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Abstract

Data warehouses and OLAP (online analytical processing) provide tools to explore 
and navigate through data cubes in order to extract interesting information under 
different perspectives and levels of granularity. Nevertheless, OLAP techniques do 
not allow the identification of relationships, groupings, or exceptions that could 
hold in a data cube. To that end, we propose to enrich OLAP techniques with 
data mining facilities to benefit from the capabilities they offer. In this chapter, we 
propose an online environment for mining association rules in data cubes. Our 
environment called OLEMAR (online environment for mining association rules), is 
designed to extract associations from multidimensional data. It allows the extraction 
of inter-dimensional association rules from data cubes according to a sum-based 
aggregate measure, a more general indicator than aggregate values provided by 
the traditional COUNT measure. In our approach, OLAP users are able to drive 
a mining process guided by a meta-rule, which meets their analysis objectives. In 
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addition, the environment is based on a formalization, which exploits aggregate 
measures to revisit the definition of the support and the confidence of discovered 
rules. This formalization also helps evaluate the interestingness of association rules 
according to two additional quality measures: lift and loevinger. Furthermore, in 
order to focus on the discovered associations and validate them, we provide a visual 
representation based on the graphic semiology principles. Such a representation 
consists in a graphic encoding of frequent patterns and association rules in the 
same multidimensional space as the one associated with the mined data cube. We 
have developed our approach as a component in a general online analysis platform 
called Miningcubes according to an Apriori-like algorithm, which helps extract 
inter-dimensional association rules directly from materialized multidimensional 
structures of data. In order to illustrate the effectiveness and the efficiency of our 
proposal, we analyze a real-life case study about breast cancer data and conduct 
performance experimentation of the mining process.

Introduction

Data warehousing and OLAP (online analytical processing) technologies have 
gained a widespread acceptance since the 90’s as a support for decision-making. A 
data warehouse is a collection of subject-oriented, integrated, consolidated, time-
varying, and non-volatile data (Kimball, 1996; Inmon, 1996). It is manipulated 
through OLAP tools, which offer visualization and navigation mechanisms of 
multidimensional data views commonly called data cubes.
A data cube is a multidimensional representation used to view data in a warehouse 
(Chaudhuri & Dayal, 1997). The data cube contains facts or cells that have mea-
sures, which are values based on a set of dimensions where each dimension usually 
consists of a set of categorical descriptors called attributes or members. Consider 
for example a sales application where the dimensions of interest may include, cos-
tumer, product, location, and time. If the measure of interest in this application is 
the sales amount, then an OLAP fact represents the sales measure corresponding 
to a single member in the considered dimensions. A dimension may be organized 
into a hierarchy. For instance, the location dimension may form the hierarchy city 
 state  region. Such dimension hierarchies allow different levels of granularity 
in the data warehouse. For example, a region corresponds to a high level of granu-
larity whereas a city corresponds to a lower level. Classical aggregation in OLAP 
considers the process of summarizing data values by moving from a hierarchical 
level of a dimension to a higher one. Typically, additive data are suitable for simple 
computation according to aggregation functions (SUM, AVERAGE, MAX, MIN, 
and COUNT). For example, according to such a computation, a user may observe 
the sum of sales of products according to year and region.
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Furthermore, with efficient techniques developed for computing data cubes, users 
have become widely able to explore multidimensional data. Nevertheless, the OLAP 
technology is quite limited to an exploratory task and does not provide automatic 
tools to identify and visualize patterns (e.g., clusters, associations) of huge multi-
dimensional data.
In order to enhance its analysis capabilities, we propose to couple OLAP with data 
mining mechanisms. The two fields are complementary, and associating them can 
be a solution to cope with their respective limitations. OLAP technology has the 
ability to query and analyze multidimensional data through exploration, while data 
mining is known for its ability to discover knowledge from data. The general issue 
of coupling database systems with data mining was already discussed and motivated 
by Imieliński and Mannila (1996). The authors state that data mining leads to 
new challenges in the database area, and to a second generation of database sys-
tems for managing KDD (knowledge discovery in databases) applications just as 
classical ones manage business ones. More generally, the association of OLAP and 
data mining allows elaborated analysis tasks exceeding the simple exploration of 
data. Our idea is to exploit the benefits of OLAP and data mining techniques and to 
integrate them in the same analysis framework. In spite of the fact that both OLAP 
and data mining were considered two separate fields for a while, several recent 
studies showed the benefits of coupling them.
In our previous studies, we have shown the potential of coupling OLAP and data 
mining techniques through two main approaches. Our first approach deals with 
the reorganization of data cubes for a better representation and exploration of 
multidimensional data (Ben Messaoud, Boussaid, & Loudcher, 2006a). The 
approach is based on multiple correspondence analysis (MCA), which allows 
the construction of new arrangements of modalities in each dimension of a data 
cube. Such a reorganization aims at bringing together cells in a reduced part of the 
multidimensional space, and hence giving a better view of the cube. Our second 
approach constructs a new OLAP operator for data clustering called OpAC (Ben 
Messaoud, Boussaid, & Loudcher, 2006b), which is based on the agglomerative 
hierarchical clustering (AHC).
In this chapter, we present a third approach which also follows the general issue of 
coupling OLAP with data mining techniques but concerns the mining of associa-
tion rules in multidimensional data. In Ben Messaoud, Loudcher, Boussaid, and 
Missaoui (2006), we have proposed a guided-mining process of association rules in 
data cubes. Here, we enrich this proposal and establish a complete online environ-
ment for mining association rules (OLEMAR). In fact, it consists of a mining and 
visualization package for the extraction and the representation of associations from 
data cubes. Traditionally, with OLAP analysis, we used to observe summarized facts 
by aggregating their measures according to groups of descriptors (members) from 
analysis dimensions. Here, with OLEMAR, we propose to use association rules in 
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order to better understand these summarized facts according to their descriptors. For 
instance, we can note from a given data cube that sales of sleeping bags are particu-
larly high in a given city. Current OLAP tools do not provide explanations of such 
particular fact. Users are generally supposed to explore the data cube according to 
its dimensions in order to manually find an explanation for a given phenomenon. For 
instance, one possible interpretation of the previous example consists in associating 
sales of sleeping bags with the summer season and young tourist costumers.
In the recent years, many studies addressed the issue of performing data mining 
tasks on data warehouses. Some of them were specifically interested in mining pat-
terns and association rules in data cubes. For instance, Kamber, Han, and Chiang 
(1997) state that it is important to explore data cubes by using association rule 
algorithms. Further, Imieliński, Khachiyan, and Abdulghani (2002) believe that 
OLAP is closely interlinked with association rules and shares with them the goal 
of finding patterns in the data. Goil and Choudhary (1998) argue that automated 
techniques of data mining can make OLAP more useful and easier to apply in the 
overall scheme of decision support systems. Moreover, cell frequencies can facilitate 
the computation of the support and the confidence, while dimension hierarchies can 
be used to generate multilevel association rules.
OLEMAR is mainly based on a mining process, which explains possible relation-
ships of data by extracting inter-dimensional association rules from data cubes 
(i.e., rules mined from multiple dimensions without repetition of predicates in each 
dimension). This process is guided by the notion of inter-dimensional meta-rule, 
which is designed by users according to their analysis needs. Therefore, the search 
of association rules can focus on particular regions of the mined cube in order to 
meet specific analysis objectives. Traditionally, the COUNT measure corresponds 
to the frequency of facts. Nevertheless, in an analysis process, users are usually 
interested in observing multidimensional data and their associations according to 
measures more elaborated than simple frequencies. In our approach, we propose a 
redefinition of the support and the confidence to evaluate the interestingness of mined 
association rules when SUM-based measures are used. Therefore, the support and 
the confidence according to the COUNT measure become particular cases of our 
general definition. In addition to support and confidence, we use two other descrip-
tive criteria (lift and loevinger) in order to evaluate the interestingness of mined 
associations. These criteria are also computed for sum-based aggregate measures 
in the data cube and reflect interestingness of associations in a more relevant way 
than what is offered by support and confidence. 
The mining algorithm works in a bottom-up manner and is an adaptation of the 
Apriori algorithm (Agrawal, Imieliński, & Swami, 1993) to multidimensional 
data. It is also guided by user’s needs expressed through the meta-rule, takes into 
account a user selected measure in the computation of the support and the confi-
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dence, and provides further evaluation of extracted association rules by using lift 
and loevinger criteria.
In addition to the mining process, the environment also integrates a visual tool, 
which aims at representing the mined frequent patterns and the extracted association 
rules according to an appropriate graphical encoding based on the graphic semiol-
ogy principles of Bertin (1981). The peculiarity of our visualization component 
lies on the fact that association rules are represented in a multidimensional space 
in a similar way as facts (cells).
This chapter is organized as follows. In the second section, we define the formal 
background and notions that will be used in the sequel. The third section presents 
the key concepts of our approach for mining inter-dimensional association rules: 
the concept of inter-dimensional meta-rule; the general computation of support and 
confidence based on OLAP measures; and criteria for the advanced evaluation of 
mined association rules. The fourth section deals with the visualization of the mined 
inter-dimensional association rules while the fifth section provides the implemen-
tation of the online mining environment and describes our algorithm for mining 
inter-dimensional association rules. In the sixth section, we use a case study about 
mammographies to illustrate our findings while the seventh section concerns the 
experimental analysis of the developed algorithm. In the eighth section, we present 
a state of the art about mining association rules in multidimensional data. We also 
provide a comparative study of existing work and our own proposal. Finally, we 
conclude this chapter and address future research directions.

Formal Background and Notations

In this section, we define preliminary formal concepts and notations we will use to 
describe our mining process. Let C be a data cube with a non empty set of d dimen-
sions D = {D1, …, Di, …, Dd} and a non empty set of measures M. We consider 
the following notations:

•	 Each dimension D∈iD  has a non empty set of hierarchical levels. C;

•	 i
jH  is the thj  ( 0≥j ) level hierarchical level in Di. The coarse level of Di, 

denoted iH0 , corresponds to its total aggregation level All. For example, in 
Figure 1, dimension Shop (D1) has three levels: All, Continent, and Country. 

The All level is denoted 1
0H , the Continent level is denoted 1

1H , and the Country 
level is denoted 1

2H ;
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•	 iH  is the set of hierarchical levels of dimension Di, where each level i
i
jH H∈  

consists of a non empty set of members denoted Aij. For example, in Figure 1, 

the set of hierarchical levels of D2 is { }== 2
2

2
1

2
02 ,, HHHH {All, Family, Article}, 

and the set of members of the Article level of D2 is A22 ={iTwin, iPower, DV-
400, EN-700, aStar, aDream}.

Definition 1. (Sub-cube)
Let DD' ⊆  be a non empty set of p dimensions {D1, …, Dp} from the data cube 
C ( dp ≤ ). The p-tuple (

pΘΘ ,,1 
) is called a sub-cube on C according to D'  iff 

{ }pi ,,1∈∀ , ≠Θi Ø and there exists a unique j such that 
iji A⊆Θ .

As previously defined, a sub-cube according to a set of dimensions D'  corresponds 
to a portion from the initial data cube C. It consists in setting for each dimension 
from D'  a non-empty subset of member values from a single hierarchical level of 
that dimension. For example, consider { }21, DD=D'  a subset of dimensions from the 
cube of Figure 1. ( 21,ΘΘ ) = (Europe, {EN-700, aStar, aDream}) is therefore a pos-

Figure 1. Example of sales data cube
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sible sub-cube on C according to D' , which is displayed by the grayed portion of the 
cube in the figure. Note that the same portion of the cube can be defined differently 
by considering the sub-cube ( 321 ,, ΘΘΘ ) = (Europe, {EN-700, aStar, aDream}, All) 
according to D = {D1, D2, D3}.
One particular case of the sub-cube definition is when it is defined on C according to 

{ }dDD ,,1 =D'  and { }di ,,1∈∀ , iΘ  is a single member from the finest hierarchical 
level of Di. In this case, the sub-cube corresponds to a cube cell in C. For example, 
the black cell in Figure 1 can be considered as the sub-cube (Japan, iTwin, 2002) on 
C according to { }321 ,, DDD=D . Each cell from the data cube C represents an OLAP 
fact which is evaluated in ℜ  according to one measure from M. In our proposal, 
we evaluate a sub-cube according to its sum-based aggregate measure which is 
defined as follows:

Definition 2. (Sum-based aggregate measure)

Let ( pΘΘ ,,1  ) be a sub-cube on C according to DD' ⊆ . The sum-based aggregate 

measure of sub-cube ( pΘΘ ,,1  ) according to a measure M∈M , noted M( pΘΘ ,,1  ), 
is the SUM of measure M of all facts in the sub-cube.
For instance, the sales turnover of the grayed sub-cube in Figure 1 can be evaluated 
by its sum-based aggregate measure according to the expression Turnover(Europe, 
{EN-700, aStar, aDream}), which represents the SUM of the sales turnover values 
contained in grayed cells in the Sales cube.

Definition 3. (Dimension predicate)
Let Di be a dimension of a data cube. A dimension predicate ai in Di is a predicate 

of the form ijAa∈ .
A dimension predicate is a predicate which takes a dimension member as a value. For 

example, one dimension predicate in D1 of Figure 1 can be of the form =∈= ijAa1a  

{ }AsiaEuropeAmericaa ,,∈ .
Definition 4. (Inter-dimensional predicate)
Let DD' ⊆  be a non empty set of p dimensions {D1, …, Dp} from the data cube C 
( dp ≤≤2 ). )( 1 paa ∧∧  is called an inter-dimensional predicate in D iff { }pi ,,1∈∀ , ai 
is a dimension predicate in Di.

For instance, let consider { }21, DD=D'  a set of dimensions from the cube of Figure 1. 
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An inter-dimensional predicate can be of the form: ),( 222121 AaAa ∈∈ . An inter-
dimensional predicate defines a conjunction of non-repetitive predicates (i.e., each 
dimension has a distinct predicate in the expression).

The Proposed Mining Process

As previously mentioned, our mining process consists in (i) exploiting meta-rule 
templates to mine rules from a limited subset of a data cube, (ii) revisiting the defi-
nition of support and confidence based on the measure values, (iii) using advanced 
criteria to evaluate interestingness of mined associations, and (iv) proposing an 
Apriori-based algorithm for mining multidimensional data.

Inter-Dimensional Meta-Rules

We consider two distinct subsets of dimensions in the data cube C: (i)  D⊂CD  is a 
subset of p context dimensions. A sub-cube on C according to DC defines the context 
of the mining process; and (ii)  D⊂AD  is a subset of analysis dimensions from which 
predicates of an inter-dimensional meta-rule are selected. An inter-dimensional 
meta-rule is an association rule template of the following form:

In the context ( pΘΘ ,,1  )
( ) ( )rs ∧∧⇒∧∧  11 						      (1)

where (
pΘΘ ,,1 
) is a sub-cube on C according to DC. It defines the portion of cube C 

to be mined. Unlike the meta-rule proposed in Kamber et al. (1997), our proposal 
allows the user to target a mining context by identifying the sub-cube (

pΘΘ ,,1 
) 

to be explored. Note that in the case when DC = Ø, no particular analysis context is 
selected. Therefore, the mining process covers the whole cube C.

We note that { }sk ,,1∈∀  (respectively { }rk ,,1∈∀ ), ak (respectively bk) is a dimen-
sion predicate in a distinct dimension from DA.
Therefore, the conjunction ( ) ( )rs ∧∧∧∧∧  11  is an inter-dimensional predi-
cate in DA, where the number of predicates (s+r) in the meta-rule is equal to the 
number of dimensions in DA. We also note that our meta-rule defines a non-repetitive 
predicate association rules since each analysis dimension is associated with a distinct 
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predicate. For instance, suppose that in addition to the three dimensions displayed 
in Figure 1, the Sales cube contains four other dimensions: Profile (D4), Profession 
(D5), Gender (D6), and Promotion (D7). Let consider the following subsets from the 
Sales data cube: DC = {D5, D6} = {Profession, Gender}, and DA = {D1, D2, D3} = 
{Shop, Product, Time}. One possible inter-dimensional meta-rule scheme is:

In the context (Student, Female)

ArticleaYearaContinenta ∈⇒∈∧∈ 231 				    (2)

According to the previous inter-dimensional meta-rule, association rules are mined 
in the sub-cube (Student, Female) which covers the population of sales concerning 
female students. The dimensions profile and promotion do not interfere in the mining 
process. Dimension predicates in D1 and D3 are set in the body of the rule whereas 
the dimension predicate in D2 is set in the head of the rule. The first dimension 
predicate is set to the continent level of D1, the second one is set to the Year level 
of D3, and the third dimension predicate is set to the article level of D2.

Measure-Based Support and Confidence

Traditionally, as it was introduced in Agrawal et al. (1993), the support (Supp) of 
an association rule YX ⇒  in a database of transactions T, is the probability that the 
population of transactions contains both X and Y. The confidence (Conf) of YX ⇒  
is the conditional probability that a transaction contains Y given that it already 
contains X. Rules that do not satisfy user provided minimum support (minsupp) and 
minimum confidence (minconf) thresholds are considered uninteresting. A rule is 
said large, or frequent, if its support is no less than minsupp. In addition, a rule is 
said strong if it satisfies both minsupp and minconf.
In the case of a data cube C, the structure of data facilitates the mining of multidi-
mensional association rules. The aggregate values needed for discovering association 
rules are already computed and stored in C, which facilitates calculus of the support 
and the confidence and therefore reduces the testing and the filtering time. In fact, a 
data cube stores the particular COUNT measure which represents pre-computed fre-
quencies of OLAP facts. With this structure, it is straightforward to calculate support 
and confidence of associations in a data cube based on this summary information. For 
instance, suppose that a user needs to discover association rules according to meta-rule 
(2). In this case one association rule can be LaptopAmericaR ⇒∧ 2004:1 . The support 
and confidence of R1 are computed as follows:
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Supp(R1)
),,,,,,(

),,,,2004,,(
AllFemaleStudentAllAllAllAllCOUNT

AllFemaleStudentAllLaptopAmericaCOUNT
=

Conf(R1)
),,,,2004,,(

),,,,2004,,(
AllFemaleStudentAllAllAmericaCOUNT

AllFemaleStudentAllLaptopAmericaCOUNT
=

Note that in the previous expressions, the support (respectively the confidence) is 
computed according to the frequency of units of facts based on the COUNT measure. 
In other words, only the number of facts is taken into account to decide whether a 
rule is large (respectively strong) or not. However, in the OLAP context, users are 
usually interested to observe facts according to summarized values of measures more 
expressive than their simple number of occurrences. It seems naturally significant 
to compute the support and the confidence of multidimensional association rules 
according to the sum of these measures. For example, consider a fragment from 
the previous sales sub-cube (student, female) by taking once the COUNT measure 
and then the SUM of the sales turnover measure. Table 4(a) and Table 4(b) sum-up 
views of these sub-cube fragments. In this example, for a selected minsupp, some 
itemsets are large according to the COUNT measure in Table 4(a), whereas they are 
not frequent according to the SUM of the sales turnover measure in Table 4(b), and 
vice versa. For instance, with a minsupp = 0.2, the itemsets (<America>, <MP3>, 
<2004>) and (<America>, < MP3>, <2005>) are large according to the COUNT 
measure (grayed cells in Table 4(a)); whereas, these itemsets are not large in Table 
4 (b). The large itemsets according to the SUM of the profit measure are rather 
(<Europe>, <Laptop>, <2004>) and (<Europe>, <Laptop>, <2005>).
In the OLAP context, the rule mining process needs to handle any measure from 
the data cube in order to evaluate its interestingness. Therefore, a rule is not merely 

Table 5. Fragment of the sales cube according to the (a) COUNT measure and the 
(b) SUM of the sales turnover measure
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evaluated according to probabilities based on frequencies of facts, but needs to be 
evaluated according to quantity measures of its corresponding facts. In other words, 
studied associations do not concern the population of facts, but they rather concern 
the population of units of measures of these facts. The choice of the measure closely 
depends on the analysis context according to which a user needs to discover associa-
tions within data. For instance, if a firm manager needs to see strong associations 
of sales covered by achieved profits, it is more suitable to compute the support and 
the confidence of these associations based on units of profits rather than on units of 
sales themselves. Therefore, we define a general computation of support and confi-
dence of inter-dimensional association rules according to a user defined (sum-based) 
measure M from the mined data cube. Consider a general rule R, which complies 
with the defined inter-dimensional meta-rule (1):

In the context (
pΘΘ ,,1 
)

( ) ( )rs yyxx ∧∧⇒∧∧  11

The support and the confidence of this rule are therefore computed according to the 
following general expressions:

Supp(R)
),,,,,,,,(

),,,,,,,,,,,(

1

111

AllAllAllAllM
AllAllyyxxM

p

prs





ΘΘ

ΘΘ
= 			   (3)

Conf(R)
),,,,,,,,,,,(

),,,,,,,,,,,(

11

111

AllAllAllAllxxM
AllAllyyxxM

ps

prs





ΘΘ

ΘΘ
= 			   (4)

where ),,,,,,,,,,,( 111 AllAllyyxxM prs  ΘΘ  is the sum-based aggregate measure 
of a sub-cube. From a statistical point of view, the collection of facts is not studied 
according to frequencies but rather with respect to the units of mass evaluated by 
the OLAP measure M of the given facts. Therefore, an association rule YX ⇒  is 
considered large if both X and Y are supported by a sufficient number of the units 
of measure M. It is important to note that we provide a definition of support and 
confidence which generalizes the traditional computation of probabilities. In fact, 
traditional support and confidence are particular cases of the above expressions 
which can be obtained by the COUNT measure. In the above expressions, in order 
to insure the validity of our new definition of support and confidence, we suppose 
that the measure M is additive and has positive values.
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Advanced Evaluation of Association Rules

Support and confidence are the mostly known measures for the evaluation of as-
sociation rule interestingness. These measures are key elements of all Apriori-like 
algorithms (Agrawal et al., 1993) which mine association rules such that their sup-
port and confidence are greater than user defined thresholds. However, they usually 
produce a large number of rules which may not be interesting. Various properties of 
interestingness criteria of association rules have been investigated. For a large list 
of criteria, the reader can refer to Lallich, Vaillant, and Lenca (2005) and Lenca, 
Vaillant, and Lallich (2006).
Let’s consider again the association rule YXR ⇒: , which complies with the in-
ter-dimensional meta-rule (1), where )( 1 sxxX ∧∧= 

 and )( 1 ryyY ∧∧= 

 are 
conjunctions of dimension predicates. We also consider a user-defined measure M 
from data cube C. We denote by PX (respectively, PY, PXY) the relative measure M of 
facts matching X (respectively Y, X and Y) in the sub-cube defined by the instance (

pΘΘ ,,1  ) in the context dimensions DC. We also denote by PX = 1 – PX  (respectively, 
PY = 1 – PY) the relative measure M of facts not matching X (respectively Y), i.e., 
the probability of not having X (respectively Y). The support of R is equal to PXY 
and its confidence is defined by the ratio:

 X

XY

P
P

 

which is a conditional probability, denoted PX / Y, of matching Y given that X is 
already matched.

),,,,,,,,(
),,,,,,,,,,,(

1

11

AllAllAllAllM
AllAllAllAllxxM

P
p

ps
X





ΘΘ
ΘΘ

=

),,,,,,,,(
),,,,,,,,,,,(

1

11

AllAllAllAllM
AllAllyyAllAllM

P
p

pr
Y





ΘΘ
ΘΘ

=

PXY = Supp(R) = 
),,,,,,,,(

),,,,,,,,,,,(

1

111

AllAllAllAllM
AllAllyyxxM

p

prs





ΘΘ
ΘΘ

PY / X = Conf(R) = 
),,,,,,,,,,,(

),,,,,,,,,,,(

11

111

AllAllAllAllxxM
AllAllyyxxM

ps

prs





ΘΘ
ΘΘ
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There are two categories of frequently used evaluation criteria to capture the inter-
estingness of association rules: descriptive criteria and statistical criteria. In general, 
one of the most important drawbacks of a statistical criterion is that it depends on 
the size of the mined population (Lallich et al., 2005). In fact, when the number of 
examples in the mined population becomes large, such a criterion loses its discrimi-
nating power and tends to take a value close to one. In addition, a statistical criterion 
requires a probabilistic approach to model the mined population of examples. This 
approach is quite heavy to undertake and assumes advanced statistical knowledge 
of users, which is not particularly true for OLAP users.
On the other hand, descriptive criteria are easy to use and express interestingness of 
association rules in a more natural manner. In our approach, in addition to support and 
confidence, we add two descriptive criteria for the evaluation of mined association 
rules: the lift criterion (Lift) (Brin, Motwani, & Silverstein, 1997) and the loevinger 
criterion (Loev) (Loevinger, 1947). These two criteria take the independence of 
itemsets X and Y as a reference, and are defined on rule R as follows:

Lift(R) = 
YXYX

XY

PP
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PP
P )(UPPS

=

Loev(R) = 
Y

Y

Y

YXY

P
PR

P
PP −

=
− )(ONFC/

The lift of a rule can be interpreted as the deviation of the support of the rule from 
the expected support under the independence hypothesis between the body X and 
the head Y (Brin et al., 1997). For the rule R, the lift captures the deviation from 
the independence of X and Y. This also means that the lift criterion represents the 
probability scale coefficient of having Y when X occurs. For example, Lift(R) = 
2 means that facts matching with X have twice more chances to match with Y. As 
opposed to the confidence, which considers directional implication, the lift directly 
captures correlation between body X and its head Y. In general, greater Lift values 
indicate stronger associations.
In addition to support and confidence, the loevinger criterion is one of the oldest used 
interestingness evaluations for association rules (Loevinger, 1947). It consists in a 
linear transformation of the confidence in order to enhance it. This transformation is 
achieved by centering the confidence on PY and dividing it by the scale coefficient 
PY. In other words, the loevinger criterion normalizes the centered confidence of a 
rule according to the probability of not satisfying its head.
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The Visualization of Inter-Dimensional                         
Association Rules

In addition to the previous mining process, our online mining environment includes 
facilities for a graphic representation of the mined inter-dimensional association 
rules. This representation offers an easier access to the knowledge expressed by 
a huge number of mined associations. Users can therefore get more insight about 
rules and easily focus on interesting ones. A particular feature of our visualization 
solution consists in representing association rules in a multidimensional way so that 
they can be explored like any part of the data cube.
Traditionally, a user observes the measures associated with facts (cells) in a data 
cube according to a set of dimensions in a multidimensional space. In our visu-
alization approach, we embed in this space representation, a graphic encoding of 
inter-dimensional association rules. This encoding refers to the principles of graphic 
semiology of Bertin (1981). Such principles consist to organize the visual and per-
ceptual components of graphics according to features and relations between data. 
They mainly use the visual variables of position, size, luminosity, texture, color, 
orientation, and form. The position variable has a particular impact on human re-
tention since it concerns dominant visual information from a perceptual point of 
view. The other variables have rather a retinal property since it is quite possible to 
see their variations independently from their positions. The size variable generally 
concerns surfaces rather than lengths. According to Bertin, the variation of surfaces 
is a sensible stimulus for the variation of size and more relevant to human cognition 
than variation of length.
We note that the position of each cell in the space representation of a data cube is 
important since it represents a conjunction of predicate instances. For instance, let c 
be a cell in the space representation of the data cube C. The position of c corresponds 
to the intersection of row X with column Y. X and Y are conjunctions of modalities 
where each modality comes from a distinct dimension. In other words, X and Y are 
inter-dimensional instance predicates in the analysis dimensions retained for the 
visualization. Therefore, cell c corresponds to the itemset {X, Y}. According to the 
properties of the itemset {X, Y}, we propose to represent the appropriate graphic 
encoding as follows (see Figure 2): 

•	 If {X, Y}. is not frequent, only the value of the measure M, if it exists, is rep-
resented in cell c.

•	 If {X, Y}. is frequent and it does not generate association rules, a white square 
is represented in cell c.
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•	 If {X, Y}. is frequent and generates the association rule YX ⇒ , a blue square 
and a red triangle are displayed in cell c. The triangle points to Y according to 
the implication of the rule.

•	 If {X, Y}. is frequent and generates the association rule XY ⇒ , a blue square 
and a red triangle are displayed in cell c. The triangle points to X according 
to the implication of the rule.

•	 If {X, Y} is frequent and generates the association rules YX ⇒  and XY ⇒
, a blue square and two red triangles are displayed in cell c. The first triangle 
points to Y according to the implication of the rule YX ⇒ , and the second 
triangle points to X according to the implication of the rule XY ⇒ .

For a given association rule, we use two different forms and colors to distinguish 
between the itemset of the rule and its implication. In fact, the itemset {X, Y} is 
graphically represented by a blue square and the implication YX ⇒  is represented 
by a red equilateral triangle. We also use the surface of the previous forms in order 
to encode the importance of the support and the confidence. The support of the 
itemset {X, Y}is represented by the surface of the square and the confidence of 
the rule YX ⇒  is represented by the surface of the triangle. Since the surface is 
one of the most relevant variables to human perception, we use it to encode most 
used criteria to evaluate the importance of an association rule. For high values of 
the support (respectively, the confidence), the blue square (respectively, the red 
triangle) has a large surface, while low values correspond to small surfaces of the 
form. Therefore, the surfaces are proportionally equal to the values of the support 
and the confidence.
The lift and the loevinger criteria are highlighted with the luminosity of their respec-
tive forms. We represent high values of the lift (respectively, the loevinger criterion) 
by a low luminosity of the blue square (respectively, the red triangle). We note that 
a high luminosity of a form corresponds to a pale color, whereas, a low luminosity 
of a form corresponds to a dark color.

Figure 2. Examples of association rule representations in a cube cell
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Implementation and Algorithms

We have developed OLEMAR as a module of on a client/server analysis platform 
called MiningCubes, which already includes our previous proposals dealing with 
coupling OLAP and data mining (Ben Messaoud et al., 2006a, 2006b). MiningCubes 
is equipped with a data loader component that enables connection to multidimen-
sional data cubes stored in analysis services of MS SQL server 2000. The OLEMAR 
module allows the definition of required parameters to run an association rule mining 
process. In fact, as shown in the interface of Figure 3, a user is able to define analysis 

dimensions DA, context dimensions DC, a meta-rule with its context sub-cube ( pΘΘ ,,1 

) and its inter-dimensional predicates scheme ( ) ( )rs ∧∧⇒∧∧  11 , the measure 
M used to compute quality criteria of association rules, and the thresholds minsupp 
and minconf.
The generation of association rules from a data cube closely depends on the search 
for large (frequent) itemsets. Traditionally, frequent itemsets can be mined accord-
ing to two different approaches:

•	 The top-down approach, which starts with k-itemsets and steps down to 1-
itemsets. The decision whether an itemset is frequent or not is directly based 

Figure 3. Interface of the OLEMAR module in MiningCubes
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on the minsupp value. In addition, it assumes that if a k-itemset is frequent, 
then all sub-itemsets are frequent too. 

•	 The bottom-up approach which goes from 1-itemsets to larger itemsets. It 
complies with the Apriori property of anti-monotony (Agrawal et al., 1993) 
which states that for each non-frequent itemset, all its super-itemsets are 
definitely not frequent.

The previous property enables the reduction of the search space, especially when 
it deals with large and sparse data sets, which is particularly the case of OLAP data 
cubes. We implemented the mining process by defining an algorithm based on the 
Apriori property according to a bottom-up approach for searching large itemsets. 
As summarized in Algorithm 1, we proceed by an increasing level wise search for 
large i-itemsets, where i is the number of items in the itemset. We denote by C(i) 
the sets of i-candidates (i.e., i-itemsets that are potentially frequent), and F(i) the 
sets of i-frequents (i.e., frequent i-itemsets).
At the initialization step, our algorithm captures the 1-candidates from user de-
fined analysis dimensions DA over the data cube C. These 1-candidates correspond 
to members of DA, where each member complies with one dimension predicate ak 
or bk in the meta-rule R. In other words, for each dimension Di of DA, we capture 
1-candidates from Aij, which is the set of members of the jth hierarchical level of Di 
selected in its corresponding dimensional predicate in the meta-rule scheme. For 
example, let consider the data cube of Figure 4. We assume that, according to a user 
meta-rule, mined association rules need to comply with the meta-rule scheme:

{ } { } { }213212211 ,,, PPaTTaLLa ∈⇒∈∧∈ .

Therefore, the set of 1-candidates is: C(1) = {{L1}, {L2}, {T1}, {T2}, {P1}, {P2}}.
For each level i, if the set F(i) is not empty and i is less than s + r, the first step of 
the algorithm derives frequent itemsets F(i) from )(iC  according to two conditions: 
(i) an itemset )(iCA∈  should be an instance of an inter-dimensional predicates in 
DA, i.e., A must be a conjunction of members from i distinct dimensions from DA; 
and (ii) in addition to the previous condition, to be included in F(i), an itemset 

)(iCA∈  must have a support greater than the minimum support threshold minsupp. 
As shown in Figure 4, Supp(A) is a measure-based support computed according to 
a user selected measure M from the cube.

From each )(iFA∈ , the second step extracts association rules based on two condi-
tions: (i) an association rule YX ⇒  must comply with the user defined meta-rule R, 
i.e., items of X (respectively, items of Y) must be instances of dimension predicates 
defined in the body (respectively, in the head) of the meta-rule scheme of R. For 

{ }{ }{ }{ }{ }{ }{ }212121 ,,,,,)1( PPTTLLC =
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example, in Figure 4, 22 LP ⇒  can not be derived from F(2) because, according to the 

previous meta-rule scheme, instances of { }211 , LLa ∈  must be in the body of mined 
rules and not in their head; and (ii) an association rule must have a confidence greater 
than the minimum confidence threshold minconf. The computation of confidence 
is also based on the user defined measure M. When an association rule satisfies the 
two previous conditions, the algorithm computes its Lift and Loevinger criteria ac-
cording to the formulae we gave earlier. Finally, the rule, its support, confidence, 
Lift and Loevinger criteria are returned by the algorithm.
Based on the Apriori property, the third step uses the set F(i) of large i-itemsets 
to derive a new set C(i + 1) of (i + 1) )1( +i -candidates. A given (i + 1)-candidate 
is the union of two i-itemsets A and B from F(i) that verifies three conditions: (i) A 
and B must have i – 1 common items; (ii) all non empty sub-itemsets from BA∪  
must be instances of inter-dimensional predicates in DA; and (iii) all non empty sub-
itemsets from BA∪  must be frequent itemsets. For example in Figure 4, itemsets 

{ }22 ,TLA =  and { }22 , PLB =  from F(2) have {L2} as a common 1-itemset, all non empty 
sub-itemsets from { }222 ,, PTLBA =∪  are frequents and represent instances of inter-
dimensional predicates. Therefore, { }222 ,, PTL  is a 3-candidate included in C(3).

Figure 4. Example of a bottom-up generation of association rules from a data 
cube



OLEMAR:   19

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission         
of IGI Global is prohibited.

Note that the computation of support, confidence, Lift, and Loevinger criteria are 
performed respectively by the functions: ComputeSupport, ComputeConfidence, 
ComputeLift and ComputeLoevinger. These functions take the measure M into ac-
count and are implemented using MDX (Multi-Dimensional eXpression language 
in MS SQL Server 2000) that provides required pre-computed aggregates from the 
data cube. For instance, reconsider the Sales data cube of Figure 1, the meta-rule (2), 
and the rule R1: LaptopAmerica ⇒∧ 2004 . According to formula (3) and considering 
the sales turnover measure, the support of R1 is written as follows:

Supp( 1R )
),,,,,,(_

),,,,2004,,(_
AllFemaleStudentAllAllAllAllturnoverSales

AllFemaleStudentAllLaptopAmericaturnoverSales
=

Algorithm 1. The algorithm for mining inter-dimensional association rules from 
data cubes
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The numerator value of Supp(R1) is therefore returned by the following MDX 
query:

SELECT
 	 NON EMPTY {[Shop].[Continent].[America]} ON AXIS(0),
 	 NON EMPTY {[Time].[Year].[2004]} ON AXIS(1),
 	 NON EMPTY {[Product].[Family].[Laptop]} ON AXIS(2)
FROM Sales
WHERE 	 ([Measures].[Sales_turnover],
 		  [Profession].[Profession category].[Student],
 		  [Gender].[Gender].[Female])

A Case Study

In order to validate our approach, this section presents the results of a case study 
conducted on clinical data dealing with the breast cancer research domain. More 
precisely, data refer to suspicious regions extracted from the digital database for 
screening mammography (DDSM). In the following, we present the DDSM and 
the generated data cube.

The Digital Database for Screening Mammography (DDSM)

The DDSM is basically a resource used by the mammography image analysis 
research community in order to facilitate sound research in the development of 
analysis and learning algorithms (Heath, Bowyer, Kopans, Moore, & Jr, 2000). 
The database contains approximately 2,600 studies, where each study corresponds 
to a patient case.
As shown in Figure 5, a patient case is a collection of images and text files con-
taining medical information collected along exams of screening mammography. 
The DDSM contains four types of patient cases: normal, benign without callback, 
benign, and cancer. Normal type covers mammograms from screening exams that 
were read as normal and had a normal screening exam. Benign without callback 
cases are exams that had an abnormality that was noteworthy but did not require 
the patient to be recalled for any additional checkup. In benign cases, something 
suspicious was found and the patient was recalled for some additional checkup that 
resulted in a benign finding. Cancer type corresponds to cases in which a proven 
cancer was found.
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The Suspicious Regions Data Cube

A patient file refers to different data formats and encloses several subjects that 
may be studied according to various points of view. In our case study, we focus 
on studying the screening mammography data by considering suspicious regions 
(abnormalities) detected by an expert as an OLAP fact.
Under analysis services of MS SQL Server 2000, we have constructed the suspicious 
regions data cube from the DDSM data. Our data cube contains 4 686 OLAP facts. 
Figure 6(a) and Figure 6(b) illustrate, respectively, the physical structure and the 
conceptual model of the constructed cube as they are presented in the cube editor 
of analysis services. According to this data cube, a set of suspicious regions can be 
analyzed according to several axes: the lesion, the assessment, the subtlety, the 
pathology, the date of study, the digitizer, the patient, etc. The fact is measured 
by the total number of regions, the total boundary length, and the total surface of 
the suspicious regions. We note that, in this cube, the set of concerned facts deals 
only with benign, benign without callback, and cancer patient cases. Normal 
cases are not concerned since they do not contain suspicious regions.

Figure 5. An example of a patient case study taken from the DDSM
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Application on the Suspicious Regions Data Cube

We have applied our online mining environment on the suspicious regions data cube 
C. To illustrate this mining process, we suppose that an expert radiologist looks for 
associations that could explain the reasons of cancer tumors. We assume that the 
expert restricts his study to suspicious regions found on scanners of mammograms 
digitized thanks to a Lumisis Laser machine. This means that the subset of context 
dimensions DC contains the dimension Digitizer (D3) and the selected context cor-
responds to the sub-cube (Lumisis Laser) according to DC. We also suppose that the 
expert needs to explain the different types of pathologies in these mammograms. In 
order to do so, he chooses to explain the modalities of the pathology name level (

6
1H ), included in the dimension pathology (D6), by both those of the assessment code 

level ( 1
1H ), from dimension assessment (D1), and those of the lesion type category level 

( 4
1H ), from dimension lesion (D4). In other words, the subset of analysis dimensions 

DA consists of the dimensions assessment (D1), lesion (D4), and pathology (D6). Thus, 
according to our formalization:

•	 The subset of context dimensions is DC = {D3} = {Digitizer};
•	 The subset of analysis dimension is DA = {D1, D4, D6} = {Assessment, Lesion, 

Pathology}.

Figure 6. (a) the physical structure, and (b) the conceptual model of the suspicious 
regions data cube

 
 

(a) (b) 
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Therefore, with respect to the previous subset of dimensions, to guide the mining 
process of association rules, the expert needs to express the following inter-dimen-
sional meta-rule:

In the context (Lumisis Laser)

nameyPathoacategorytypeLesionacodeAssessmenta log641 ∈⇒∈∧∈

Table 1.

Association rule R Supp Conf Lift Loev

1
{All, Calcification type pleomorphic} 

⇒  {Benign}
5.03% 24.42% 0.73 -0.14

2 {3, All} ⇒  {Cancer} 5.15% 8.50% 0.60 -0.62

3 {0, All} ⇒  {Benign} 5.60% 66.72% 1.99 0.50

4
{4, Calcification type pleomorphic} 

⇒  {Cancer}
6.10% 61.05% 1.01 0.01

5 {All, Mass shape lobulated} ⇒  {Cancer} 6.14% 48.54% 0.80 -0.31

6 {All, Mass shape lobulated} ⇒  {Benign} 6.21% 49.03% 1.47 0.23

7 {3, All} ⇒  {Benign} 7.09% 49.99% 1.99 0.09

8 {All, Mass shape oval} ⇒  {Benign} 8.59% 65.82% 1.97 0.49

9
{5, Calcification type pleomorphic} 

⇒  {Cancer}
8.60% 98.92% 1.63 0.97

10 {5, Mass shape irregular} ⇒  {Cancer} 14.01% 96.64% 1.60 0.91

11
{All, Calcification type pleomorphic} 

⇒  {Cancer}
15.43% 74.97% 1.24 0.36

12 {4, All} ⇒  {Cancer} 16.43% 46.06% 0.76 -0.37

13 {4, All} ⇒  {Benign} 18.64% 52.29% 1.56 0.28

14 {All, Mass shape irregular} ⇒  {Cancer} 20.38% 87.09% 1.44 0.67

15 {5, All} ⇒  {Cancer} 36.18% 98.25% 1.62 0.96
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Note that, in order to explain the pathologies of suspicious regions, the dimension 

predicate in D6 ( nameyPathoa log6 ∈ ) is set to the head of the meta-rule (con-

clusion) whereas the other dimension predicates ( categorytypeLesiona ∈4
 and 

codeAssessmenta ∈1
) are rather set to its body (consequence).

Assume that minsupp and minconf are set to 5%, and Surface of suspicious regions 
is the measure on which the computation of the support, the confidence, the Lift, 
and the Loevinger criteria will be based. The guided mining process provides the 
association rules that we summarize in Table 1.
Note that the previous association rules comply with the designed inter-dimensional 
meta-rule, which aims at explaining pathologies according to assessments and le-
sions. From these associations, an expert radiologist can easily note that cancer 
cases of suspicious regions are mainly caused by high values of assessment codes. 
For example, rule R15:{5, All} ⇒  {Cancer} is supported by 36.18% of surface 
units of suspicious regions. In addition, its confidence is equal to 98.25%. In other 
words, knowing that a suspicious region has an assessment code of 5, the region 
has 98.25% chances to be a cancer tumor. Rule R15 has also a Lift equal to 1.62, 
which means that the total surface of cancer suspicious regions having an assess-
ment code equal to 5 is 1.62 times greater than the expected total surface under the 
independence situation between the assessment and the pathology type.
The lesion type can also explain pathologies. From the previous results, we note 
that the mass shape irregular and the calcification type pleomorphic are the major 
lesions leading to cancers. In fact, rules R11:{All, Calcification type pleomorphic} 
⇒  {Cancer} and R14:{All, Mass shape irregular} ⇒  {Cancer} confirm this 
observation with supports respectively equal to 15.43% and 20.38%, and 
confidences respectively equal to 74.97% and 87.09%.
Recall that our online mining environment is also able to provide an interactive 
visualization of its extracted inter-dimensional association rules. Figure 7 shows 
a part of the data cube where association rules R4, R9, and R10 are displayed in the 
visualization interface.

Performance Evaluation

We have evaluated the performance of our mining process algorithm for the suspicious 
regions data cube. We conducted a set of experiments to measure time processing for 
different situations of input data and parameters of the OLEMAR module supported 
by miningcubes. These experiments are achieved under Windows XP on a 1.60GHz 
PC with 480MB of main memory, and an Intel Pentium 4 processor. We also used 
Analysis Services of MS SQL Server 2000 as a local-host OLAP server.
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Figure 8 shows the relationship between the runtime of our mining process and the 
support of mined association rules according to several confidence thresholds. In 
general, the mining of association rules needs less time when it deals with increas-
ing values of the support.
Figure 9 presents a test of our algorithm for several numbers of facts. For small 
support values, the running time considerably increases with the number of mined 
facts. However, for large supports, the algorithm has already equal response times 
independently from the number of mined facts. Another point of view of this phe-
nomenon can be illustrated by Figure 10, which indicates that for a support and a 
confidence threshold equal to 5%, the efficiency of the algorithm closely depends 
on the number of extracted frequent itemsets and association rules. The running 
time obviously increases according to the number of extracted frequent itemsets 
and association rules. Nevertheless, the generation of association rules from fre-
quent itemsets is more time consuming than the extraction of frequent itemsets 
themselves.

Figure 7. Visualization of extracted association rules in MiningCubes
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Figure 8. The running times of the mining process according to support with dif-
ferent confidences

Figure 9. The running times of the mining process according to support with dif-
ferent numbers of facts

An apriori-based algorithm is efficient for searching frequent itemsets and has a 
low complexity level especially in the case of sparse data. Nevertheless, the apriori 
property does not reduce the running time of extracting association rules from a 
frequent itemset. For each frequent itemset, the algorithm must generate all possible 
association rules that comply with the meta-rule scheme and search those having a 
confidence greater than minconf.
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In general, these experiments highlight acceptable runtime processing. The effi-
ciency of our algorithm is due to: (i) the use of inter-dimensional meta-rules which 
reduce the search space of association rules and therefore, considerably decreases 
the runtime of the mining process; (ii) the use of pre-computed aggregates of the 
multidimensional cube which helps compute the support and the confidence via 
MDX queries; and (iii) the use of the anti-monotony property of apriori, which is 
definitely suited to sparse data cubes and considerably reduces the complexity of 
large itemsets search.

Related Work

Association Rule Mining in Multidimensional Data

Association rule mining was first introduced by Agrawal et al. (1993) who were 
motivated by market basket analysis and designed a framework for extracting rules 
from a set of transactions related to items bought by customers. They also proposed 
the apriori algorithm that discovers large (frequent) itemsets satisfying given mini-
mal support and confidence. Since then, many developments have been performed 
in order to handle various types and data structures.
To the best of our knowledge, Kamber et al. (1997) were the first researchers who 
addressed the issue of mining association rules from multidimensional data. They 

Figure 10. The running times the mining process according to the number  of fre-
quent itemsets and the number of association rules
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introduced the concept of meta-rule-guided mining which consists in using rule 
templates defined by users in order to guide the mining process. They provide two 
kinds of algorithms for extracting association rules from data cubes: (1) algorithms 
for materialized MOLAP (multidimensional OLAP) data cubes and (2) algorithms 
for non-materialized ROLAP (relational OLAP) data cubes. These algorithms can 
mine inter-dimensional association rules with distinct predicates from single levels 
of dimensions. An inter-dimensional association rule is mined from multiple dimen-
sions without repetition of predicates in each dimension, while an intra-dimensional 
association rule cover repetitive predicates from a single dimension. The support 
and the confidence of mined associations are computed according to the COUNT 
measure.
Zhu considers the problem of mining three types of associations: inter-dimensional, 
intra-dimensional, and hybrid rules (Zhu, 1998). The latter type consists in combining 
intra and inter-dimensional association rules. Unlike Kamber et al. (1997)—where 
associations are directly mined from multidimensional data—Zhu (1998) generates 
a task-relevant working cube with desired dimensions, flattens it into a tabular form, 
extracts frequent itemsets, and finally mines association rules. Therefore, this ap-
proach does not profit from hierarchical levels of dimensions since it flattens data 
cubes in a pre-processing step. In other words, it adapts multidimensional data and 
prepares them to be handled by classical iterative association mining process. Fur-
ther, the proposal uses the COUNT measure and does not take into account further 
aggregate measures to evaluate discovered rules. We also note the lack of a general 
formalization for the proposed approach.
Cubegrades, proposed in Imieliński et al. (2002), are a generalization of associa-
tion rules. They focus on significant changes that affect measures when a cube is 
modified through specialization (drill-down), generalization (roll-up), or mutation 
(switch). The authors argue that traditional association rules are restricted to the 
COUNT aggregate and can only express relative changes from body of the rule to 
body and head. In a similar way, Dong, Han, Lam, Pei, and Wang (2001) proposed an 
interesting and efficient version of the cubegrade problem called multidimensional 
constrained gradients, which also seeks significant changes in measures when cells 
are modified through generalization, specialization or mutation. To capture significant 
changes only and prune the search space, three types of constraints are considered. 
The concept of cubegrades and constrained gradients is quite different from clas-
sical mining of association rules. It discovers modifications on OLAP aggregates 
when moving from a source-cube to a target-cube, but it is not capable of searching 
patterns and association rules included in the cube itself. We consider a cubegrade 
as an inter-dimensional association rule with repetitive predicates, which implicitly 
takes into account hierarchical levels of dimensions.
Chen, Dayal, and Hsu (2000) propose a distributed OLAP based infrastructure 
which combines data warehousing, data mining, and OLAP-based engine for Web 
access analysis. In the data mining engine, the authors mine intra-dimensional as-
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sociation rules from a single level of a dimension, called base dimension, by adding 
features from other dimensions. They also propose to consider the used features at 
multiple levels of granularity. In addition, the generated association rules can also 
be materialized by particular cubes, called volume cubes. However, in this approach, 
the use of association rules closely depends on the specific domain of Web access 
analysis for a sale application. Furthermore, it lacks a formal description that enables 
its generalization to other application domains.
Extended association rules were proposed by Nestorov and Jukić (2003) as an out-
put of a cube mining process. An extended association rule is a repetitive predicate 
rule which involves attributes of non-item dimensions (i.e., dimensions not related 
to items/products). Their proposal deals with an extension of classical association 
rules since it provides additional information about the precise context of each rule. 
However, the authors focus on mining associations from transaction databases and 
do not take dimension hierarchy and data cube measures into account when com-
puting support and confidence.
Tjioe and Taniar (2005) propose a method for mining association rules in data 
warehouses. Based on the multidimensional data organization, their method is able 
to extract associations from multiple dimensions at multiple levels of abstraction 
by focusing on summarized data according to the COUNT measure. In order to do 
so, they prepare multidimensional data for the mining process according to four 
algorithms: VAvg, HAvg, WMAvg, and ModusFilter. These algorithms prune all 
rows in the fact table which have less than the average quantity and provide an 
initialized table. This table is next used for mining both non-repetitive predicate 
and repetitive predicate association rules.

Discussion and the Position of our Proposal

The previous work on mining association rules in multidimensional data can be 
studied and compared according to various aspects.
As shown in Table 1, most of the proposals are designed and validated for sales data 
cubes. Their applications are therefore inspired by the well-known basket market 
analysis problem (BMA) driven on transactional databases. Nevertheless, we be-
lieve that most of the proposals (except for the proposals of Chen et al. (2000) and 
Nestorov et al. (2003)) can easily be extended to other application domains. Our 
approach covers a wide spectrum of application domains. It depends neither on a 
specific domain nor on a special context of data.
Almost all the previous proposals are based on the frequency of data, by using the 
COUNT measure, in order to compute the support and the confidence of the discov-
ered association rules. As indicated earlier, Imieliński et al. (2002) can exploit any 
measure to detect cubegrades. Nevertheless, the authors do not compute the support 
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and the confidence of the produced cubegrades. Tjioe et al. (2005) use the average 
(AVG) of measures in order to prune uninteresting itemsets in a pre-processing step. 
However, in the mining step, they only exploit the COUNT measure to compute the 
support and the confidence of association rules. Our approach revisits the support 
and the confidence of association rules when SUM-based aggregates are used.
According to Table 2, some of the proposals mine inter-dimensional association rules, 
whereas others deal with intra-dimensional rules. In general, an inter-dimensional 
association rule relies on more than one dimension from the mined data cube and 
consists of non-repetitive predicates, where the instance of each predicate comes 
from a distinct dimension. An intra-dimensional rule relies rather on a single dimen-
sion. It is constructed within repetitive predicates where their instances represent 
modalities from the considered dimension. Nevertheless, a cubegrade (Imieliński 
et al., 2002), or a constrained gradient (Dong et al., 2001), can be viewed as an 
inter-dimensional association rule which has repetitive predicates. The instances of 
these predicates can be redundant in both the head and the body of the implication. 
Furthermore, the proposal of Tjioe et al. (2005) is mostly the only one which allows 
the mining of inter-dimensional association rules with either repetitive or non-re-
petitive predicates. In our proposal, we focus on the mining of inter-dimensional 
association rules with non-repetitive predicates.
We note that, except for (Kamber et al., 1997; Zhu, 1998), most of the previous pro-
posals try to exploit the hierarchical aspect of multidimensional data by expressing 
associations according to multiple levels of abstractions. For example, a cubegrade is 
an association which can be expressed within multiple levels of granularity. Associa-
tion rules in Chen et al. (2000) also exploit dimension hierarchies. In our case, the 
definition of the context in the meta-rule can be set to a given level of granularity.

Table 1. Comparison of association rule mining proposals from multidimensional 
data across application domain, data representation, and measure
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According to Table 3, we note that the proposal of Chen et al. (2000) does not con-
sider any interaction between users and the mining process. In fact, in the proposed 
Web infrastructure, analysis objectives are already predefined over transactional data 
and therefore users can not interfere with these objectives. In Kamber et al. (1997), 
user’s needs are expressed through the definition of a meta-rule.
Except for cubegrades (Imieliński et al., 2002) and constrained gradients (Dong 
et al., 2001), almost all proposals miss a theoretical framework which establishes 
a general formalization of the mining process of association rules in multidimen-
sional data.
In addition, in all these proposals, Zhu (1997) is mostly the only one who proposes 
association rule visualization. Nevertheless, the proposed graphical representation 
is similar to the ones commonly used in traditional association rules mining, and 
hence does not take into account multidimensionality.

Table 2. Comparison of association rule mining proposals from multidimensional 
data across dimension, level, and predicate

Table 3. Comparison of association rule mining proposals from multidimensional 
data across user interaction, formalization, and association exploitation
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OLEMAR is entirely driven by user’s needs. It uses meta-rules to meet the analysis 
objectives. It is also based on a general formalization of the mining process of in-
ter-dimensional association rules. Moreover, we include a visual representation of 
rules based on the graphic semiology principles.

Conclusion, Discussion, and Perspectives

In this chapter, we design an online environment for mining inter-dimensional 
association rules from data cubes as a part of a platform called CubeMining. We 
use a guided rule mining facility, which allows users to limit the mining process to 
a specific context defined by a particular portion in the mined data cube. We also 
provide a computation of the support and the confidence of association rules when 
a SUM-based measure is used. This issue is quite interesting since it expresses 
associations which do not restrict users’ analysis to associations driven only by 
the traditional COUNT measure. The support and the confidence may lead to the 
generation of large number of association rules. Therefore, we propose to evaluate 
interestingness of mined rules according to two additional descriptive criteria (lift 
and loevinger). These criteria can express the relevance of rules in a more precise 
way than what is offered by the support and the confidence. Our association rule 
mining procedure is an adaptation of the traditional level-wise apriori algorithm 
to multidimensional data. In order to make extracted knowledge easier to interpret 
and exploit, we provide a graphical representation for the visualization of inter-
dimensional association rules in the multidimensional space of the mined data 
cube. Empirical analysis showed the efficiency of our proposal and the acceptable 
runtime of our algorithm.
In the current development of our mining solution, we integrate SUM-based mea-
sures in the computation of interestingness criteria of extracted association rules. 
However, this choice assumes that the selected measure is additive and has only 
positive values. In the suspicious regions data cube, the surface of regions is an 
appropriate measure for the computation of the revisited criteria. Nevertheless, the 
total boundary length of regions can not be used for that computation since the SUM 
of boundary lengths does not make concrete sense. In some cases, an OLAP context 
may be expressed by facts with non-additive or negative measures. For instance, 
in the traditional example of a sales data cube, the average of sales is typically a 
non-additive measure. Furthermore, the profit of sales is also an OLAP measure that 
can have negative values. In such situations, we obviously need a more appropriate 
interestingness estimation of association rule to handle a wider spectrum of measure 
types and aggregate functions (e.g., AVG, MAX). 
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Our proposal provides inter-dimensional association rules with non-repetitive 
predicates. Such rules consist of a set of predicate instances where each one repre-
sents a modality coming from a distinct dimension. This kind of association rules 
helps explain a value of a dimension by other values drawn from other dimensions. 
Nevertheless, an inter-dimensional association rule does not explain a modality by 
other ones from the same dimension. For instance, the latter type of rules is not able 
to explain the sales of a product by those of other products or even other product 
categories. In order to cope with this issue, we also need to extend our proposal 
in order to cover the mining of inter-dimensional association rules with repetitive 
predicates as well as intra-dimensional association rules. In addition, these new 
kinds of associations should profit from dimension hierarchies and allow modalities 
from multiple granularity levels.
The association rule mining process in our environment is based on an adaptation 
of the traditional level-wise apriori algorithm to multidimensional data. The anti-
monotony property (Agrawal et al., 1993) allows a fast search of frequent itemsets, 
and the guided mining of association rules we express as a meta-rule limits the search 
space according to the analysis objectives of users. However, some recent studies 
have shown the limitations of Apriori and privileged the notion of frequent closed 
itemsets like in close (Pasquier, Bastide, Taouil, & Lakhal, 1999), pascal (Bastide, 
Taouil, Pasquier, Stumme, & Lakhal, 2000), closet (Pei, Han, & Mao, 2000), Charm 
(Zaki & Hsiao, 2002), and galicia (Valtchev, Missaoui & Godin, 2004).
Finally, measures are used in our environment for computing interestingness criteria. 
We plan to study the semantics of association rules when measures appear in the 
expression of rules.
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