty) Choose your dat Diagram til Default title Dataset (* to DADataMin	aset and start download =: diagram file name : et&erdut.bdm t*ard(*sks) : inglDatebases_for_mininglb	enchmark_datasets\cam	pagne_@	
		Compar	ente		
Data visualization	Statistics	Nonparametric statistics	Instance selection	Feature construction	
Feature selection	Regression	Factorial analysis	PLS	Clustering	
Spv learning	Meta-spy learning	Spv learning assessment	Scoring	Association	
Correlation scatterplot Export dataset Scatterplot	Scatterplot with labe	plot			

R.R.

¹ <u>http://eric.univ-lyon2.fr/~ricco/tanagra/fichiers/dataset_scoring_bank.xls</u>

In the dialog box, we choose the data file DATASET_SCORING_BANK.XLS and then we specify the name of the diagram. For XLS files, the importation functions properly if the folder is not being edited further, and that the data are located in the first sheet.

We check the number of examples (2158 examples) and variables (202 attributes) downloaded.

Partitioning the dataset into train and test set

In order to obtain an honest evaluation of the model, we must partition the data into a train set, for the construction of the model, and a test set, for the validation.

We add the DISCRETE SELECT EXAMPLES component (INSTANCE SELECTION tab) into the diagram. We activate the contextual PARAMETERS menu, we set EXSTATUS as the reference variable, and the train set corresponds to the TRAIN value of EXSTATUS.

Discrete select examp	ples 1				
Λ		Workbook	Workbook Attribute-value examples selection		
	Parameters	Namber of she	lue examples selection		
	Execute	Selected Shee	rs		
i i		Sheet size			
		Dataset size			
<u> </u>		Datasourc Attrib	ute : ExStatus		
		Computation			
1		Allocated mem	ue: train		
		Dataset			
1		202 attribute(
		2158 example			
		Attribute	ОК	Cancel Help	
i i		objective Discrete	2 values		
1		ExStatus Discrete	2 values		
`\		<	1 life		
		Component	r		
Data visualization	Statistics	Nonparametric statistics	Instance selection	Feature construction	
Feature selection	Regression	Factorial analysis	PLS	Clustering	
Spy learning /	Meta-spv learning	Spv learning assessment	Scoring	Association	
and the second					

1158 observations are selected for the learning phase.

Discrete select examples 1 Parameters tatus rom 2158 21:38:14
Parameters tatus rom 2158
rom 2158 21:38:14
from 2158
21:38:14
Instance selection Feature construction
PLS Clustering
it Scoring Association

We must specify the role of the variables. OBJECTIVE is the target attribute, all the continuous attributes, from P01RCY to GENDER3 are the input ones. We do not use the EXSTATUS attribute here. We add the DEFINE STATUS component, using the toolbar shortcut, into the diagram.

Learning algorithm: logistic regression

Because of various theoretical and practical reasons, the binary logistic regression is a very popular method. We add this component (BINARY LOGISTIC REGRESSION, SPV LEARNING tab) into our diagram. We activate the VIEW menu in order to obtain the results. According the dataset size (number of examples and variables), the computation can be more or less high (5 seconds on my computer for this dataset). The window result comprises several sections.

The confusion matrix

Results							
Classifier performances							
Error rate 0.1874							
Valı	Values prediction			Confusion matrix			
Value	Recall	1-Precision		positive	negative	Sum	
positive	0.8274	0.1904	positive	489	102	591	
negative	0.7972	0.1841	negative	115	452	567	
			Sum	604	554	1158	

The confusion matrix is not really useful for our study.

Global evaluation

The most of the indicators presented in this part rely on the deviance or, more precisely, the likelihood ratio statistic. For further information about these indicators, see this very valuable reference <u>http://www2.chass.ncsu.edu/garson/pa765/logistic.htm</u>. We note that, according the Schwartz criterion (SC), that there are too many variables in our regression.

Adjustement quality			
Predicted attribute		objective	
Positive value		positive	
Number of examples	: 1158		
Mode	Fit Statistics		
Criterion	Intercept	Model	
AIC	1606.831	1371.488	
SC	1611.886	2387,433	
-2LL	1604.831	969,488	
Mode	l Chi² test (LR)		
Chi-2		635,3431	
d.f.		200	
P(>Chi-2)		0.0000	
	R²-like		
McFadden's R ²		0.3959	
Cox and Snell's R ²		0.4223	
Nagelkerke's R²		0.5631	

LOGIT coefficients (LOGITS)

Like the widely diffused statistical software, TANAGRA gives the estimated coefficients, their standard error, the Wald statistic and its p-value. We can check the significance of the variables.

Attributes in the equation					
Attribute	Coef.	Std-dev	Wald	Signif	
constant	-5,454800	-	-	-	
p01rcy	0.603947	2.7649	0.0477	0.8271	
p02rcy	0.877664	2.3705	0.1371	0.7112	
p03rcy	0.459307	1.6344	0.0790	0.7787	
p04rcy	0.740081	3.7462	0.0390	0.8434	
totalspend	-0.000010	0.0004	0.0006	0.9809	
p05spend	-8.702667	18.1687	0.2294	0.6319	
p05trans	0.490166	12,3199	0.0016	0.9683	

It seems that none variable is significant at 1%. It does not mean that all the variables are irrelevant, but rather some irrelevant variables are probably correlated with the relevant ones, included in the regression. Variable selection is an important process in this context.

Odds-ratios

TANAGRA shows also odds-ratio for each variable and their confidence interval.

Odds ratios and 95% confidence intervals					
Attribute	Coef.	Low	High		
p01rcy	1.8293	0.0081	412.8672		
p02rcy	2,4053	0.0231	250.5605		
p03rcy	1.5830	0.0643	38.9645		
p04rcy	2.0961	0.0014	3237.1737		
totalspend	1.0002		1.0008		

Computing the lift curve (Gain chart)

Firs, we must compute the "positive" probability of each individual. We add the component and we define the adequate parameter.

A new variable SCORE_1 is inserted in the dataset. The probability to be "positive" is computed for each example, even if it is not selected i.e. computed also for the test sample that will be used below.

In order to compute the gain chart, we must indicate to TANAGRA the TARGET attribute (OBJECTIVE) and the attribute used for organize the individuals (INPUT attribute = SCORE_1). We insert again the DEFINE STATUS component using the toolbar shortcut and we set the adequate parameters.

We must insert now the LIFT CURVE (SCORING tab) into the diagram. We must specify: the "positive" value of the target attribute and the examples used, i.e. the test set, for the gain chart.

We activate the VIEW menu and we obtain the following gain chart.

Into the HTML tab, we have the details of results.

Among 1000 examples of the test set, there are 488 positives ones. We can reach 46% of the positives i.e. $46\% \times 488 \# 225$ individuals if we sent the mail to the 300 first examples (according their probability to be positive). If we had sent randomly the mails, the positive responses would be $30\% \times 488 \# 146$. The data mining process enables us to reach (225- 146) = 79 additional positive responses.

Logistic regression and variable selection

Variable selection – The FORWARD LOGIT component

There are too many variables in our first regression. They all seem not relevant. An important task of the data miner is to reduce drastically the number of variables in order to retain only the relevant predictive attributes. The result will be then more interpretable, the model is often more robust, and it is more easy to use the model in an industrial context.

There are various variable selection strategies. In this tutorial, we study essentially FORWARD selection and BACKWARD elimination. In the forward (backward) approach, we add (remove) the most relevant (irrelevant) variable if their significance is lower (upper) than a user defined significance level (e.g. 1%).

We add the FORWARD-LOGIT (FEATURE SELECTION tab) component after DEFINE STATUS 1 into our diagram. We click on the menu parameter, we see that we may specify the probability for selection; we may also define the upper bound of the number of selected variables. If we set 0, only the first parameter (probability for selection) is activated.

Default title		HTML	Chart			
	g_bank.xls) mples 1 earning 1 (Binary I e status 2 ft curve 1 t 1 Parameters Execute View	LIFT Curv Sample size : 100 Positive example Score Attr Fo Target size 0 5 40 5 20 25 30 35 40 45	e 30 ss : 488 Parameters Re Probability U	- Logistic regression sport for selection : 0.01 spper bound : 0		
Data visualization	Statistics	Nonpar		ок с	ancel Help	tion
Feature selection	Regression	Factoria	ıl analysis	PLS	Clustering	-
Spv learning	Meta-spy learning	Spv learning	g assessment	Scoring	Association	
Data visualization Feature selection Spowearning CBackward-logit CFS filtering Define status Fishe	Statistics Regression Meta-spy earning filtering r filtering r filtering r filtering	Nonpar Factoria Spv learning vard-logit Theefiltering	il analysis g assessment II Remove constan L. Runs filtering Z Stepdisc	OK C PLS Scoring	ancel Help Clustering Association	tion

We click on the VIEW menu in order to start the computation. According the number of predictive variables, the computation time may be high. On this dataset, it is about 5 seconds.

1.4.21 - [For	ward-logit 1]			
Tile Diagram Component	Window Help			_ 8 ×
🗅 📽 🔳 🍇				
Default till Dataset (dataset_soo Discrete select e Define status Define stat	e ring_bank.xls) xamples 1 1 d Learning 1 (Binary I g 1 fine status 2 Lift curve 1 ogit 1	Selection results 9) selected attributes on [200] Selected attributes 1 1 2 2 productcount 3 2 3 4 5 5 ahhóppers 6 p05trans 7 brinca 8 p02rcy 9 p12rcy	subset	
<u><</u>	> <			>
		Components		
Data visualization	Statistics	Nonparametric statistics	Instance selection	
Feature construction	Feature selection	Regression	Factorial analysis	
PLS	Clustering	Spv learning	Meta-spv learning	
Spv learning assessment	Scoring	Association		
🔀 Backward-logit 🛛 🖪 CF	S filtering 🛛 🙀 Define	e status 🛛 🙀 FCBF filtering	📕 Feature ranking	🛃 Fisher fil
<				>

Nine variables are selected. We have the list of selected variables. Below, we have the details of computation. We can see at each step the best ones among the predictive variables. We voluntarily limit the table to the 5 first variables, because the read-out may become too blurred. We may modify the number of columns to display, if we set 0, all the variables are displayed.

De	tailed res	ults					
N °	Current Reg.	Moved	Sol.1	Sol.2	Sol.3	Sol.4	Sol.5
1	AIC : 1606.83 CHI-2 : 0.00 d.f. : 0 p-value : 0.0000	gender3 Chi-2 : 217.468 p : 0.0000	gender3 Chi-2 : 217.468 p : 0.0000	productcount Chi-2 : 100.896 p : 0.0000	productcount6 Chi-2 : 98.436 p : 0.0000	gender2 Chi-2 : 73.042 p : 0.0000	tf33 Chi-2 : 56.896 p : 0.0000
2	AIC: 1380.08 CHI-2: 228.75 d.f.: 1 p-value: 0.0000	productcount Chi-2 : 62.605 p : 0.0000	productcount Chi-2 : 62.605 p : 0.0000	productcount6 Chi-2 : 56.182 p : 0.0000	tf100 Chi-2 : 39.914 p : 0.0000	tf37 Chi-2 : 39.800 p : 0.0000	tf33 Chi-2 : 39.757 p : 0.0000
3	AIC : 1315.20 CHI-2 : 295.63 d.f. : 2 p-value : 0.0000	tf100 Chi-2 : 30.484 p : 0.0000	tf100 Chi-2 : 30.484 p : 0.0000	bknfren Chi-2 : 29.337 p : 0.0000	tf37 Chi-2 : 28.987 p : 0.0000	tf38 Chi-2 : 28.766 p : 0.0000	tf33 Chi-2 : 28.116 p : 0.0000
4	AIC : 1286.09 CHI-2 : 326.74 d.f. : 3 p-value : 0.0000	bknfren Chi-2 : 21.123 p : 0.0000	bknfren Chi-2 : 21,123 p : 0.0000	amtenglish Chi-2 : 20.556 p : 0.0000	bhlenglish Chi-2 : 19.557 p : 0.0000	brlprotest Chi-2 : 18.602 p : 0.0000	brlanglic Chi-2 : 18.076 p : 0.0000
5	AIC : 1263.28 CHI-2 : 351.55 d.f. : 4 p-value : 0.0000	ahhóppers Chi-2 : 11.637 p : 0.0006	ahhóppers Chi-2 : 11.637 p : 0.0006	amttagalog Chi-2 : 11.284 p : 0.0008	p05trans Chi-2 : 10.671 p : 0.0011	p05spend Chi-2 : 10.241 p : 0.0014	bimprovres Chi-2 : 9,602 p : 0,0019
6	AIC : 1253.31 CHI-2 : 363.52 d.f. : 5 p-value : 0.0000	p05trans Chi-2 : 10.933 p : 0.0009	p05trans Chi-2 : 10.933 p : 0.0009	p05spend Chi-2 : 10.353 p : 0.0013	p02rcy Chi-2 : 9.134 p : 0.0025	bimprovres Chi-2 : 8.727 p : 0.0031	bfi50plus Chi-2 : 8.226 p : 0.0041
7	AIC : 1243.20 CHI-2 : 375.63 d.f. : 6 p-value : 0.0000	bfiinca Chi-2 : 9.631 p : 0.0019	bfiinca Chi-2 : 9.631 p : 0.0019	bfiincm Chi-2 : 9.042 p : 0.0026	p02rcy Chi-2 : 8.455 p : 0.0036	bfi50plus Chi-2 : 8.418 p : 0.0037	binminca Chi-2 : 8.045 p : 0.0046
8	AIC : 1235.68 CHI-2 : 385.15 d.f. : 7 p-value : 0.0000	p02rcy Chi-2 : 8.781 p : 0.0030	p02rcy Chi-2 : 8.781 p : 0.0030	p12rcy Chi-2 : 7.892 p : 0.0050	amttagalog Chi-2 : 6.754 p : 0.0094	brlanglic Chi-2 : 6.162 p : 0.0130	tf68 Chi-2 : 5.591 p : 0.0181
9	AIC: 1228.53 CHI-2: 394.31 d.f.: 8 p-value: 0.0000	p12rcy Chi-2 : 7.248 p : 0.0071	p12rcy Chi-2 : 7.248 p : 0.0071	amttagalog Chi-2 : 6.542 p : 0.0105	brlanglic Chi-2 : 6.269 p : 0.0123	gender1 Chi-2 : 5.923 p : 0.0149	gender2 Chi-2 : 5.923 p : 0.0149
10	AIC : 1223.02 CHI-2 : 401.81 d.f. : 9 p-value : 0.0000	-	amttagalog Chi-2 : 6.045 p : 0.0139	brlanglic Chi-2 : 5.720 p : 0.0168	gender1 Chi-2 : 5.703 p : 0.0169	gender2 Chi-2 : 5.703 p : 0.0169	tf68 Chi-2 : 5.126 p : 0.0236

Regression with the selected variables

We add again the BINARY LOGISTIC REGRESSION (SPV LEARNING tab) after the FORWARD LOGIT 1 component. The computation is now realized on the 9 selected variables.

According to the confusion matrix and pseudo-R2, this new regression seems less powerful. But when we consider the criteria which take into account the complexity of the model such as AIC or SC, the last logistic regression is in reality preferable.

Criterion	Intercept only	Intercept + 200 variables	Intercept + 9 variables
AIC	1611.886	1371.488	1223.021
CS (or BIC)	1604.831	2387.433	1273.566

We insert again the same components as above with the adequate parameters: SCORING + DEFINE STATUS (SCORE_2 is the INPUT attribute, OBJECTIVE is always the TARGET) + LIFT. We obtain the following curve.

The curve is very similar to the previous. If we read the gain table (HTML tab), we see that for 30% of the first examples, we obtain 47% of positive individuals. The accuracy is the same one, but the new model now comprises only 9 variables. The interpretation of coefficients is easier.

BACKWARD elimination

TANAGRA implements also the BACKWARD elimination strategy (BACKWARD LOGIT – FEATURE SELECTION tab). In some circumstances, some authors² claim that this approach is more efficient. This is surely true, but when we deal with very large dataset, the computation time becomes prohibitive because we perform many optimizations of the likelihood³.

In my opinion, I think that these automatic variable selection processes (forward, backward and the other ones) enable us mostly to study deeply the relations between variables and to choose manually, according to the domain knowledge, the most adequate set of variables.

Just to give an idea (save the diagram before to start the process), in our dataset, the backward elimination selection takes a long time i.e. 872 second # 14 minutes on my computer. At the end, 12 variables are selected.

² S. Menard, « Applied Logistic Regression Analysis - Second Edition », Quantitative Applications in the Social Sciences Series, Sage Publications, 2002; page 64.

³ We use the LEVENBERG-MARQUARDT algorithm, a variant of NEWTON-RAPHSON.

Six (6) variables are common between the 12 selected variables with the backward elimination process and the 9 selected with forward selection.

Backward	Forward
ahh6ppers	ahh6ppers
-	bfiinca
binminca	-
binmincm	-
binmincs	-
bknfren	bknfren
brlcathol	-
brlrcathol	-
gender2	-
gender3	gender3
p02rcy	p02rcy
-	p05trans
p12rcy	p12rcy
productcount	productcount
-	tf100

Conclusion

In this tutorial, we presented the construction of the lift curve with the logistic regression method. It was an opportunity to introduce two new components (version 1.4.21 of TANAGRA) dedicated to the supervised variable selection for logistic regression.