Subject

How to perform a K-MEANS clustering on discrete attributes? Validate clusters with external criteria, i.e. to compare our clusters with preexistent classes.

Dataset

The famous US CONGRESS VOTE (UCI): pre-existing class attribute is political affiliation of congress members; descriptors are their vote behavior on various subjects.

We want to build homogenous groups (clusters) of members from their behavior and compare these clusters with their political affiliation.

Experimentation steps

- 1. Load dataset, there is 435 examples and 17 attributes; "class" is the political affiliation.
- 2. There is not clustering method into TANAGRA that handles directly discrete attributes. We perform in the first time a feature construction using factorial analysis (Correspondence multiple analysis) and use them as new attributes for K-MEANS.
- 3. Add as "Define Status" component in the diagram and select all attributes except "class" as INPUT. Add an ACM component and use default parameters.
- 4. The 5 first factorial axis (dimensions) summarize 50% of available information. It indicates the quality of representation of points in theses 5 dimensions. We use these axis as descriptors for K-MEANS.
- 5. Add a "Define Status" component and set as INPUT the factorial axis.
- 6. Add a K-MEANS component end set the following parameters: Number of clusters = 2; Max number of iteration = 10; Trials = 5; Distance Normalization = None (Variance of an axis is the "weight" of this axis, we do not standardize the data); Average computation = Mc Queen; Seed random number generation = Standard.
- We have two clusters: #240 examples for the first, and #135 examples for the second (the exact clusters size relies on the random number generator used and your computer). Explained inertia ratio is 40%.
- 8. How to characterize these clusters? Add an another "Define Status" in the diagram and set as TARGET the cluster attribute "Cluster_Kmeans_1", set as INPUT all other native attributes including the political affiliation (Class). Don't select factorial axis.
- 9. Add a "Group characterization" component, this component performs comparative descriptive statistics between the whole dataset and examples in the clusters. A ratio called "Test value" shows the strength of the differences.
- 10. Above all, we note that clusters strongly correspond to the political affiliation: there is 61% of democrats in the congress, they are 95% in the first cluster; in the second cluster, there is a majority (79%) of republican.

Tutorial Clustering and external validation

Description of "Cluster KMeans 1"													
Cluster_KMeans	s_1=c_kme	eans_1		Cluster_KMeans_1=c_kmeans_2									
Examples		239		Examples	196								
Att - Desc	Test value	Group	Overral	Att - Desc Test value		Group	Overral						
Continuous attributes				Continuous attributes									
Discrete attributes				Discrete attributes									
el-sal∨ador-aid≕'n'	17.7	86.19%	47.82%	el-salvador-aid='y'	18	96.43%	48.74%						
aid-to-nicaraguan-contras='y'	17.6	93.72%	55.63%	aid-to-nicaraguan-contras='n'	17.2	85.71%	40.92%						
physician-fee-freeze='n'	16.4	92.05%	56.78%	physician-fee-freeze='y'	16.9	84.69%	40.69%						
Class='democrat'	15.7	94.56%	61.38%	mx-missile='n'	16	89.80%	47.36%						
adoption-of-the-budget-re='y'	15.4	91.21%	58.16%	adoption-of-the-budget-re='n'		80.10%	39.31%						
mx-missile='y'	14.7	79.50%	47.59%	Class='republican' 15.7		79.08%	38.62%						
crime='n'	14.3	69.46%	39.08%	education-spending='y'	14.6	77.04%	39.31%						

11. There is another way to compare clusters and political affiliation. Add a "Define Status" and set as TARGET "Class", set as INPUT "Cluster_Kmeans_1". Add a "Crosstabulation" component, we have a result that is coherent with the previous one.

Row (Y)	Column (X)	Statistical	indicator	Cross-tab				
		Stat	Value		c_kmeans_1	c_kmeans_2	Sum	
		Tschuprow's t	0.752565	'republican'	13	155	168	
		Cramer's v	0.752565	'democrat'	226	41	267	
		Phi²	0.566354	Sum	239	196	435	
		Chi²	246.364086					
Class	Cluster_KMeans_1	Pr(Chi²)	0					

12. Here the data mining diagram.

■ Dataset (vote.TXT) - ➡ Define status 1 - ➡ Multiple Correspondance Analysis 1 - ➡ Define status 2 - ➡ K -Means 1 - ➡ Define status 3 - ➡ Define status 3 - ➡ Define status 4 - ➡ Cross Tabulation 1