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The aim of this study was to compare multilayer perceptron neural networks (NNs) with standard logistic regression (LR) to
identify key covariates impacting on mortality from cancer causes, disease-free survival (DFS), and disease recurrence using
Area Under Receiver-Operating Characteristics (AUROC) in breast cancer patients. From 1996 to 2004, 2,535 patients diagnosed
with primary breast cancer entered into the study at a single French centre, where they received standard treatment. For specific
mortality as well as DFS analysis, the ROC curves were greater with the NN models compared to LR model with better sensitivity
and specificity. Four predictive factors were retained by both approaches for mortality: clinical size stage, Scarff Bloom Richardson
grade, number of invaded nodes, and progesterone receptor. The results enhanced the relevance of the use of NN models in
predictive analysis in oncology, which appeared to be more accurate in prediction in this French breast cancer cohort.

1. Introduction

Artificial Neural Networks (ANNs) have been extensively
used in many research areas from marketing to medicine [1].
They first received much attention from computer scientists,
neurophysiologists, psychologists, and engineers, interested
in biological nervous system organization and artificial
intelligence. Their two main applications in medicine are
pattern recognition (classification) and prediction: during
these last years (from 1990s and increasing in the 2000s), the
applications for prognostic and diagnostic classification in
medicine have attracted growing interest in the medical liter-
ature. They have been applied to make predictions in numer-
ous fields such as cardiology, molecular biology, trauma

outcomes, neonatology, and oncology (acute myeloma,
prostatic cancer, colon cancer, and breast cancer) [2–7]. A
review of evidence of ANN benefit in the medical field has
been published [1].

ANNs are particularly useful in prediction where highly
nonlinear approaches are required to sift through the
plethora of available information. They present the main
advantage of not being based on “a priori” assumptions
and of allowing detection of links between factors that
conventional statistical techniques such as logistic regression
may not be able to detect. With the increasing number of
potential prognostic factors for breast cancer, it is becoming
increasingly more difficult to integrate the combination of
these factors into an accurate prediction of individual clinical
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course. The main pragmatic impact of allocating patients
into prognostic risks is the disease management with the
choice of treatment.

The logistic regression in this work was chosen as an
accepted standard for prediction by biostatisticians [8] in
order to evaluate the neural network.

2. Materials and Methods

2.1. Data Base Recruitment and Followup. Since 1996,
all patients whose initial surgical treatment (lumpec-
tomy or mastectomy) was performed at the Centre Léon
Bérard (CLB) (primary or secondary following neoadjuvant
chemotherapy), based in Lyon, have been registered in the
database. Tumour diagnosis was confirmed by histology and
concerned infiltrating or in situ carcinoma; the data were
collected by a clinical research assistant (CRA) at the CLB
from the patient’s computer medical record file. Followup
was provided until patient’s death (letter to the referring
physician, or registrar’s office) as well as information on
the evolution of the tumour in terms of local or distal
recurrences. An in-house algorithm has been developed to
detect the administrative area where the patients live. This
breast cancer database was updated regularly according to
the consecutive clinical cases treated at the CLB. About
220 explanatory variables have been captured, including the
clinical or surgical history of the patient, the histology of
the tumour, the treatments applied, and some immuno-
histochemical covariates (hormonal status, Her2+). By the
end of March 2006, a total of 4,070 events were stored in the
database, corresponding to 3,929 patients.

2.2. Cohort Selection. In order to work on a more homoge-
neous type of malignant disease, records concerning in situ
carcinomas without infiltrating component were not taken
into account in this analysis. As some patients had more
than one record (141), only the first episode defined by the
earlier date of diagnosis was selected. For 40 patients, two
records were available for the first diagnosis, corresponding
to bilateral tumours. These cases were not included into the
analysis as we could not decide which histology was more
influential on survival parameters. With the same objective,
namely, to compare only “pure” cases, patients with a history
of ipsilateral or contralateral carcinoma not treated at the
CLB were not taken into account. As the aim of this project
was to work out new prognosis tools, it was decided to
leave out patients with initial metastatic carcinoma who were
considered as specific and with a poor prognosis. Finally, all
the patients with a date of diagnosis prior to December 31st,
2004 were included. After this cohort selection, 2,535 records
corresponding to 2,535 different patients were selected for
this work. A total of 32 parameters including clinical,
histological, immunohistochemical, and treatment variables
were considered as relevant by the clinicians and were used
for the analysis (Table 1).

2.3. Events of Interest to Be Analysed. The following four
events of interest were defined and analysed: mortality

Table 1: Variables included in the database.

Variables Modalities

Breast side Right, Left

Age Real

Delay diagnosis—1st
treatment

Time

Personal cancer history No, Yes

Menopausal status No, Yes

Cutaneous
inflammation

No, Yes

Skin invasion No, Yes

Clinical number of
nodules

0, 1, ≥2

Clinical T stage (size) T0, T1, T2, T3, T4

Clinical N stage N0, N+

Number of tumours
(histology)

0 or 1, ≥2

Tumour size (mm)
(histology)

Real

Histological type
Lobular, Ductal, Mixed, Microinvasive,
Others

SBR grade 1, 2, 3

Lymphatic embolus No, Yes

Nervous colonisation No, Yes

Necrosis (histology)

No in situ component,

In situ component without necrosis

In situ component with necrosis

Infiltrating tumour
associated with CIS

Others, >75% in situ

Limits of
exeresis—infiltrating
carcinoma

Not in sano, In sano

Skin—infiltrating
tumour

No or Not Applicable, Yes

Skin—embolus No or Not Applicable, Yes

Nipple—infiltrating
tumour

No or Not Applicable, Yes

Nipple—cancer in situ No or Not Applicable, Yes

Nipple—embolus No or Not Applicable, Yes

Nipple—Paget’s disease No or Not Applicable, Yes

Pectoral muscle invaded No or Not Applicable, Yes

Number of invaded
nodes

0, 1 or 2, ≥3

Nodes invaded N0, Micro metastasis, Macrometastasis

Capsular breaking No, Yes

Oestrogen receptor: %
marked cells (count)

<10%, (10–50)%, >50%

Oestrogen receptor
(intensity)

+, ++/+++

Progesterone receptor:
% marked cells (count)

<10%, [10–50]%, >50%

Progesterone receptor
(intensity)

+, ++/+++
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attributed to cancer causes (specific mortality) (136 patients,
5.4%), disease-free survival (DFS) (372 patients, 14.8%),
local recurrence (113 patients, 4.5%), and metastatic distal
recurrence (242 patients, 9.6%).

For all analyses, a patient was considered to have a
recurrence if the patient’s status in the followup form was
not ticked as “complete response”, if an “evolution form” for
this patient was filled up, or if there was a second record in
the initial breast database for this patient. Local recurrence
was confirmed if an “evolution form” with the local part was
fulfilled or if there was a second record in the initial breast
database for this patient, with a clinical stage assessed as M0.
Distal recurrence was confirmed if an “evolution form” with
the distal part was fulfilled or if there was a second record in
the initial breast database for this patient, with clinical stage
assessed as M+.

2.4. Variables Selection of Neural Networks. To compare
logistic regression (LR) and neural networks (NNs) models,
many papers use the same variables for both input models
(the variables selected by the multivariate analysis) [9]. This
choice is justified by the large degree of overlap between
the sets of variables selected with both approaches. But in
this paper, we decided to build two NN models for each
analysis according to their inputs: the first one with the
multivariate selected variables (used for the LR models, i.e.,
NN-varLR) and the second one with the variables selected
with our NN approach, i.e., NN-varNN). To select the most
significant variables for use with neural networks, we used
three different methods: forward and backward stepwise
feature selection and a genetic input selection algorithm.
Forward selection consists in choosing the most predictable
variable then checks for a second variable that, added to
the first, most improves the model; this process is repeated
until either all variables have been selected or no further
improvement is made. Backward stepwise feature selection
is the reverse process: it starts with all the variables and
then removes a variable at each stage which less degrades the
model. Genetic algorithm selection is a heuristic seeking the
optimal set of input variables. This heuristic builds a model
by a succession of artificial transformations (mutation,
crossover, and selection) from an initial population of
variables sets. Each of our genetic selections was made from
a population of 100 individuals (one individual corresponds
to one set of variables) on 100 generations. Each set of
variables corresponds to a binary string where a 0 indicates
that the variable is not in the set of variables, and a
1 indicates that the variable is in this set. This set is
tested with the help of a neural network, and the objective
function is the error of this neural network on a training
set.

Each of these methods has some advantages and disad-
vantages. Forward selection is faster than the others, but it
may miss key variables if they are interdependent. Backward
selection does not suffer from this problem, but it is time
consuming at the beginning of the process due to the
evaluations of the whole set of variables. Genetic algorithm
selection is the slowest method.

With our choice (100 individuals and 100 generations), it
performs 10,000 evaluations of sets of variables. For example,
the selection of one set of variables is about 60 times longer
with the genetic algorithm than the backward selection, but
genetic algorithms are well suited for feature selection as
there is a large number of possible variables. Because of their
differences and complementarities, we decided to combine
these three methods to select the inputs of our NN models.

With a view to improving the generalization capability of
networks and to decreasing the network size and execution
size, a penalty can be used to penalise the large sets of
variables [10]. In this way, a penalty parameter is multiplied
by the number of selected variables and added to the error
level. Following different analyses, we finally used a small
penalty equal to 0.0001 with half of selection algorithms
and no penalty with the other half selection algorithms.
Each method calculates the value of the set of covariates
selected at each step while building the neural network. As,
during the learning and test phases, data are chosen and
presented at random, then, training and validation sets are
different, and then results are different too. According to
some experiments, we have chosen to perform each method
40 times: 20 without penalty and 20 with a penalty equal to
0.0001. Indeed, 120 (3 × 40) selections were performed. In
order to illustrate our variables selections, Table 2 shows the
selection results for the prediction of “mortality from cancer
causes”.

For each method, Table 2 indicates how many times
these variables have been selected and the corresponding
percentage. The last column “Global” gives the total number
of selections. For example, “Nervous Spread” has never been
selected by the forward selection method with a 0.0001
penalty. It has been selected 11 times by the same method
without penalty. The last row shows that the “Progesterone
Receptors” variable has always been selected by all methods.
The last column of this table takes into account results
selection combination of all the methods. The problem is
to determine a threshold α that decides whether a variable
will be included or not in our model. To fix this threshold,
we built and evaluated some NN models with different com-
binations of variables according to their global percentage.
According to these experimental results, we decided that a
variable would be kept as an input for our model if it was
selected in at least 95% of our 120 selections. Moreover, this
value of 95% leads to the inclusion of a reasonable number
of variables regarding the complexity of the NN models. This
final selection obtained was validated and approved by the
oncologists of Centre Leon Berard.

2.5. Building Neural Networks. ANNs have been applied
in a wide range of problems and have given, in many
cases, superior results to standard statistical models [11].
In particular, the predictive reliability of ANN models has
been demonstrated in medical diagnosis [12]. According
to the literature and some previous experimental analyses,
we decided to use the Multilayer Perceptrons (MLP) for
predictions [13]. In this work, we used only one type of
ANNs for different reasons. First our study was dealing with
4 different analyses, and, for each one, two NN models were
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Table 2: Details of variables selections for “specific mortality”.

Forward Forward Backward Backward Genetic Genetic Global

0.0001 0.0 0.0001 0.0 0.0001 0.0

# % # % # % # % # % # % # %

Side of Breast 0 0% 4 20% 0 0% 4 20% 0 0% 4 20% 12 10%

History of Cancer 0 0% 11 55% 0 0% 10 50% 1 5% 4 20% 26 22%

Menopausal 16 80% 19 95% 19 95% 17 85% 17 85% 19 95% 107 89%

Cutaneous inflam 0 0% 4 20% 0 0% 3 15% 0 0% 3 15% 10 8%

Skin invasion 6 30% 14 70% 3 15% 11 55% 5 25% 13 65% 52 43%

Clin. Nb. Nodules 20 100% 20 100% 20 100% 20 100% 20 100% 20 100% 120 100%

Invaded Nodes 20 100% 19 95% 20 100% 19 95% 20 100% 20 100% 118 98%

Stade N 16 80% 19 95% 18 90% 18 90% 14 70% 20 100% 105 88%

Nb of tum (histo) 8 40% 16 80% 6 30% 20 100% 5 25% 18 90% 73 61%

Size of tum (histo) 0 0% 4 20% 0 0% 5 25% 0 0% 3 15% 12 10%

SBR Grade 19 95% 20 100% 19 95% 20 100% 20 100% 20 100% 118 98%

Lymphatic Embolus 14 70% 15 75% 13 65% 18 90% 13 65% 14 70% 87 73%

Nervous spread 0 0% 11 55% 4 20% 7 35% 1 5% 6 30% 29 24%

Limits Exeresis 0 0% 10 50% 0 0% 8 40% 0 0% 5 25% 23 19%

Skin infiltating 2 10% 9 45% 7 35% 8 40% 0 0% 11 55% 37 31%

Skin embolus 0 0% 6 30% 0 0% 2 10% 0 0% 2 10% 10 8%

Nipple infiltrating 1 5% 4 20% 0 0% 4 20% 0 0% 3 15% 12 10%

Nipple Cancer in situ 0 0% 4 20% 0 0% 1 5% 0 0% 1 5% 6 5%

Nipple embolus 2 10% 5 25% 0 0% 3 15% 1 5% 3 15% 14 12%

Nipple Paget 0 0% 9 45% 0 0% 10 50% 0 0% 5 25% 24 20%

Pectoral muscle inv 0 0% 5 25% 0 0% 3 15% 0 0% 3 15% 11 9%

Age 6 30% 18 90% 5 25% 19 95% 7 35% 19 95% 74 62%

Time diag-firstTreat 0 0% 2 10% 0 0% 2 10% 0 0% 0 0% 4 3%

Time diag-firstSurgery 0 0% 8 40% 0 0% 11 55% 0 0% 6 30% 25 21%

Histology 19 95% 19 95% 20 100% 20 100% 20 100% 20 100% 118 98%

Necrosis 11 55% 16 80% 13 65% 16 80% 15 75% 13 65% 84 70%

Infiltrating tumour 0 0% 8 40% 0 0% 11 55% 1 5% 11 55% 31 26%

Clinical Size 20 100% 20 100% 19 95% 20 100% 20 100% 19 95% 118 98%

Capsular breaking 18 90% 19 95% 12 60% 19 95% 17 85% 18 90% 103 86%

Oestro receptors 19 95% 18 90% 17 85% 20 100% 17 85% 16 80% 107 89%

Progest receptors 20 100% 20 100% 20 100% 20 100% 20 100% 20 100% 120 100%

Nb. Nodes Invad 20 100% 20 100% 20 100% 20 100% 20 100% 20 100% 120 100%

built for both variables selections; secondly, MLP is the most
commonly used ANN. For each analysis and each set of
input variables, we built a three-layer network with an input
layer corresponding to our risk factors (selected variables), a
hidden layer with hyperbolic activation functions, and one
linear output unit modelling the dichotomous risk outcome
(Figure 1).

The number of neurons on the hidden layer was deter-
mined according to the number and the nature of variables at
the entry. Weights and bias of neural network are determined
by training with a two-phase procedure. The first phase is
a quite short burst of backpropagation, with a moderate
training rate. The second phase is a longer run of conjugated
gradient descent, a much more powerful algorithm, which is
less likely to encounter convergence problems than otherwise
due to the use of backpropagation first. During this learning
process, the weights in a MLP are adjusted using least squares

fitting together with the training two-phase procedure to
minimize a root mean square error function. In order to
interpret the network outputs as probabilities and to make
them comparable to the results of logistic regression, we
used a cross entropy error function to adjust weights. This
cross entropy function is specially designed for classification
problems where it is used in combination with hyperbolic
activation function [14].

A continuous input value is prescaled to a range between
0 and 1; a two-state nominal variable, which corresponds
to one entry of the neural network, is represented by
transformation into a numeric value (e.g., “Skin invasion”
= 0 or 1); a many-state nominal variable is recoded into
as many binary entries as modalities (on Figure 1, x1 is
a 5-state nominal variable which correspond to 5 inputs,
and xn is a 3-state nominal variable which correspond to 3
inputs).
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Table 3: Main characteristics of the cohort.

Clinical parameters

Age
Mean ± SD

N = 2535
59.8 ± 12.1

Median [range] 54.0 [23.2; 91.7]

Breast side
Left N = 2535 50.1%

Right 49.9%

Personal cancer history∗ N = 2535 2.7%

Menopausal status N = 2506 68.7%

Skin invasion N = 2531 4.4%

Cutaneous inflammation N = 2529 1.9%

Clinical number of nodules

0 22.9%

1 N = 2525 74.3%

≥2 2.7%

Clinical T stage (size)

T0 22.2%

T1 44.9%

T2 N = 2573 22.0%

T3 4.9%

T4 5.9%

Clinical N stage

N+ N = 2525 17.3%

Histological parameters

Number of tumours (histology)

0 or 1
N = 2459

88.2%

≥2 11.8%
Tumour size (mm) (histology)

Mean ± SD
N = 2452

24.1 ± 20.1
Median (range) 20.0 [0.4; 250.0]

Histological type
Lobular 10.0%
Ductal 73.6%
Mixed N = 2535 3.7%
Micro invasive 1.5%
Others 11.2%

Histological grade (SBR)
1 23.5%
2 N = 2449 47.2%
3 29.3%

Lymphatic embolus N = 2523 36.8%
Nervous colonisation N = 2520 13.7%
Necrosis (histology)

No in situ component 19.5%
In situ component without
necrosis

N = 2534 35.0%

In situ component with
necrosis

45.4%

Infiltrating tumour associated with
CIS

>75% in situ N = 2535 5.5%
Limits of exeresis—infiltrating
carcinoma

Not in sano N = 2496 2.5%

Table 3: Continued.

Skin—infiltrating tumour N = 2535 5.6%

Skin—embolus N = 2535 2.0%

Nipple—infiltrating tumour N = 2535 7.7%

Nipple—cancer in situ N = 2535 6.8%

Nipple—embolus N = 2535 4.0%

Nipple—Paget’s disease N = 2535 1.3%

Pectoral muscle invaded N = 2535 1.4%

Number of invaded nodes:

0 52.0%

1 or 2 N = 2515 28.2%

≥3 19.8%

Invaded nodes:

N0 8.5%

Micrometastasis N = 2535 58.9%

Macrometastasis 32.7%

Capsular breaking N = 2535 26.0%

Immunohistochemical parameters

Oestrogen receptor: % marked cells
(count):

<10% 17.1%

10–50% N = 2443 7.2%

≥50% 75.8%

Oestrogen receptor (intensity):

+
N = 2030

25.8%

++ and +++ 74.2%

Progesterone receptor: % marked
cells (count)

<10% 28.2%

10%–50% N = 2443 17.4%

≥50% 54.4%

Progesterone receptor (intensity):

+
N = 1796

17.4%

++ and +++ 82.6%
∗69 patients had cancer history. Localizations were 16 gynaecologic, 11
digestive, 11 Hodgkin/LMNH, 8 melanoma, 7 thyroid, 4 lung, 4 head and
neck, 4 urinary, and 3 others.

The objective is to generate neural networks not too close
to the data used for the learning phase (to avoid overfitting)
in order to build a consistent predictor that can be used with
other data (those not used for the learning phase). To obtain
networks with a strong capacity of generalisation, we divided
data randomly in two datasets:

(i) a learning set to build the models (LR and NN),

(ii) a testing set for the evaluation (this set is not used for
construction).

The learning set was composed of 1,775 individuals (about
70% of total population), with 153 deaths (72.2% of
death) and 267 disease-free survivals (71.2% of disease-free
survival). The testing set was composed of 760 individuals,
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Input layer

Hidden layer

Output unit

x1

xn

Figure 1: Architecture of a feed-forward supervised 3-Layer Perceptron neural network.

59 deaths, and 105 disease-free survivals. For this paper,
one LR model and two NN models were built for each
event to analyse. The first neural network model was built
according to the logistic regression inputs (selected variables
from logistic regression analysis), and the second one with
the neural network selected variables approaches.

2.6. Statistics. With a view to selecting the prognostic factors
of the LR model, an univariate logistic analysis was first
performed for each event. Then, all the variables significant
at the level of 10% were included in the multivariate
logistic step. Neural network constructions, as well as the
selection of significant covariates for these models, were
performed with the Statistical Neural Networks software
release 7.1. The logistic regression was performed with SAS
Sofware 9.1. A total of 36 variables were extracted from the
database: 32 covariates (Table 1) and 4 events of interest. To
prevent introducing bias we decided that not all the surgical
and treatment variables were taken into account for both
LR and NN analysis. A total of 2,535 observations were
analysed. Only 0.6% missing data were recorded in the CLB
database. Due to their paucity, they were not coded as a
separate attribute, and only the available data were used for
modelling.

The comparison between the three models, LR, NN with
inputs of LR selection (NN-varLR), and NN with inputs
of NN selection (NN-varNN), was assessed using AUROC
(Area Under Receiver-Operating Characteristics). The area
under curve is a good measure of the overall predictive
accuracy of an analytic tool. It represents a plot of sensitivity
versus 1 minus specificity. Sensitivity measures the fraction of
positive cases classified as positive, and specificity measures
the fraction of negative cases classified as negative. ROC
indicator in this work measures the separation between the
probability distributions of the output neuron activation
under the null hypothesis (no event at the end of October

2004) and under the alternative hypothesis (event at the end
of December 2004).

3. Results

3.1. Cohort Analysis. The main characteristics of the cohort
are described in Table 3. Median age was 54 years ranging
from 23 to 92 years. A total of 69 patients (2.7%) had
a history of previous cancer; 69% of patients were in
menopausal status. Clinical T stage was >2 in 10% of the
cases, and clinical N stage was positive in 17% of patients.
In 12% of the cases the diagnosis was multi focal. The
histological median tumour size was 20 mm with a range
from 0.4 to 250 mm. The carcinoma was found ductal in
more than 70% of the cases with a SBR (Scarff Bloom
Richardson) grade 1, 2, and 3 in 24%, 47%, and 30%,
respectively. The percentage of marked cells was ≥ to 50%
for progesterone receptors (PRs) in 54% of the cases and for
oestrogen receptors (ERs) in 76%.

Overall mortality occurred in 8.4% of cases and specific
mortality in 5.4% of cases. A total of 316 progressions
were notified (12.5%) representing at least 4.5% of local
recurrences and 8.4% of metastatic events. The median
followup was 4.1 years (CI95% = 4.0–4.5) with a maximum
followup of 10.2 years.

3.2. Events. Table 4(b) displays the results of the selections
from statistical and neural networks approaches for “Specific
Mortality”. A variable was chosen by the neural approach
if the percentage of selection was greater or equal to 95%
(bold data of column NN), and a variable was chosen by
the logistic regression analysis when a cross is matched
in the corresponding column LR. Four variables among
the five selected by the logistic regression were retained by
both approaches, either LR or the NN approach, namely,
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Table 4: Variables selections for Logistic Regression and Neural
Network approaches.

(a) Disease-free survival.

Variables NN LR

Invaded nodes 100% X

Clinical size stage 100% X

Number nodes invaded 100% X

SBR grade 98% X

Histology 98%

Necrosis 98%

Oestrogen receptors 74% X

Skin infiltrating tumour 21% X

(b) Mortality from cancer causes.

Variables NN LR

Clinical number nodules 100%

Progesterone receptor 100% X

Number nodes invaded 100% X

Clinical size stage 98% X

SBR grade 98% X

Histology 98%

Invaded nodes 98%

Skin embolus 8% X

(c) Local recurrence.

Variables NN LR

Number nodes invaded 98% X

Lymphatic embolus 95% X

Ganglion invaded 95%

Necrosis 95% X

Oestrogen receptors 95% X

Histology 48% X

Number tumours 15% X

Skin invasion 13% X

(d) Metastatic recurrence.

Variables NN LR

Clinical Size stage 100% X

Invaded nodes 100%

Progesterone receptors 100% X

Number of nodes invaded 100% X

SBR grade 98% X

Histology 98%

Oestrogen receptors 85% X

“Progesterone receptor”, “Number nodes invaded”, “Clin-
ical size stage”, and “SBR grade”. In addition to these
common variables, the NN approach selected, with high
percentages, the variables “Histology”, “Invaded nodes”, and
“Clinical number of nodules”. On the other hand, the
multivariate analysis selected the “Skin embolus” whereas
this variable was only selected in 8% of cases by the NN
selection.

Table 5: Sensitivity and specificity.

(a) Disease-free survival.

LR NN-varLR NN-varNN

Sensitivity 71.5 82.2 80.3

Specificity 68.9 77.9 79.3

False negative rate 28.5 17.8 19.7

False positive rate 31.1 22.1 20.7

Positive predictive value 11.9 18.0 18.6

(b) Mortality from cancer causes.

LR NN-varLR NN-varNN

Sensitivity 80.5 86.7 87.5

Specificity 77.9 76.0 77.3

False negative rate 19.5 13.3 12.5

False positive rate 22.1 24.0 22.7

Positive predictive value 17.4 17.2 18.2

(c) Local recurrence.

LR NN-varLR NN-varNN

Sensitivity 68.6 72.4 72.9

Specificity 65.1 66.7 64.9

False negative rate 31.4 27.6 27.1

False positive rate 34.9 33.3 35.1

Positive predictive value 8.3 9.1 8.8

(d) Metastatic recurrence.

LR NN-varLR NN-varNN

Sensitivity 71.3 70.6 71.9

Specificity 78.1 78.8 78.5

False negative rate 28.7 29.4 28.1

False positive rate 21.9 21.2 21.5

Positive predictive value 25.9 26.4 26.4

Tables 4(a), 4(c), and 4(d) display variables selections
from LR and NN approaches of “Disease free survival”,
“Local recurrences”, and “Distal recurrences” analyses.

The architecture of MLP neural models for “Specific
Mortality” analysis according to variable selection is the
following.

(i) NN-varLR. The best model of NN obtained with the
inputs of the LR selection (Table 4(b)) is described as
follows.

(a) One input layer corresponds to the 5 covariates.
The skin embolus covariate, with 2 modali-
ties, corresponds to a binary entry. The other
covariates are recoded into as many entries as
modalities (3 covariates with 3 modalities and 1
covariate with 5 modalities). The network built
that way has 15 binary entries.

(b) One hidden layer composed of 6 neurons with
hyperbolic activation function.

(c) One output layer composed of one neurone
with logistic activation function.
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Figure 2: ROC curves from LR, NN-varLR, and NN-varNN models. (a) Disease-free survival. (b) Mortality from cancer causes. (c) Local
recurrence. (d) Metastatic recurrence.

The same types of MLP were built for “Disease free survival”,
“Local recurrences”, and “Distal recurrences” analysis.

(ii) NN-varNN. The best model of NN obtained with the
inputs of the NN selection (Table 4(b)) is described
as follows.

(a) One input layer corresponding to the 7 covaria-
tes. These covariates are recoded into as many
entries as modalities (5 covariates with 3 modal-
ities, 1 covariate with 4 modalities, and 1
covariate with 5 modalities). The network built
that way has 24 binary entries.
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(b) One hidden layer composed of 6 hidden units
with hyperbolic activation functions.

(c) One output layer composed of one neurone
with logistic activation functions.

The same types of MLP were built for “Disease free survival”,
“Local recurrences”, and “Distal recurrences” analyses.

ROC Curves. According to “Specific Mortality”, the AUROC
curves of “Specific Mortality” were very similar between
the three models with a slight superiority in favour of the
NN models (Figure 2(b)). The corresponding sensitivity and
specificity optimal values are given in Table 5(b).

Figures 2(a), 2(c), and 2(d) display AUROC curves, and
sensitivity and Tables 5(a), 5(c), and 5(d) display specificity
optimal values for the event “Disease-Free survival”, “Local
recurrences”, and “Distal recurrences” analyses.

4. Discussion

In order to best assess the comparison between LR and MLP
predictions, we needed to gather several conditions regarding
the cancer to study and the dataset to analyse. We needed
for the cancer a specific combination of a well-described
clinical course in the literature and a complex interaction
between the covariates to introduce in the models. Breast
cancer appeared to be the best one to fully achieve these
conditions, and some authors have already shown NN could
predict the probable clinical course of breast cancer patients
[15, 16]. Regarding the dataset, the best data quality was
required (to minimize missing and inconsistent data for the
training of the NN), as well as a sufficient followup of the
cohort. The median followup of 4.2 years appears reasonable
enough even though it is slightly short. The database of the
Leon Berard Centre appeared to be highly qualified because
of a very small percentage of missing data, an inclusion
criterion that is well defined, and a regular update of this
database done by a dedicated CRA.

The consistency across the different models may be
explained by the good quality dataset of the CLB database
and emphasizes the relevance of the use of the ANN in
predictive analysis in oncology.

Regarding the cohort selection, the patients retained
for analysis were suffering from primary breast cancer and
locally advanced cancer without metastasis. The majority
of the cases (89%) were ≤T2 stage, and the histology was
ductal carcinoma for 74% of them. The idea was to obtain
a homogeneous cohort and to be in the situation to enable
us to potentially identify prognostic factors. This situation
excluded the very poor prognosis and explains the paucity of
events to analyse (5.4% specific mortality and 12.5% for the
total progressions including local and distal recurrences).

If we look at the clinical outputs of our variable selection,
the four predictive factors commonly selected for the specific
mortality analysis, by both LR and NN approaches, were the
following: Clinical size stage, SBR grade, Number of nodes
invaded, and Progesterone receptors. It is to be underlined
that the first three variables are well known within the

medical literature and are related directly to clinical indi-
cators routinely used by the NPI (Nottingham Prognostic
Index). The NN models, either NN-varNN or NN-varLR,
selected three additional factors, namely, Histology, Number
of tumour nodules, and Invaded nodes (axillary lymph
nodes). These results are compatible with published ones on
other cohorts using Bayesian neural networks [7]. The other
predictive factors we found with our NN selection other than
those used in the NPI are the hormonal factors (PR and
ER). Their role must be underlined here as the PR appeared
to be a major predictive factor for the specific mortality,
as well as for the distal recurrence study. In addition the
ER appeared to be a major predictive factor for DFS and
the local recurrence. The protective role of both receptors
was already known even in terms of time-depending joint
effects with tumour size or histology [2] but the respective
role of PR and ER split into local and distal recurrences was
not described so far. These results are worth exploring with
more accuracy in further studies. Regarding the comparison
between the performances of the three models, the main
results we found consisted in showing that for breast cancer-
specific mortality and DFS analysis, the areas under curves
appear to be greater with the NN models than the LR (better
sensitivity as well as specificity). These results underlined
the predictive accuracy of the NN models comparing with
the LR and, their relevance as predictive tools. Regarding
the recurrence studies, the ROC curves were not as good
as those of specific mortality and DFS. Nevertheless the
AUROCs were somewhat similar between the LR and NN
models, with a slight improvement in favour of the NN
models.

As previously described, we decided to choose a MLP
Neural Network for this specific work. One reason is
that MLP is the ANN most widely applied to real-world
problems in medical diagnosis and prediction; because of
the numerous NN models built in this study, only one
type of ANN is used. Other types of NN may have been
used such as the Probabilistic Neural Network (PNN).
PNN is particularly adapted to stepwise procedures aimed
at selecting and classifying prognostic factors from small
datasets [17]. Moreover some authors consider MLP to be
superior to PNN [9].

One of the criticisms towards neural networks is that
their process inside is unknown, and some authors consider
them as “black boxes”. In order to prevent this criticism and
also to enhance as much as possible the NN selection process
we decided to use several variables selection techniques
perfectly coded and to use one penalty for some selection
methods.

Using these three different techniques for the variables
selection may be criticized as a time-consuming process. It
was here a guarantee for the best selection and for avoiding
overfitting, which is the main limit of the neural networks.
The penalty was used to penalise the big sets of variables
with a view to improving the generalization capability of
networks. The value of the penalty chosen had a substantial
impact on the variable selection. We decided therefore to
perform each method half of the time without any penalty
and the other half of the time with a penalty equal to 0.0001.
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A total of 120 selections per covariate were performed with
each method of variable selection. This total number of
selections increases considerably the time variable selection
process but we expected a gain in improvement of the
selection. The results we obtained tended to confirm our
choice by showing greater AUROC for the mortality and DFS
analysis particularly.

A limitation of our work is that there is a need for
an external validation with a second and independent
dataset. We are planning to carry out this extension of the
project, and for this reason we think our results should
be considered as exploratory rather than predictive. The
main objective was to compare standard predictive tools to
innovative ones in the medical field, and in oncology in
particular. This work brought some clinical insights to be
confirmed further in the field of breast cancer prognosis.
Another limitation, and probably the major one, is that the
present study did not investigate complex time-depending
effects of prognostic factors of breast cancer over followup
time. The definition of risk categories based on tumours
or patients’ characteristics may evolve in the course of the
followup according to the disease dynamics. Some authors
developed the PLANN (with a partial logistic artificial neural
network) approach for the analysis of the hazard function
as a function of time and covariates for censored survival
time data [2] showed that patients with small tumours
with high ER levels and Invasive Ductal Carcinoma plus
Invasive Lobular Carcinoma histology could be at high
risk of disease recurrence in the medium to long term
and consequently should be carefully monitored. They also
showed a joint time-dependent effect of histology and
ER. Additional analysis taking into account all censored
variables must be carried out to improve these models
predictivity.

In conclusion, this paper presents an evaluation tool for
the prognosis of breast cancer on a cohort of nonmetastatic
patients using clinical, pathological, and immunohistoche-
mical data. The results of this work, whose main aim was
to compare the LR and NN performances in predictions,
have to be considered as exploratory results rather than
conclusive results for predictions. Our neural network
selection approach highlights some different inputs for the
models from classical statistical selections. All our input
selections were validated by clinicians. We hope this work
will convince clinicians to use commonly ANN for the
extraction of large dataset patterns in prognostic factors,
at risk group definitions, and to envisage these tools as a
decision support to appropriate treatments for the individual
patient. ANN should be considered powerful predictive
tools, to be routinely added to standard logistic regression.
The next step will be the development of a web-based tool
for community use.
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ICTA Group, Centre Léon Bérard, Liverpool John Moores
University, and LIRIS- Lyon 1 University.

References

[1] P. J. G. Lisboa, “A review of evidence of health benefit from
artificial neural networks in medical intervention,” Neural
Networks, vol. 15, no. 1, pp. 11–39, 2002.

[2] E. Biganzoli, P. Boracchi, D. Coradini, M. G. Daidone, and E.
Marubini, “Prognosis in node-negative primary breast cancer:
a neural network analysis of risk profiles using routinely
assessed factors,” Annals of Oncology, vol. 14, no. 10, pp. 1484–
1493, 2003.

[3] E. Biganzoli, P. Boracchi, L. Mariani, and E. Marubini, “Feed
forward neural networks for the analysis of censored survival
data: a partial logistic regression approach,” Statistics in
Medicine, vol. 17, no. 10, pp. 1169–1186, 1998.

[4] E. Biganzoli, P. Boracchi, and E. Marubini, “A general
framework for neural network models on censored survival
data,” Neural Networks, vol. 15, no. 2, pp. 209–218, 2002.

[5] S. D. Dolgobrodov, R. Marshall, P. Moore, R. Bittern, R. J. C.
Steele, and A. Cuschieri, “e-science and artificial neural net-
works in cancer management,” Concurrency and Computation:
Practice and Experience, vol. 19, no. 2, pp. 251–263, 2007.

[6] H. B. Burke, P. H. Goodman, D. B. Rosen et al., “Artificial
neural networks improve the accuracy of cancer survival
prediction,” Cancer, vol. 79, no. 4, pp. 857–862, 1997.

[7] P. J. G. Lisboa, H. Wong, P. Harris, and R. Swindell, “A
Bayesian neural network approach for modelling censored
data with an application to prognosis after surgery for breast
cancer,” Artificial Intelligence in Medicine, vol. 28, no. 1, pp. 1–
25, 2003.

[8] D. W. Hosmer and S. Lemeshow, Applied Logistic Regression,
John Wiley & Sons, New York, NY, USA, 2nd edition, 2000.

[9] R. Voss, P. Cullen, H. Schulte, and G. Assmann, “Prediction
of risk of coronary events in middle-aged men in the
Prospective Cardiovascular Münster Study (PROCAM) using
neural networks,” International Journal of Epidemiology, vol.
31, no. 6, pp. 1253–1262, 2002.

[10] H. Zeng and H. J. Trussell, “Feature selection using a mixed-
norm penalty function,” in Proceedings of the International
Conference on Image Processing (ICIP ’06), October 2006.

[11] H. White, “Learning in artificial neural networks: a statistical
approach,” Neural Computation, vol. 1, pp. 425–464, 1989.

[12] W. G. Baxt, “Application of artificial neural networks to
clinical medicine,” Lancet, vol. 346, no. 8983, pp. 1135–1138,
1995.

[13] K. Hornik, M. Stinchcombe, and H. White, “Multilayer
feedforward networks are universal approximators,” Neural
Networks, vol. 2, no. 5, pp. 359–366, 1989.

[14] D. M. Kline and V. L. Berardi, “Revisiting squared-error
and cross-entropy functions for training neural network
classifiers,” Neural Computing and Applications, vol. 14, no. 4,
pp. 310–318, 2005.

[15] P. M. Ravdin and G. M. Clark, “A practical application of
neural network analysis for predicting outcome of individual
breast cancer patients,” Breast Cancer Research and Treatment,
vol. 22, no. 3, pp. 285–293, 1992.

[16] P. M. Ravdin, G. M. Clark, S. G. Hilsenbeck et al., “A
demonstration that breast cancer recurrence can be predicted
by Neural Network Analysis,” Breast Cancer Research and
Treatment, vol. 21, no. 1, pp. 47–53, 1992.

[17] J. M. Le Goff, L. Lavayssière, J. Rouëssé, and F. Spyratos,
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