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Abstract

This document describes the use of the logistic regression (LR) with truncated iteratively re-weighted least squares
algorithm (T-IRLS). This is a fast and stable version of LR which is simple to implement and easy to run. It works on
sparse binary data, or arbitrary dense data. The dataset outputs must be binary. The software computes the probability
that a given data point belongs to either of the binary classes. This software and documentation is licensed under the
GNU General Public License, version 2. The authors retain full copyright privileges.

1



Contents

1 Introduction 3

2 Training LR And Making Predictions 3
2.1 train . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 predict . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 kfold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Data 5
3.0.1 Dense Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1 Sparse Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Dataset naming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 Logistic Regression Parameters 7

2



1 Introduction

We assume that the software has been built, and that the executables are named train, predict, and kfold. All
commands in this document are indented as in the example shown below.

train in dataset save filename args

Names of arguments are written as argname, while actual argument values are written as argval. The argument list
is keyword-based, meaning that the order of the arguments is unimportant. Some arguments consist of a keyword
and a value, with the value occurring immediately after the keyword. A “dataset” is a file containing data one wishes
to analyze, or the filename of such a file. More information about the supported dataset file formats and naming
conventions may be found in Section 3.

The train executable runs our logistic regression (LR) algorithms on the specified data and stores the resulting LR
parameter estimates in the specified file. Additional arguments control the logistic regression and conjugate gradient
(CG) algorithms.

The predict executable uses the LR predictions, as saved by the train executable, to predict the probability that the
dataset rows belong to the positive class. Which class is positive depends on both dataset naming conventions and the
dataset contents. The resulting predictions can be saved to a file, and are scored using the area-under-curve (AUC)
metric [1]. See Section 2.2 for more information on AUC scoring.

The kfoldexecutable performs a k-fold cross-validation on the specified data, printing some statistics when finished.
This program can write the ROC curve [1] into a file, as well as reporting AUC scores. More information about the
train, predict, and kfold executables can be found in Section 2, and information on dataset naming and contents
may be found in Section 3.

All of these executables print the total time, in real seconds, elapsed while the program was running. This time includes
file load and save times, and other overhead. It is only displayed if the verbosity is 1 or greater. See Section 2.1
for more information about setting the verbosity. The kfold program additionally tracks and reports times that do not
include this overhead. Also note that these programs unbuffer stdout to make file redirections update more quickly.

This software can be built with zlib [2] support. If this is done, then dense numerical data files can be loaded from
compressed files. See Section 3 for details. Furthermore, output files from this software will be compressed if their
name ends in “.gz” and zlib support is enabled.

2 Training LR And Making Predictions

Logistic regression (LR) reads a data file, makes some computations, and outputs weights for each attribute in the data
file. These weights may be used in combination with the logit function to predict the probability that a new, previously
unseen data point belongs to one of two classes. We will not further describe LR here. The reader is advised to see
[3] for an introduction to LR and its uses. Details on our algorithms can be found in various places, and the most
centralized of these is [4].

We provide three executables at this time, train, predict, and kfold. Both are described below. In the future,
we will add an executable to make k-fold cross-validations easy. The Auton software page [5] should have a file
conversion utility named convert. This utility may be useful for converting various data files into the formats expected
by this LR software. See Section 3 for more information on data file formats.

2.1 train

The train executable performs the LR computations on a dataset, outputting the LR parameter estimates. It has
two optional arguments, and passes all unknown arguments to our LR algorithm. The simplest and most common
invocation is shown below.
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train in dataset save filename

This command passes no arguments to the LR algorithm, accepting the default settings. This is almost always ade-
quate, and is certainly the best way to start. LR parameters are discussed in Section 4.

To see more information about how your command line was parsed, use the arghelp keyword.

train in dataset save filename arghelp

Note that boolean keywords that require no value might not appear in the arghelp output.

If you would like to see more or less screen output while the LR computations are running, use the verbosity keyword
along with an integer value. A verbosity of -1 is quiet, 0 is default, and 2 is somewhat informative. A value of 5 or
higher might be useful when debugging.

2.2 predict

The predict executable uses the computed LR parameter estimates, produced and saved by the train executable
described above, and uses them to compute predictions on a dataset. The dataset used for predictions must have the
same shape as that used for computing the LR parameters. This means that the prediction dataset should have the
same number of attributes as the input dataset, in the same order, and should have contain an output value for each
data point. The output values are not used during prediction, but are used when scoring predictions. It is allowable to
set all outputs to arbitrary values in the prediction dataset, but the computed score will be wrong. This might be useful
if you want to save the predictions and you do not care about the score.

The score reported by predict is the area-under-curve (AUC) metric. This is simply the normalized area under a
certain curve, in particular the receiver operating characteristic (ROC) curve. AUC and ROC curves are described in
several books and papers, for example in [1, 3, 6, 7].

Very briefly, to draw the ROC curve we first sort the data points in decreasing order according to the output value we
predict for that data point. Thus the data point we feel is most likely to belong to the positive class comes first in the
new order. After sorting, we put our pen down at the origin of our graph. If our top-ranked data point is truly positive,
we move “up” one unit. If it was negative, we move “right” one unit. We repeat this for each data point in order. At
the end of this procedure, we have moved one unit for each data point. If the dataset contains p positive points and
w negative points, then we our final position will always be the x-y coordinate (w, p). A good algorithm will climb
steeply and eventually level off. Random guessing will travel roughly in a straight line from (0,0) to (w, p).

Note that ROC curves do not require thresholding of predictions, unlike accuracy and precision scores, and hence is
insensitive to possibly arbitrary cut-offs between positive and negative points. ROC curves do measure the ability of
the algorithm to discriminate between positive and negative classes, in that the curve improves when positive points
are ordered before negative points. A perfect ROC curve climbs vertically from (0,0) to (0, p), indicating that no
negative points were scored higher than any positive points. At this point, there are no more positive points, and the
graph must travel horizontally to (w, p). The AUC metric is simply the ratio of the area under an ROC curve to the
area under a perfect ROC curve. Thus an AUC of 1.0 is perfect, and random guessing should result in an AUC of 0.5.

Like the train executable, the predict executable accepts the arghelp and verbosity arguments. See Section 2.1
for more information. The predict program also accepts an optional keyword pout to indicate that the user would
like to save the predictions into a file. The pout keyword must be followed by a file name. If rout is specified along
with a filename, then the ROC curve will be saved as a series of x-y pairs suitable for use in plotting programs such as
Gnuplot [8].

A typical predict invocation is

predict in dataset load filename

This will read in the estimated LR parameters from filename, and use them to make predictions on the data points in
dataset. A score will be computed and printed to the screen. If you would like to save the prediction for each data
point in dataset, as well as the ROC curve, add the pout and rout keywords as shown below.

4



predict in dataset load filename pout filename rout filename

After predict exits, each line in file prediction-filename will contain a probability that the corresponding data point in
dataset belongs to the positive class. Which of the two classes in dataset corresponds to the positive class is determined
by elements of the dataset name, and its contents. See Section 3 for more information.

2.3 kfold

The kfold executable performs a k-fold cross-validation on the specified data, printing some statistics when finished.
This program can write the ROC curve into a file, as well as reporting AUC scores. See Section 2.2 for more informa-
tion about ROC curves and AUC scores. In these k-fold cross-validation experiments, the input dataset is partitioned
into k parts. Then k individual training and prediction experiments are run, training on all but one partition and predict-
ing on the remaining partition. If k is equal to the number of rows in the dataset, then this procedure is sometimes called
“leave-one-out cross-validation”. The result of all k folds is a prediction for each data point, but those predictions are
made from training the LR model on different subsets of the data.

The kfold executable scores performance using the AUC metric, described above. The AUC score is computed for
each fold of the cross-validation, and the mean and standard deviation is reported. It is possible to view the AUC score
for each fold. The average time for each fold is reported, along with the standard deviation, and it is possible to view
the per-fold times. The per-fold times are in real seconds, and include the training and prediction times but exclude
other overhead such as dataset loading.

Like the train executable, the kfold executable accepts the arghelp and verbosity arguments. See Section 2.1 for
more information. In order to view per-fold AUC scores and times, verbosity must be 1 or greater.

The kfold program also accepts optional keyword pout and fout, to to save the predictions and fold assignments
for each data point in the input dataset. Unlike with the predict executable, the predictions stored with the pout
option are not generated by the same model. They are only useful in conjunction with the output produced by the fout
option.

The fold assignment, as stored by the fout option, is the fold in which each data point was not used for training. Thus
a file with values 7,2,3 on the first three lines indicates that the first data point was held out from training in the seventh
fold, the second data point was held out in the second, and the third data point was held out in the third fold.

One more keyword is supported, rout. If rout is specified along with a filename, then the ROC curve will be saved
as a series of x-y pairs suitable for use in plotting programs such as Gnuplot [8]. All three optional keywords take
filenames as arguments.

A typical kfold invocation is

kfold in dataset folds 10

This will report the summary statistics for the scores and times of a 10-fold cross-validation on the dataset. To see
per-fold scores and times, run

kfold in dataset folds 10 verbosity 1

To save the predictions, fold assignments, and the ROC curve coordinates, run

kfold in dataset folds 10 pout filename fout filename rout filename

3 Data

The train and predict programs are able to read two dataset formats. One of these is suitable for sparse binary data,
and the other is suitable for dense numerical data. Though T-IRLS can be extended to other data, we have not written
the software to do this yet. Both dense and sparse data files must contain a binary-valued outputs. If zlib [2] support
is enabled, then dense numerical data can be loaded from many types of compressed files.

5



This software is fairly strict about data file formatting. To convert other files in the formats supported by this software,
please see the convert utility on the Auton software page [5].

3.0.1 Dense Datasets

All rows in a dense dataset file are comma-separated lists of real values. Lines beginning with ’#’ are treated as
comments and ignored. All non-comment lines must have the same number of commas, and each represents one data
point. The output must be stored in the last column (i.e. attribute), and that column must contain only the characters 0
and 1. Such datasets are referred to as csv files. For example, csv file might start with the following lines:

# Table-tennis fatality data in csv format
# Copyright Pad L. Grip, 2005
#
# age weight skill experience caused-fatality?
#
27, 72.3, 92.5, 87.2, 0
29, 67.9, 72.0, 80.1, 0
24, 92.0, 99.3, 90.0, 1
...

3.1 Sparse Datasets

We use our spardat format for sparse datasets. This format is similar to that used by SVMlight[9]. It is whitespace
delimited and all attributes must be binary. The output value is the first token on each line, and can be any real value.
However, the output attribute will be thresholded to a binary value when loaded. The manner in which the thresholding
occurs is described in Section 3.2. All remaining tokens on the line are interpreted as indices of nonzero attributes,
where the first attribute has index 0. Attribute numbering begins at zero, and lines beginning with “#” are ignored. An
example spardat file is shown below.

# Shrink-wrap accident data in spardat format
# Copyright Reynold S. Rap, 2005
#
# This dataset contains 2537 attributes corresponding to presence
# or absence of various kitchen items at the time of the shrink-wrap
# accident. The output indicates the severity of the accident, with
# score of 75.0 or larger indicating a *severe* accident.
#
#
29.2 157 158 192 1001
72.5 157 158 199 200 201
42.3 0 1 7
92.1 0 1 158 517 1001 1900 2535 2536
...

One additional dataset format modification is understood. If the attribute indices in a spardat formatted file are ap-
pended with “:1”, the “:1” will be ignored and the data will be loaded as expected. This provides compatibility with

SVMlight. For example:

# Shrink-wrap accident data in spardat format
# Copyright Reynold S. Rap, 2005
#
...
#
29.2 157:1 158:1 192:1 1001:1
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72.5 157:1 158:1 199:1 200:1 201:1
42.3 0:1 1:1 7:1
92.1 0:1 1:1 158:1 517:1 1001:1 1900:1 2535:1 2536:1
...

3.2 Dataset naming

Both dataset file formats, csv and spardat, require information beyond the file name when they are specified on the
command-line. This information is specified though additional keywords and possibly extra characters appended to
the filename.

When loading csv files, the file must have “.csv” for the suffix. For example,

train in a-or-d.csv save filename

If the data file name does not end in “.csv”, our software will try to load the data file in spardat format. The single
exception to this rule is for files that end in “.csv.gz”, which will be transparently decompressed if zlib support was
enabled when this software was built. See below for caveats about spardat file names.

The spardat format requires a threshold level and direction, where the direction indicates whether higher or lower
values represent the positive output class. Thus the threshold specifier consists of a colon, a threshold value, and a
plus or minus sign. A plus sign indicates that output values greater than or equal to the threshold value are considered
positive. A minus sign indicates that values less than or equal to the threshold are considered positive. As an example,
suppose a-or-d.txt is a spardat format dataset, and we wish to consider all outputs with value greater than 0.5 as
positive outputs. The command line below specifies this using the notation just described.

train in a-or-d.txt:0.5+ save filename

4 Logistic Regression Parameters

To be very brief, logistic regression (LR) computes β for which the model values µi best approximate the dataset
outputs yi under the model

µi =
exp(β0 +β1xi1 + · · ·βMxiM)

1+ exp(β0 +β1xi1 + · · ·βMxiM)

where xi is one dataset row. Please see [3, 10, 1, 6, 7, 4] for details about logistic regression. This implementation uses
iterative re-weighted least squares (IRLS) [1, 6, 7, 4] to maximize the LR log-likelihood

∑
n

i = 1Ryi ln(ui)+(1− yi) ln(1−ui)

where R is the number of rows in the dataset. For logistic regression, IRLS is equivalent to Newton-Raphson [10]. To
improve the speed of IRLS, this implementation uses conjugate gradient (CG) [11, 12, 13, 14, 15, 7] as an approximate
linear solver [6, 7, 4]. This solver is applied to the linear regression

(

XTWX
)

βnew = XTWz (1)

where W = diag(µi(1− µi)) and z = Xβold +W−1(y− µ). The current estimate of β is scored using the likelihood
ratio −2log(Lsat/Lcurrent), where Lsat is the likelihood of of a saturated model with R parameters and Lcurrent is the
likelihood of the current model. This ratio is called the “deviance”, and the IRLS iterations are terminated when the
relative difference of the deviance between iterations is sufficiently small. Other termination measures can be added,
such as a maximum number of iterations.

For most applications, no LR parameters need to be used. However, the parameters in the table below are avail-
able. Full descriptions are provided further below. Most of the parameter names correspond directly to parameters
described in our research papers [6, 7, 4]. Note in particular that the cgbinit parameter described in our papers is set
automatically when cgdeveps is used for the CG termination criterion, and is not controllable by the user.
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Keyword Arg Type Arg Vals Default
cgbinit None, set automatically when cgdeveps> 0 {true,false} true
cgdecay float [1.0, ∞) 1000
cgdeveps float [1e-10, ∞) 0.005
cgeps float [1e-10, ∞) 0.000 (i.e. default is disabled)
cgmax int 0, . . . , ∞ 200
cgwindow int 0, . . . , ∞ 3
lreps float [1e-10, ∞) 0.05
lrmax int 0,. . . , ∞ 30
rrlambda float [0, ∞) 10.0

• cgbinit: If cgdeveps is specified, then cgbinit is enabled automatically. Each IRLS iteration will start the
conjugate gradient solver at the current value of β. With cgeps instead of cgdeveps, the conjugate gradient
solver is started at the zero vector. See [7] for more details.

• cgdecay float: If the deviance ever exceeds cgdecay times the best deviance previously found, conjugate
gradient iterations are terminated. As usual, the β corresponding to the best observed deviance is returned to the
IRLS iteration.

• cgdeveps float: This parameter applies to conjugate gradient iterations while approximating the solution βnew
in Equation 1. If cgdeveps is positive, conjugate gradient is terminated if the relative difference of the deviance
falls below cgdeveps. The recommended value of cgdeveps is 0.005, and this is the default. Non-positive
values indicate that cgeps should be used instead. When cgdeveps> 0.0, then cgbinit is enabled. Decrease
cgdeveps for a tighter fit. Increase cgdeveps to save time or if numerical issues appear. Exactly one of
cgdeveps and cgeps can be positive.

• cgeps float: This parameter applies to conjugate gradient iterations while approximating the solution βnew
in Equation 1. If cgeps is positive, conjugate gradient is terminated when the conjugate gradient residual
drops below cgeps times the residual before iterations. The recommended value of cgeps is 0.001. Non-positive
values indicate that cgdeveps should be used instead. When cgeps> 0.0, then cgbinit is disabled. Decrease
cgeps for a tighter fit. Increase cgeps to save time or if numerical issues appear. Exactly one of cgeps and
cgdeveps can be positive.

• cgmax int: This is the upper bound on the number of conjugate gradient iterations allowed. The final value of β
is returned.

• cgwindow int: If the previous cgwindow conjugate gradient iterations have not produced a β with smaller
deviance than the best deviance previously found, then conjugate gradient iterations are terminated. As usual,
the β corresponding to the best observed deviance is returned to the IRLS iteration.

• lreps float: IRLS iterations are terminated If the relative difference of the deviance between IRLS iterations is
less than lreps.

• lrmax float: This parameter sets an upper bound on the number of IRLS iterations. If performing a train/test
experiment, you may want to decrease this value to 5, 2, or 1 to prevent over-fitting of the training data.

• rrlambda float: This is the ridge regression parameter λ. When using ridge regression, the large-coefficient
penalty λβT β is added to the sum-of-squares error for the linear regression represent by Equation 1.
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