
MIC 2015: The XI Metaheuristics International Conference id–1

A Simulated Annealing algorithm for real-world 2-D
Cutting Stock Problem with Setup Cost

Stephane Bonnevay1, Philippe Aubertin2, Thibault Lazert1

1 ERIC, Universite de Lyon, 5 av. Pierre Mends France, 69676 Bron Cedex, France
stephane.bonnevay@univ-lyon1.fr

2 AXOPEN, 149 bd Stalingrad, 69100 Villeurbanne, France
philippe.aubertin@axopen.com

Abstract
This article deals with the Two-Dimensional Cutting Stock Problem with Setup Cost (2CSP-S).

This work was conducted for a paper industry company on their real data. The 2CSP-S combines
three optimization sub-problems: a 2-D Bin Packing (2BP) problem (to place images on patterns), a
Linear Programming (LP) problem (to find for each pattern the number of stock sheets to be printed)
and a combinatorial problem (to find the number of each image on each pattern). We propose a
method to solve the 2CSP-S focusing on this third sub-problem. Our approach is a simulated anneal-
ing algorithm that aims to automatically determine the proper number of each image on each pattern.
It is important to notice that the proposed method is not a new packing technique. Our algorithm was
tested to solve the 2CSP-S on real and artificial datasets.

1 Introduction

The problem of cutting stock materials (paper, steel, glass, ...) in order to satisfy the customer demand
while minimizing the trim loss is known as the Cutting Stock Problem (CSP). In CSP, a sufficient number
of setups/patterns are used to solve the problem. The CSP is the same problem as the Bin Packing
Problem where a set of items must be grouped into bins. In the past, several different methods were
developed in order to solve this couple of problems, including linear programming, heuristics, and meta-
heuristics [2, 4, 5, 9, 13, 19, 12]. In some real-world applications, optimizing the number of patterns is
important because the manufacturing cost of one pattern can be expensive in regard to the cost of one
stock sheet. The Pattern Minimization Problem (PMP) aims to minimize the number of different cutting
patterns while satisfying the demand [1, 14]. Another problem, called the Cutting Stock Problem with
Setup Cost (CSP-S), takes into account the costs of the setup and the stock sheet print in order to minimize
the total production cost. Most of existing papers deal with one dimensional problems [3, 6, 8, 15, 18].

This paper deals with the Two-Dimensional Cutting Stock Problem with Setup Cost (2CSP-S) in
order to solve a real-world application of the paper industry1. According to the 2CSP-S, customer de-
mands correspond to the number of prints of several rectangular images. The aim is to satisfy customer
demands while minimizing the total production cost (stock sheet cost and setup cost) by automatically
fixing: the number of patterns, the number of stock sheets to be printed for each pattern, the number and
the position of each rectangular image on patterns. Our method is not a new cutting (packing) technique
(where the number of objects to be placed is known): in this work the number of objects (rectangular
images) to be set on each pattern is unknown (only the demands are known). Our work focuses on the
problem of finding the proper number of each image on each pattern (and to find the optimal number of
patterns). For this purpose, we developed a simulated annealing algorithm. 2BP and LP sub-problems
of the 2CSP-S are solved by well-known algorithms. In our case, images could be rotated by 90◦. This
positioning consists in placing images without overlap. Positions of images have to satisfy the guillotine
cut constraint meaning that the cutting must be a sequence of edge-to-edge cuts parallel to the edges of
the pattern.

Section 2 presents a mathematical formulation of the 2CSP-S and sets out an example as way of
explanation. Our algorithm, with all other used methods are detailed in Section 3. Experiments on real
and artificial datasets are presented in Section 4.

1This is a cooperation with the Seripress company (http://www.seripress.com/)

Agadir, June 7-10, 2015



id–2 MIC 2015: The XI Metaheuristics International Conference

2 Problem definition

2.1 Mathematical formulations

Let I be the set of n rectangular images. An image i is defined by its width wi, its height hi and
its demand di (the number of prints of image i). Let J be the set of m patterns with the same size
H × W . The number m is unknown. Let pji be the number of image i in the pattern j. We note
pj = (pj1, . . . , pjn). Let πj be a placement (rectangle packing) of all the images of the pattern j (πj
includes exact position and rotation information). The number of possible positions is limited by the
algorithm (see Section 3.2). Thereby, a pattern j could be defined as the couple (pj , πj). In the following
of this paper, we shall only consider feasible couples (pj , πj) (i.e. with feasible placement). Let xj be
the number of stock sheets to be printed for the pattern j. The decision variables are: m, pj , xj and πj
∀j ∈ J .

The main objective (fitness) is to minimize the total cost:

f(m,x1, . . . , xm) = mCsu + Css

∑
j∈J

xj (1)

where Csu is the manufacturing cost of one setup, and Css is the printing cost of one stock sheet.
To satisfy the demand di requested for each image i, there are n constraints:∑

j∈J
pjixj ≥ di ∀i ∈ I (2)

These n constraints and the objective function f (defined by Equation 1) define an integer linear program
(where the decision variables are xj ∀j ∈ J).

In order to simplify the problem, our algorithm is run with several fixed values of m (see line 5 of
Algorithm 3). Thus, a solution of 2CSP-S is composed of a tuple ((p1, π1), . . . , (pm, πm)) and a tuple
(x1, . . . , xm) which is the solution of the integer linear program defined above. Let S be the set of all
possible solutions.

2.2 Example

In order to illustrate the 2CSP-S problem, we display a simple example with 4 customers demands:
image 1 (size: 30 × 24, demand: 246), image 2 (size: 56 × 13, demand: 562), image 3 (size: 22 × 14,
demand: 1000) and image 4 (size: 23× 9, demand: 3498). The pattern size is equal to 60× 40.

The objective is to reduce the total material cost depending exclusively on Csu and Css (see Equa-
tion (1)). Here, Csu = 20$ and Css = 1$. As an example, calculations have been performed with 1
pattern (m = 1) and with 2 patterns (m = 2). Results are displayed in Figure 1. In all the figures of this
paper, a star (?) next to the image number indicates that the corresponding image has been rotated 90◦. As
shown in Table 1, the best solution is obtained with 2 patterns (see Figure 1b) even if the manufacturing
cost of one setup is 20 times greater than the printing cost of one stock sheet.

Table 1: Costs corresponding to Figure 1, with Csu = 20$ and Css = 1$

Nb of patterns Nb of stock sheets printed Total cost
1 3498 1× 20$ + 3498× 1$ = 3518$
2 808 (246 + 562) 2× 20$ + 808× 1$ = 848$

It is important to understand that the best result is not obtained by fully completing all the patterns.
This means that we cannot use the blank area rate to define the quality of a solution. According to
overproduction, with one pattern, the overproduction is very large: 3498 copies of the images 1, 2 and
3 are printed, instead of respectively, 246, 562 and 1000 copies. With 2 patterns, only 54 copies of the
image 3 and 50 copies of the image 4 are overly printed.

Agadir, June 7-10, 2015



MIC 2015: The XI Metaheuristics International Conference id–3

(a) Solution with 1 pattern (3498
prints)

(b) Solution with 2 patterns (246 + 562 = 808 prints)

Figure 1: Solutions found by our algorithm with one (a) and two (b) patterns.

2.3 Overproduction

In order to take into account the overproduction in our model, we define ri as the quantity of images i
overproduced and OverP the total overproduction:

ri =
∑
j∈J

pjixj − di ∀i ∈ I and OverP =
∑
i∈I

ri (3)

In our model, the main objective is the minimization of the fitness f (see Equation 1). But if two
solutions s and s′ of S have the same fitness f then the one which minimize OverP is chosen. Thereby,
a method called BestSolution(s,s′) is used to return the best solution between s and s′. This method
combines f and OverP .

2.4 Bounds

We first calculate a lower bound L0 of the number of patterns:

L0 =

⌈∑
i∈I hiwi

H ×W

⌉
(4)

L0 corresponds to the minimum number of patterns when positioning only one copy of every image with
no unoccupied areas on the patterns. Thus, m ≥ L0.

In the following, we note L1 to be the minimum number of patterns found by our placement algo-
rithm. Thus, L1 ≥ L0. L1 will be evaluated by the InitialSolution(L0) method (see Section 3.4).

We define the upper bound Lmax(i) of the number of images i which can be placed on one pattern
as:

Lmax(i) =

⌊
H ×W
hiwi

⌋
(5)

Lmax(i) is the theoretical maximum number of image i in one pattern. It is used to limit the process of
adding an image in a pattern when building the neighborhood of a solution.

3 Our algorithm

2CSP-S is a combination of three optimization sub-problems: the first one is a 2-D Bin Packing (2BP)
problem which consists of finding the placement (π1, . . . , πm) of all images on the m patterns; the

Agadir, June 7-10, 2015



id–4 MIC 2015: The XI Metaheuristics International Conference

second one is a Linear Programming (LP) problem which consists of finding the number (x1, . . . , xm)
of stock sheets to be printed for each pattern; the third one is a combinatorial problem which consists
of finding the proper tuple (p1, . . . , pm) of each image on m patterns (and find the number of patterns
m). In this section, we present our simulated annealing algorithm used to solve this third sub-problem:
find the proper number of each image on each pattern. A well-known algorithm (see Section 3.2) and a
classical linear programming solver were used to solve the first (2BP) and the second (LP) sub-problems.
The following subsections detail each part of our approach.

3.1 Stock sheet prints

The fitness, Fitness(s), of a solution s ∈ S is a combination of the total cost given by Equation 1 and
overproduction quantities (see Section 2.3). But in order to compute (x1, . . . , xm) according to a fixed
number m of patterns, a simplified fitness definition is given as follows:

f ′(s) =
∑
j∈J

xj (6)

As explained in Section 2.1, f ′(s) is the result of an integer programming problem. Indeed, given a
tuple (p1, . . . , pm) which represents the numbers of all images in the m patterns (this tuple will be found
by our simulated annealing algorithm), the aim is to find (x1, . . . , xm) minimizing Equation 6 under
constraints given by Equation 2. As m is fixed at each step (see line 5 of Algorithm 3), all patterns are
useful, thus:

xi ≥ 1 ∀i ∈ I (7)

As we must evaluate the fitness of each solution during our algorithm, it is crucial to optimize this phase.
Thereby, the corresponding relaxation problem (real-LP) is solved and the solution (x∗1, . . . , x

∗
m) rounded

to upper whole numbers (dx∗1e, . . . , dx∗me) is returned. Thus, xj = dx∗je ∀j ∈ J .
The method which calculates the number of stock sheets to be printed and the fitness of the solution

s is called ComputePrintsAndFitness(s). The time complexity of this method is denoted cpaf(n,m).

3.2 2-D bin packing method

In order to deal with only feasible solutions, a 2-D Bin Packing (2BP) algorithm has to be used to build
the placement (π1, . . . , πk) on k patterns according to a list of images (q1, . . . , qn), where qi is equal
to the number of image i. There are several methods to make a 2BP from a list of images [11, 13]. In
our case, we slightly adapted an existing algorithm, named maximal rectangles best short side fit, which
satisfies the guillotine cut constraint and which is one of the best constructive algorithms of [11].

In the following of this paper, this method is called 2DBinPacking(k,q), where k is the number of
patterns used and q = (q1, . . . , qn) is a n-tuple of the total number qi of each image i. The output is a
list (π1, . . . , πk) of placements on k patterns or null if there is no feasible packing. Unfeasible packing
appears if the number of patterns k is too small to place all images given by q.

According to [11], the time complexity of this method is O(n2q + nqk) (where nq =
∑

i∈I qi). As
k < n, it is equal to O(n2q).

3.3 Neighborhood of a solution

To create a simulated annealing algorithm to automatically determine the proper number of each image
on patterns, a neighborhood of any solution s is defined by modifying the tuple (p1, . . . , pm).

Let s ∈ S be a solution composed of a tuple ((p1, π1), . . . , (pm, πm)) and a tuple (x1, . . . , xm)
which is the solution of the relaxed linear program. A neighbor of s is built from one of these four
operators: add one image in one pattern, remove one image from one pattern, move one image from a
pattern to another one, swap two images from two different patterns. These operators only modify the
tuple (p1, . . . , pm). The operator add add one image i in the pattern j which involves incrementing pji

Agadir, June 7-10, 2015



MIC 2015: The XI Metaheuristics International Conference id–5

if pji is less than Lmax(i). The operator remove removes one image i from the pattern j which involves
decrementing pji if the number of image i in the whole solution s remains strictly positive. And so on.

During the simulated annealing process, only one neighbor is randomly chosen at each step. This
neighbor is generated by randomly selecting one elementary operator, and then by randomly selecting
one (add and remove) or two (move and swap) patterns, and one (add, remove and move) or two (swap)
images in these patterns. Of course, these elementary operators can lead to an unfeasible solution (un-
feasible placement). So, the method 2DBinPacking(1,pj) (see Section 3.2) is applied on each modified
pattern j in order to check the placement feasibility and to build πj (if feasible).

Thereby, the method ChooseNeighbor(s) chooses a neighbor of s, checks the feasibility on each
modified pattern and returns either the solution corresponding to this neighbor, or null if there is no
feasible packing (see Algorithm 1). Its time complexity only depends on the 2DBinPacking complexity.

Algorithm 1 Choose a neighbor
1: function CHOOSENEIGHBOR(s)
2: s′ ← s . copy s in s′

3: Choose an elementary operator and apply it on s′

4: for each modified p′j do . one modified pattern in add and remove
. two modified patterns in move and swap

5: π ← 2DBinPacking(1,p′j)
6: if π != null then π′j ← π . copy the new placement π in π′j of s′

7: else return null
8: end if
9: end for

10: return s′ . return the neighbor of s
11: end function

3.4 Initial solution generator

To begin the simulated annealing process, an initial feasible solution has to be generated. The first step
of this initialization is inspired by [10]. The objective is to place only one copy of each image i on k
patterns. Thus, the method 2DBinPacking(k,(q1, . . . , qn)) is run with qi = 1 ∀i ∈ I . If it returns null,
the method is repeated with k+1 patterns and so on, until a feasible placement (π1, . . . , πk) is found. At
the beginning, this method is run with k = L0 (the lower bound of patterns number, see Section 2.4). At
the end of this first step, an initial feasible solution s0 is created. This first step also gives the minimum
number of patterns L1 (according to the performance of our 2DBinPacking method); L1 is the number
of patterns of the solution s0.

Experiments show that this initial solution s0 is often very bad. Moreover, as 2DBinPacking is a
deterministic method, even if this first step is performed several times, s0 will be the same. That is the
reason why a second step is performed in order to obtain a random initial solution. Thus, from s0, a
random walk is performed: a solution s1 is chosen in the neighborhood of s0, a solution s2 is chosen in
the neighborhood of s1, and so on, until a fixed iterations number NbWalk.

The complexity of InitialSolution(k) (see Algorithm 2) is O(NbWalk×n2max + cpaf(n, k)), where
nmax is the total number of images in q during the random walk.

3.5 Main algorithm

Our algorithm, SA-2CSP-S (see Algorithm 3), combines all the previous methods in a simulated anneal-
ing process.

From experiments on the real datasets of the company, we observed that the optimal number of
patterns is not so far from the real minimum number of patterns L1 (probably because the cost of one
pattern creation is much higher than the sheet print cost). In this way and to simplify the problem of

Agadir, June 7-10, 2015



id–6 MIC 2015: The XI Metaheuristics International Conference

Algorithm 2 Initial solution generator
1: function INITIALSOLUTION(k) . k is the initial number of patterns
2: qi ← 1 ∀i ∈ I . one copy of each image
3: π ← 2DBinPacking(k,(q1, . . . , qn))
4: while π == null do
5: k ← k + 1
6: π ← 2DBinPacking(k,(q1, . . . , qn))
7: end while
8: s← new Solution(π) . create a solution from π
9: ComputePrintsAndFitness(s) . compute prints and fitness

10: for l← 1 to NbWalk do . random walk
11: s′ ← ChooseNeighbor(s)
12: if s′ != null then s← s′

13: end if
14: end for
15: ComputePrintsAndFitness(s) . compute prints and fitness
16: return s
17: end function

2CSP-S, the number of patterns is first fixed to L1. L1 corresponds to the number of patterns of the
initial solution found by the method InitialSolution(L0) (line 4). Then, this number is increased twice
to test two more number of patterns. From a computational point of view, the loop line 5 has been
parallelized; thus the computation time of this loop is independent of the number of iterations.

Our algorithm is a classical simulated annealing process. There is NbT temperature decreases (loop
line 9), and NbM moves in the space of solution S at each temperature value (loop line 10). A neighbor
s′ of a solution s is accepted, either if s′ is better than s (line 16), or if the ratio between ∆ and the
current temperature is not too large (line 20). At the end of each search, a local improvement is applied
on the best solution found with a hill-climbing process (line 27) followed by an overproduction removal
(line 28). The time complexity of our main algorithm is O(NbT× NbM× (n2max + cpaf(n,m))).

4 Experiments

A Java application was developed, using Java.Stream to parallelize the loop line 5 of SA-2CSP-S (see
Algorithm 3) and a Java Simplex Solver package to compute (x1, . . . , xm). Thereby, the complexity
O(cpaf(n,m)) depends on this Simplex Solver package; this complexity is not in O(n2). Thus, the
global time complexity depends primarily on O(cpaf(n,m)). Calculations were run on a MacBook Pro
2.2GHz Intel Quad Core i7 16Go.

There are several existing modeling approaches to manipulate and code a solution like the graph-
theoretical characterization [7], the binary tree [17] or the sequence pair [16]. Here, the 2DBinPacking(k,q)
method stores only the coordinates of each image on each pattern.

A thorough study of computation time highlighted that 42% of time is passed in the ComputePrintsAnd-
Fitness() method line 13 and 33% of time is passed in the ChooseNeighbor() method line 11. This is in
accordance with the time complexity study.

4.1 Real-world datasets

The objective of this work was to deal with a real-world application. Every day the company gets a
dataset composed of 40 to 50 images. The size of patterns is always equal to 88× 59 cm2. The spacing
between two side by side images must be equal to 1.6 cm. Thus, we added 0.8 cm to height and width
of each image. The costs are Csu = 20$ and Css = 1$. Parameters for this calculation are: NbT =
40, NbM = 400000, the probability to accept some “bad” solutions at the beginning = 0.75, µ = 0.9 and

Agadir, June 7-10, 2015



MIC 2015: The XI Metaheuristics International Conference id–7

Algorithm 3 SA-2CSP-S
1: function SA-2CSP-S
2: Pretreatments() . compute pretreatments (L0, ...)
3: BestKnown← new Solution() . create an empty solution
4: L1 ← NbPatternsOf(InitialSolution(L0)) . extract L1

5: for m← L1 to (L1 + 2) do . m = number of patterns
6: s← InitialSolution(m)
7: BestSol← s
8: T ← InitializeTemperature()
9: for k ← 1 to NbT do . NbT changes of temperature

10: for l← 1 to NbM do . NbM moves at temperature T
11: s′ ← ChooseNeighbor(s)
12: if s′ != null then
13: ComputePrintsAndFitness(s′)
14: ∆← f(s′)− f(s)
15: if ∆ ≤ 0 then
16: s← BestSolution(s,s′) . s← s′ if ∆ < 0
17: BestSol← BestSolution(s,BestSol)
18: else
19: p← random(0, 1)

20: if p < e
−∆
T then s← s′

21: end if
22: end if
23: end if
24: end for
25: T ← µT . temperature decrease, with µ < 1
26: end for
27: HillClimbing(BestSol) . Local improvement
28: DeleteOverproduction(BestSol) . Delete overproduction
29: BestKnown← BestSolution(BestKnown,BestSol)
30: end for
31: return BestKnown
32: end function

NbWalk = 200000 (random walk parameter in InitialSolution method). These parameters have been
obtained from some experimental tests and analysis.

In the company, creation of patterns (choice and placement of images) is done daily by an employee
by hand taking more than one hour. We tested our algorithm on 20 datasets of the company and our
results were consistently better than those from their existing method in terms of costs. In 100% of
cases, these better results are obtained by reducing the number of stock sheets printed, and in 20% of
cases by increasing the number of patterns. The mean gain of stock sheets printed was equal to 20.8%,
and the mean percentage of cost improvement was equal to 17.4%.

Overall, the three main advantages are the automation of the process compared to the existing time
consuming human efforts, the reduction of the manufacturing time and the global cost reduction.

4.2 Artificial datasets

The best evaluation of our algorithm was realized in the previous section on some real datasets of the
Seripress company. However, it would be interesting to compare our algorithm to those already pub-
lished in the literature. The difficulty is to perform a real comparison because most of other studies
deal with some slightly different problems (in one-dimension, with a fixed orientation, with no guillotine

Agadir, June 7-10, 2015



id–8 MIC 2015: The XI Metaheuristics International Conference

constraint...). Moreover, papers dealing with a similar problem to ours do not compare their results to
other algorithms. Indeed, they build a kind of “best” solution, which is never displayed in their papers,
and calculate the gap between this solution and solutions given by their algorithm. The “best” solution
is either a lower bound, which is not relevant in 2CSP-S problem, or a solution calculated by their own
algorithm during a very long time (2, 3 or 4 hours of calculations).

We uploaded some datasets created by [10] and tested our algorithm on these datasets. These datasets
are composed of four different numbers of images (20, 30, 40 and 50 images), two different types of
demands (type S randomly taken from [1, 25] and type L taken from [100, 200]), and two different
pattern sizes (α for 1400 × 700 and δ for 2800 × 1400). Figure 2 displays a solution given by our
algorithm from the dataset named 50Lδ, with the same parameters as the previous one (all results of this
paper are available from http://stephanebonnevay.kyvos.net/download/2cspsResults.zip).

Figure 2: Best solution found by our algorithm (a total of 350 stock sheet printed) from the dataset 50Lδ.

Computational results are summarized in Table 2. Our algorithm was applied 10 times to each
dataset. For each dataset, three results are displayed corresponding to the three different numbers of
patterns (column m). The first number of patterns is equal to L1 (the lower bound of the patterns number
according to a feasible solution). Column Average prints corresponds to the average number of stock
sheets printed, and column Average time corresponds to the average CPU time in seconds. Number of
stock sheets printed of the best solution found among the ten runs is given by the column Best prints, and
the corresponding global cost is calculated in the next column with Csu = 20$ and Css = 1$. Gray cells
correspond to best global solutions. Even though the loop in line 5 of the Algorithm 3 is parallelized, the
average computation time of each number of patterns is reported in Table 2.

According to each dataset, the number of stock sheets printed decreases along with the number
of patterns. Similarly, the computation time increases along with the number of patterns, because the
number of feasible neighbors grows along with the number of patterns. The average number of stock
sheets printed is always close to those of the best solution, thus, even though it is a non deterministic
process, our algorithm is fairly stable. For datasets with some small demands (type S), the best solutions
(gray cells) are always those with the minimum number of patterns because in our case the setup cost of
one pattern (Csu = 20$) is greater than the difference between two total numbers of stock sheets printed
(for two consecutive solutions). On the other hand, for datasets with some large demands (type L), the
gap between prints of solutions is larger than 20, thus the best solution has not always been obtained
with the minimum number of patterns. The more demands there are, the more the addition of a pattern
influences the best solution. As we fix the number of patterns at each calculation, the best solution
depends only on the number of stock sheets printed. Then, if the setup cost changes, it is not useful to
recalculate solutions, just modify the global cost of solutions and choose the best one.

Agadir, June 7-10, 2015



MIC 2015: The XI Metaheuristics International Conference id–9

Table 2: Results from some artificial datasets given by [10].

Average Best Average Best
Data m prints time prints cost Data m prints time prints cost
20Sα 4 63.0 97 63 143$ 20Lα 4 540.6 135 526 606$
20Sα 5 58.1 181 58 158$ 20Lα 5 508.6 215 500 600$
20Sα 6 56.3 243 56 176$ 20Lα 6 498.6 283 486 606$
30Sα 6 83.7 174 82 202$ 30Lα 8 1252.0 235 1252 1412$
30Sα 7 80.9 267 79 219$ 30Lα 9 1244.0 309 1244 1424$
30Sα 8 79.6 346 78 238$ 30Lα 10 1244.0 380 1244 1444$
40Sα 8 104.0 205 101 261$ 40Lα 8 1254.5 115 1247 1407$
40Sα 9 100.5 260 99 279$ 40Lα 9 1228.2 209 1213 1393$
40Sα 10 100.0 359 97 297$ 40Lα 10 1209.5 297 1186 1386$
50Sα 9 126.7 204 125 305$ 50Lα 9 1470.3 121 1447 1627$
50Sα 10 124.7 323 119 319$ 50Lα 10 1441.0 222 1431 1631$
50Sα 11 121.2 441 119 339$ 50Lα 11 1422.7 325 1405 1625$
20Sδ 1 22.0 85 22 42$ 20Lδ 1 179.0 120 179 199$
20Sδ 2 13.8 446 13 53$ 20Lδ 2 131.4 443 126 166$
20Sδ 3 13.0 522 12 72$ 20Lδ 3 132.4 534 121 181$
30Sδ 2 26.0 458 23 63$ 30Lδ 2 280.0 284 272 312$
30Sδ 3 21.0 557 20 80$ 30Lδ 3 247.4 484 244 304$
30Sδ 4 22.0 678 21 101$ 30Lδ 4 253.2 604 242 322$
40Sδ 2 35.1 293 33 73$ 40Lδ 2 346.5 230 340 380$
40Sδ 3 29.6 490 27 87$ 40Lδ 3 314.1 407 311 371$
40Sδ 4 27.7 649 26 106$ 40Lδ 4 307.9 548 295 375$
50Sδ 3 36.2 542 34 94$ 50Lδ 3 403.3 459 373 434$
50Sδ 4 34.6 721 32 112$ 50Lδ 4 361.9 689 350 430$
50Sδ 5 34.8 877 33 133$ 50Lδ 5 367.6 789 346 446$

5 Conclusion

In this work, a simulated annealing algorithm was developed, combined with different other techniques
and heuristics, especially designed to solve the Two-Dimensional Cutting Stock Problem with Setup
Cost (2CSP-S). Our algorithm was applied to real-world applications in paper industry. The obtained
results are very significant for the company: they improve the manufacturing time and the global cost.
Moreover, it is an anytime algorithm which is an important issue for the company.

Some works, which attempt to improve the computation time and the quality of solutions, are cur-
rently in progress. For example, in this work, we used the same parameters for all experiments, but it will
be interesting to adapt the number of temperature changes NbT and the number of moves NbM according
to the number of patterns because a large number of patterns increases the number of feasible solutions
in a neighborhood. Moreover, a genetic algorithm is currently tested to generate solutions without a fixed
number of patterns; this process automatically find the best number of patterns.

The use of some better 2-D Bin Packing algorithms should improve the placement process and thus
improve the quality of the final solution, but it should increase the computation time too.

Finally, the Seripress company has some new colorimetric constraints: images with same color must
be set side by side. We are going to adapt our algorithm to take into account these new constraints.

6 Acknowledgments

We would like to acknowledge the Seripress company for this collaboration.

Agadir, June 7-10, 2015



id–10 MIC 2015: The XI Metaheuristics International Conference

References

[1] A. Aloisio, C. Arbib, and F. Marinelli. On lp relaxations for the pattern minimization problem.
Networks, 57(3):247–253, 2011.

[2] G. Belov and G. Scheithauer. A branch-and-cut-and-price algorithm for one-dimensional stock
cutting and two-dimensional two-stage cutting. EJOR, 171(1):85–106, 2006.

[3] G. Belov and G. Scheithauer. Setup and open-stacks minimization in one-dimensional stock cutting.
INFORMS Journal on Computing, 19(1):27–35, 2007.

[4] H. Ben Amor and J. Valerio de Carvalho. Cutting stock problems. In G. Desaulniers, J. Desrosiers,
and M. Solomon, editors, Column Generation, pages 131–161. Springer US, 2005.

[5] A. Bortfeldt. A genetic algorithm for the two-dimensional strip packing problem with rectangular
pieces. EJOR, 172:814–837, 2006.

[6] Y. Cui, X. Zhao, Y. Yang, and P. Yu. A heuristic for the one-dimensional cutting stock problem
with pattern reduction. Proc. of the Institution of Mechanical Engineers, 222(6):677–685, 2008.

[7] S.P. Fekete and J. Schepers. On more-dimensional packing i: Modeling, 2000.

[8] R.W. Haessler. One-dimensional cutting stock problems and solution procedures. Mathematical
and Computer Modeling, 16(1):1–8, 1992.

[9] E. Hopper and Turton B.C.H. An empirical investigation of meta-heuristic and heuristic algorithms
for a 2d packing problem. EJOR, 128:34–57, 2001.

[10] S. Imahori, M. Yagiura, S. Umetani, S. Adachi, and T. Ibaraki. Local search algorithms for the
two-dimensional cutting stock problem with a given number of different patterns. In Metaheuristics
International Conference, Lyon (France), volume 35, pages 1–6, september 2003.

[11] J. Jylanki. A thousand ways to pack the bin - a practical approach to two-dimensional rectangle bin
packing. research report, 2010.

[12] J. Kallrath, S. Rebennack, J. Kallrath, and R. Kusche. Solving real-world cutting stock-problems
in the paper industry: Mathematical approaches, experience and challenges. European Journal of
Operational Research, 238(1):374–389, 2014.

[13] A. Lodi, S. Martello, and D. Vigo. Heuristic and metaheuristic approaches for a class of two-
dimensional bin packing problems. INFORMS Journal on Computing, 11(4):345–357, 1999.

[14] C. McDiarmid. Pattern minimisation in cutting stock problems. Discrete Appl. Math., 98(1-2):121–
130, 1999.

[15] A. Mobasher and A. Ekici. Solution approaches for the cutting stock problem with setup cost.
Computers and OR, 40(1):225–235, 2013.

[16] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani. Vlsi module placement based on rectangle-
packing by the sequence pair. IEEE TRANS. ON CAD, 15(12):1518–1524, 1996.

[17] B. Preas and W.M. van Cleemput. Placement algorithms for arbitrarily shaped blocks. In D.W.
Hightower, editor, DAC, pages 474–480. ACM, 1979.

[18] F. Vanderbeck. Exact algorithm for minimizing the number of setups in the one-dimensional cutting
stock problem. Operations Research, 45(5):915–926, 2000.

[19] G. Wäscher, H. Haussner, and H. Schumann. An improved typology of cutting and packing prob-
lems. European Journal of Operational Research, 183(3):1109–1130, 2007.

Agadir, June 7-10, 2015


