Importation des données

#changement de dossier
setwd("C:/Users/ricco/Desktop/demo")

#chargement du fichier
library(xlsx)
D <- xlsx::read.xlsx("Tennis_Players_AFDM.xlsx", header=TRUE, sheetName = "Tennis", row.names = "Joueur")
str(D)
## 'data.frame':    20 obs. of  8 variables:
##  $ Taille         : num  180 191 180 178 185 187 190 190 187 180 ...
##  $ Lateralite     : chr  "droitier" "droitier" "droitier" "gaucher" ...
##  $ MainsRevers    : chr  "deux" "une" "deux" "deux" ...
##  $ Titres         : num  60 49 64 109 23 41 26 20 94 77 ...
##  $ Finales        : num  30 28 25 52 13 36 20 9 50 31 ...
##  $ TitresGC       : num  8 6 11 8 4 6 2 3 8 7 ...
##  $ RolandGarros   : chr  "vainqueur" "demi" "vainqueur" "demi" ...
##  $ BestClassDouble: num  123 6 890 370 20 1 4 38 20 1 ...
#dataset
print(D)
##            Taille Lateralite MainsRevers Titres Finales TitresGC RolandGarros
## Agassi        180   droitier        deux     60      30        8    vainqueur
## Becker        191   droitier         une     49      28        6         demi
## Borg          180   droitier        deux     64      25       11    vainqueur
## Connors       178    gaucher        deux    109      52        8         demi
## Courier       185   droitier        deux     23      13        4    vainqueur
## Edberg        187   droitier         une     41      36        6       finale
## Kafelnikov    190   droitier        deux     26      20        2    vainqueur
## Kuerten       190   droitier         une     20       9        3    vainqueur
## Lendl         187   droitier         une     94      50        8    vainqueur
## McEnroe       180    gaucher         une     77      31        7       finale
## Nastase       180   droitier         une     58      38        2    vainqueur
## Rafter        185   droitier         une     11      14        2         demi
## Safin         193   droitier        deux     15      12        2         demi
## Sampras       185   droitier         une     64      24       14         demi
## Vilas         180    gaucher         une     62      40        4    vainqueur
## Wilander      182   droitier        deux     33      27        7    vainqueur
## Djokovic      188   droitier        deux     79      34       17    vainqueur
## Federer       185   droitier         une    103      54       20    vainqueur
## Murray        191   droitier        deux     46      22        3       finale
## Nadal         185    gaucher        deux     85      37       19    vainqueur
##            BestClassDouble
## Agassi                 123
## Becker                   6
## Borg                   890
## Connors                370
## Courier                 20
## Edberg                   1
## Kafelnikov               4
## Kuerten                 38
## Lendl                   20
## McEnroe                  1
## Nastase                 59
## Rafter                   6
## Safin                   71
## Sampras                 27
## Vilas                  175
## Wilander                 3
## Djokovic               114
## Federer                 24
## Murray                  51
## Nadal                   26

AFDM - Calculs

#FactoMineR
library(FactoMineR)
## Warning: le package 'FactoMineR' a été compilé avec la version R 4.2.3
#librairie pour les visualisations et interprétations
library(factoextra)
## Le chargement a nécessité le package : ggplot2
## Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa
#AFMD
afdm <- FactoMineR::FAMD(D,graph = FALSE,ind.sup=17:20,sup.var=8)

#valeurs propres
factoextra::get_eigenvalue(afdm)
##       eigenvalue variance.percent cumulative.variance.percent
## Dim.1  3.1259645        39.074556                    39.07456
## Dim.2  1.4241935        17.802418                    56.87697
## Dim.3  1.1377684        14.222105                    71.09908
## Dim.4  0.8525750        10.657188                    81.75627
## Dim.5  0.7274573         9.093217                    90.84948

Inspection des résultats

Informations globales

#résultats détaillés
summary(afdm)
## 
## Call:
## FactoMineR::FAMD(base = D, graph = FALSE, sup.var = 8, ind.sup = 17:20) 
## 
## 
## Eigenvalues
##                       Dim.1  Dim.2  Dim.3  Dim.4  Dim.5
## Variance              3.126  1.424  1.138  0.853  0.727
## % of var.            39.075 17.802 14.222 10.657  9.093
## Cumulative % of var. 39.075 56.877 71.099 81.756 90.849
## 
## Individuals (the 10 first)
##                     Dist    Dim.1    ctr   cos2    Dim.2    ctr   cos2    Dim.3
## Agassi          |  1.954 |  0.555  0.616  0.081 | -1.730 13.129  0.783 | -0.111
## Becker          |  2.275 | -0.835  1.395  0.135 |  1.241  6.763  0.298 |  1.498
## Borg            |  2.423 |  0.716  1.025  0.087 | -1.875 15.431  0.599 |  0.388
## Connors         |  4.292 |  3.520 24.775  0.673 | -0.681  2.035  0.025 |  1.122
## Courier         |  2.245 | -1.660  5.510  0.547 | -1.165  5.960  0.269 | -0.702
## Edberg          |  2.968 |  0.230  0.106  0.006 |  2.088 19.138  0.495 | -0.733
## Kafelnikov      |  2.489 | -1.985  7.879  0.636 | -0.770  2.601  0.096 | -0.770
## Kuerten         |  2.727 | -2.269 10.297  0.693 |  0.520  1.186  0.036 | -0.742
## Lendl           |  2.834 |  1.497  4.484  0.279 | -0.038  0.006  0.000 |  0.291
## McEnroe         |  3.768 |  2.504 12.537  0.442 |  1.949 16.670  0.268 | -1.195
##                    ctr   cos2  
## Agassi           0.068  0.003 |
## Becker          12.329  0.434 |
## Borg             0.829  0.026 |
## Connors          6.914  0.068 |
## Courier          2.704  0.098 |
## Edberg           2.953  0.061 |
## Kafelnikov       3.254  0.096 |
## Kuerten          3.027  0.074 |
## Lendl            0.464  0.011 |
## McEnroe          7.842  0.101 |
## 
## Supplementary individuals
##                     Dist    Dim.1   cos2    Dim.2   cos2    Dim.3   cos2  
## Djokovic        |  3.864 |  1.162  0.090 | -1.678  0.189 |  1.779  0.212 |
## Federer         |  5.206 |  3.131  0.362 | -0.717  0.019 |  2.115  0.165 |
## Murray          |  3.385 | -1.042  0.095 |  1.127  0.111 | -0.852  0.063 |
## Nadal           |  4.847 |  2.890  0.355 | -1.543  0.101 |  1.464  0.091 |
## 
## Continuous variables
##                    Dim.1    ctr   cos2    Dim.2    ctr   cos2    Dim.3    ctr
## Taille          | -0.763 18.621  0.582 |  0.340  8.097  0.115 |  0.231  4.692
## Titres          |  0.936 28.023  0.876 | -0.074  0.385  0.005 |  0.182  2.910
## Finales         |  0.864 23.860  0.746 |  0.007  0.003  0.000 | -0.020  0.036
## TitresGC        |  0.557  9.943  0.311 | -0.181  2.301  0.033 |  0.563 27.868
##                   cos2  
## Taille           0.053 |
## Titres           0.033 |
## Finales          0.000 |
## TitresGC         0.317 |
## 
## Supplementary continuous variable
##                    Dim.1   cos2    Dim.2   cos2    Dim.3   cos2  
## BestClassDouble |  0.328  0.108 | -0.490  0.240 |  0.143  0.021 |
## 
## Categories
##                    Dim.1    ctr   cos2 v.test    Dim.2    ctr   cos2 v.test  
## droitier        | -0.602  3.016     NA -2.747 | -0.113  0.509     NA -0.761 |
## gaucher         |  2.610 13.071     NA  2.747 |  0.488  2.205     NA  0.761 |
## deux            | -0.294  0.386     NA -0.567 | -1.062 24.335     NA -3.040 |
## une             |  0.228  0.300     NA  0.567 |  0.826 18.927     NA  3.040 |
## demi            | -0.294  0.276  0.036 -0.434 |  0.490  3.706  0.099  1.073 |
## finale          |  1.367  2.391     NA  1.132 |  2.019 25.113     NA  2.476 |
## vainqueur       | -0.140  0.114     NA -0.349 | -0.721 14.419     NA -2.653 |
##                  Dim.3    ctr   cos2 v.test  
## droitier         0.110  0.766     NA  0.835 |
## gaucher         -0.479  3.318     NA -0.835 |
## deux             0.069  0.162     NA  0.221 |
## une             -0.054  0.126     NA -0.221 |
## demi             1.290 40.177  0.688  3.158 |
## finale          -0.964  8.974     NA -1.323 |
## vainqueur       -0.502 10.971     NA -2.069 |
#visualisation des val.propres
factoextra::fviz_eig(afdm)

Informations sur les variables

#infos sur les variables
info_var <- factoextra::get_famd_var(afdm)
head(info_var)
## $coord
##                   Dim.1        Dim.2       Dim.3       Dim.4       Dim.5
## Taille       0.58207653 1.153195e-01 0.053388826 0.008773748 0.014189602
## Titres       0.87597863 5.479986e-03 0.033104760 0.004398990 0.021262974
## Finales      0.74585366 4.501566e-05 0.000413261 0.002869096 0.102121100
## TitresGC     0.31080273 3.277179e-02 0.317071934 0.198627228 0.095028311
## Lateralite   0.50289256 3.865751e-02 0.046467710 0.318988342 0.004551671
## MainsRevers  0.02143563 6.161253e-01 0.003270651 0.099369460 0.166948006
## RolandGarros 0.08692472 6.157944e-01 0.684051278 0.219548163 0.323355666
## 
## $contrib
##                   Dim.1        Dim.2       Dim.3      Dim.4     Dim.5
## Taille       18.6207021  8.097176903  4.69241584  1.0290881  1.950575
## Titres       28.0226677  0.384778182  2.90962197  0.5159651  2.922917
## Finales      23.8599534  0.003160783  0.03632207  0.3365212 14.038088
## TitresGC      9.9426187  2.301077172 27.86787970 23.2973312 13.063077
## Lateralite   16.0875967  2.714343782  4.08410965 37.4146945  0.625696
## MainsRevers   0.6857284 43.261351568  0.28746189 11.6552159 22.949526
## RolandGarros  2.7807329 43.238111610 60.12218888 25.7511839 44.450121
## 
## $cos2
##                     Dim.1        Dim.2        Dim.3        Dim.4        Dim.5
## Taille       0.3388130880 1.329858e-02 2.850367e-03 7.697866e-05 2.013448e-04
## Titres       0.7673385660 3.003024e-05 1.095925e-03 1.935111e-05 4.521141e-04
## Finales      0.5562976882 2.026410e-09 1.707846e-07 8.231711e-06 1.042872e-02
## TitresGC     0.0965983351 1.073990e-03 1.005346e-01 3.945278e-02 9.030380e-03
## Lateralite   0.2529009221 1.494403e-03 2.159248e-03 1.017536e-01 2.071771e-05
## MainsRevers  0.0004594861 3.796104e-01 1.069716e-05 9.874290e-03 2.787164e-02
## RolandGarros 0.0037779537 1.896013e-01 2.339631e-01 2.410070e-02 5.227944e-02
## 
## $coord.sup
##                     Dim.1     Dim.2      Dim.3       Dim.4      Dim.5
## BestClassDouble 0.1078432 0.2401581 0.02054512 0.000883427 0.03158605
## 
## $cos2.sup
##                      Dim.1      Dim.2       Dim.3        Dim.4        Dim.5
## BestClassDouble 0.01163015 0.05767589 0.000422102 7.804433e-07 0.0009976784
#graphique des variables
factoextra::fviz_famd_var(afdm)

#contribution au premier facteur
factoextra::fviz_contrib(afdm,"var",axes=1)

#contribution au second facteur
factoextra::fviz_contrib(afdm,"var",axes=2)

#rôle des variables quantitatives
factoextra::fviz_famd_var(afdm,"quanti.var")

#rôle des variables qualitatives
factoextra::fviz_famd_var(afdm,"quali.var")

Information sur les individus

#infos sur les individus
info_ind <- factoextra::get_famd_ind(afdm)
head(info_ind)
## $coord
##                 Dim.1       Dim.2      Dim.3        Dim.4        Dim.5
## Agassi      0.5549479 -1.72964337 -0.1112039  0.443485514  0.431659950
## Becker     -0.8353297  1.24136576  1.4981591  0.004949326 -0.753429744
## Borg        0.7158371 -1.87517314  0.3884754  0.858030497  0.876418156
## Connors     3.5201198 -0.68103696  1.1219009 -1.985002439 -0.066812993
## Courier    -1.6601461 -1.16540932 -0.7016398 -0.191002074  0.591157027
## Edberg      0.2300972  2.08829797 -0.7332047  1.190499843  1.047308566
## Kafelnikov -1.9850636 -0.76990664 -0.7696127 -0.325251196 -0.002138258
## Kuerten    -2.2693605  0.51975615 -0.7422906  0.438782583 -0.494847381
## Lendl       1.4974826 -0.03786473  0.2905443  1.467411123 -1.555967471
## McEnroe     2.5040984  1.94899398 -1.1948360 -0.318112105  1.495746416
## Nastase     0.4372661 -0.12711269 -1.1784812  0.308952565 -1.400903440
## Rafter     -1.9197595  1.12811128  0.3784905 -0.861052289 -0.343209927
## Safin      -2.8390668  0.28768332  0.8914340 -1.371503244  0.414402326
## Sampras     0.6043354  0.47622774  2.5604304  1.032487966  0.308803728
## Vilas       1.8057848  0.19736716 -1.3630002 -0.953647390 -1.069580229
## Wilander   -0.3612430 -1.50165651 -0.3351656  0.260971321  0.521393273
## 
## $cos2
##                  Dim.1        Dim.2       Dim.3        Dim.4        Dim.5
## Agassi     0.080644793 0.7834026890 0.003238261 5.150280e-02 4.879277e-02
## Becker     0.134848784 0.2978041183 0.433757569 4.733946e-06 1.097025e-01
## Borg       0.087282243 0.5989358076 0.025705408 1.254016e-01 1.308339e-01
## Connors    0.672504531 0.0251722294 0.068310792 2.138466e-01 2.422714e-04
## Courier    0.546639129 0.2693798371 0.097641970 7.235762e-03 6.931286e-02
## Edberg     0.006010579 0.4950836478 0.061030099 1.608986e-01 1.245211e-01
## Kafelnikov 0.635813798 0.0956438882 0.095570881 1.706943e-02 7.377364e-07
## Kuerten    0.692513664 0.0363262559 0.074091661 2.588929e-02 3.292789e-02
## Lendl      0.279161309 0.0001784848 0.010508880 2.680620e-01 3.013927e-01
## McEnroe    0.441764689 0.2676142468 0.100578431 7.129328e-03 1.576174e-01
## Nastase    0.039953360 0.0033762888 0.290206466 1.994552e-02 4.100890e-01
## Rafter     0.470973436 0.1626322391 0.018306814 9.474620e-02 1.505298e-02
## Safin      0.689755929 0.0070822876 0.068002140 1.609674e-01 1.469564e-02
## Sampras    0.039206582 0.0243462604 0.703766911 1.144387e-01 1.023689e-02
## Vilas      0.394438294 0.0047119088 0.224718558 1.100076e-01 1.383802e-01
## Wilander   0.041831227 0.7228414296 0.036009789 2.183169e-02 8.714303e-02
## 
## $contrib
##                 Dim.1        Dim.2       Dim.3        Dim.4        Dim.5
## Agassi      0.6157443 13.128773656  0.06793069 1.441804e+00 1.600870e+00
## Becker      1.3951209  6.762550975 12.32940251 1.795724e-04 4.877059e+00
## Borg        1.0245292 15.430989604  0.82899730 5.397005e+00 6.599260e+00
## Connors    24.7748410  2.035412286  6.91409180 2.888481e+01 3.835256e-02
## Courier     5.5104693  5.960298403  2.70429810 2.674383e-01 3.002467e+00
## Edberg      0.1058568 19.137974110  2.95308921 1.038977e+01 9.423708e+00
## Kafelnikov  7.8785235  2.601280344  3.25364855 7.755061e-01 3.928191e-05
## Kuerten    10.2968164  1.185523892  3.02673305 1.411387e+00 2.103851e+00
## Lendl       4.4835247  0.006291883  0.46371480 1.578523e+01 2.080049e+01
## McEnroe    12.5371478 16.669862882  7.84228761 7.418358e-01 1.922155e+01
## Nastase     0.3822852  0.070906959  7.62906757 6.997308e-01 1.686122e+01
## Rafter      7.3686789  5.584893703  0.78693010 5.435087e+00 1.012027e+00
## Safin      16.1156272  0.363195435  4.36520369 1.378926e+01 1.475424e+00
## Sampras     0.7302173  0.995268857 36.01240356 7.814792e+00 8.192898e-01
## Vilas       6.5197050  0.170946728 10.20511661 6.666886e+00 9.828771e+00
## Wilander    0.2609124  9.895830284  0.61708487 4.992671e-01 2.335626e+00
## 
## $dist
##     Agassi     Becker       Borg    Connors    Courier     Edberg Kafelnikov 
##   1.954178   2.274754   2.422988   4.292495   2.245412   2.967927   2.489485 
##    Kuerten      Lendl    McEnroe    Nastase     Rafter      Safin    Sampras 
##   2.727026   2.834224   3.767523   2.187606   2.797362   3.418439   3.052099 
##      Vilas   Wilander 
##   2.875256   1.766237
#visualisation pour les individus
factoextra::fviz_famd_ind(afdm,col.quali.var = "white")