Lecture Notes in Computer Science

Commenced Publication in 1973 Founding and Former Series Editors: Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison Lancaster University, Lancaster, UK Takeo Kanade Carnegie Mellon University, Pittsburgh, PA, USA Josef Kittler University of Surrey, Guildford, UK Jon M. Kleinberg Cornell University, Ithaca, NY, USA Friedemann Mattern ETH Zurich, Zürich, Switzerland John C. Mitchell Stanford University, Stanford, CA, USA Moni Naor Weizmann Institute of Science, Rehovot, Israel C. Pandu Rangan Indian Institute of Technology, Madras, India Bernhard Steffen TU Dortmund University, Dortmund, Germany Demetri Terzopoulos University of California, Los Angeles, CA, USA Doug Tygar University of California, Berkeley, CA, USA Gerhard Weikum Max Planck Institute for Informatics, Saarbrücken, Germany More information about this series at http://www.springer.com/series/7407

Stéphane Bonnevay · Pierrick Legrand Nicolas Monmarché · Evelyne Lutton Marc Schoenauer (Eds.)

Artificial Evolution

12th International Conference, Evolution Artificielle, EA 2015 Lyon, France, October 26–28, 2015 Revised Selected Papers

Editors Stéphane Bonnevay Université Lyon 1 Lyon France

Pierrick Legrand Université de Bordeaux Bordeaux France

Nicolas Monmarché Université de Tours Tours France Evelyne Lutton INRA Thirverval-Grignon France

Marc Schoenauer Université Paris-Sud Inria Saclay Orsay France

ISSN 0302-9743 ISSN 1611-3349 (electronic) Lecture Notes in Computer Science ISBN 978-3-319-31470-9 ISBN 978-3-319-31471-6 (eBook) DOI 10.1007/978-3-319-31471-6

Library of Congress Control Number: 2016933471

LNCS Sublibrary: SL1 - Theoretical Computer Science and General Issues

© Springer International Publishing Switzerland 2016

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature The registered company is Springer International Publishing AG Switzerland

Preface

This LNCS volume includes the best papers presented at the 12th Biennial International Conference on Artificial Evolution, EA¹ 2015, held in Lyon (France). Previous EA editions took place in Bordeaux (2013), Angers (2011), Strasbourg (2009), Tours (2007), Lille (2005), Marseille (2003), Le Creusot (2001), Dunkerque (1999), Nimes (1997), Brest (1995), and Toulouse (1994).

Authors were invited to present original work relevant to artificial evolution, including, but not limited to: evolutionary computation, evolutionary optimization, co-evolution, artificial life, population dynamics, theory, algorithmics and modeling, implementations, application of evolutionary paradigms to the real world (industry, biosciences), other biologically inspired paradigms (swarm, artificial ants, artificial immune systems, cultural algorithms), memetic algorithms, multi-objective optimization, constraint handling, parallel algorithms, dynamic optimization, machine learning, and hybridization with other soft computing techniques.

Each submitted paper was reviewed by three members of the international Program Committee. Among the 31 submissions received, 18 papers were selected for oral presentation and eight other papers for poster presentation. For the previous editions, a selection of the best papers that were presented at the conference and further revised were published (see LNCS volumes 1063, 1363, 1829, 2310, 2936, 3871, 4926, 5975, 7401, and 8752). Exceptionally, for this edition, the high quality of the 18 papers selected for the oral presentation led us to include a revised version of all these papers in this volume of Springer's LNCS series.

We would like to express our sincere gratitude to our invited speakers: Darell Whitley and Guillaume Beslon.

The success of the conference resulted from the input of many people to whom I would like to express my appreciation: the members of Program Committee and the secondary reviewers for their careful reviews that ensure the quality of the selected papers and of the conference, the members of the Organizing Committee for their efficient work and dedication assisted by Véronique Deslandres and Eric Duchene, the members of the Steering Committee for their valuable assistance, and Aurélien Dumez for his support on the administration of the website.

I take this opportunity to thank the different partners whose financial and material support contributed to the organization of the conference: Polytech'Lyon, University Lyon 1, ERIC, LIRIS, and CNRS.

¹ As for previous editions of the conference, the EA acronym is based on the original French name "Evolution Artificielle."

VI Preface

Last but not least, I thank all the authors who submitted their research papers to the conference, and the authors of accepted papers who attended the conference to present their work. Thank you all.

February 2016

Stéphane Bonnevay EA 2015 Chair University of Lyon 1 ERIC Laboratory France

Évolution Artificielle 2015 – EA 2015

October 26–28, 2015 Lyon, France 12th International Conference on Artificial Evolution

Program Committee

Aguirre, Hernan	Shinshu University, Japan
Auger, Anne	Inria Saclay, France
Aupetit, Sébastien	University Francois Rabelais of Tours, France
Balev, Stefan	University of Le Havre, France
Bredeche, Nicolas	University Pierre et Marie Curie, France
Bonnevay, Stéphane	University of Lyon 1, France
Boumaza, Amine	University of Lorraine, France
Cagnoni, Stefano	University of Parma, Italy
Clergue, Manuel	University of the French West Indies, France
Collet, Pierre	University of Strasbourg, France
Daolio, Fabio	Shinshu University, Japan
Debbat, Fatima	University of Mascara, Algeria
Durand, Nicolas	ENAC, Toulouse, France
Dutot, Antoine	University of Le Havre, France
Ebner, Marc	University in Greifswald, Germany
Fonlupt, Cyril	University of the Littoral, Calais, France
Galvan, Edgar	Trinity College, Dublin, Ireland
Giacobini, Mario	Molecular Biotechnology Center, University of Turin, Italy
Hao, Jin-Kao	University of Angers, France
Idoumghar, Lhassane	University of Mulhouse, France
Jourdan, Laetitia	University of Lille, France
Langdon, Bill	University College, London, UK
Legrand, Pierrick	University of Bordeaux, France
Liefooghe, Arnaud	University of Lille 1, France
Lopez-Ibanez, Manuel	Université Libre de Bruxelles, Belgium
Louchet, Jean	Inria Saclay, France
Lutton, Evelyne	INRA, France
Marion-Poty, Virginie	University of the Littoral, France
Monmarché, Nicolas	University Francois Rabelais of Tours, France
Ochoa, Gabriela	Stirling University, Scotland, UK
Paquete, Luis	University of Coimbra, Portugal
Parkes, Andrew	University of Nottingham, UK
Pereira, Francisco	University of Coimbra, Portugal
Robilliard, Denis	University of the Littoral, France
Saubion, Frederic	University of Angers, France

Schoenauer, Marc	Inria Saclay, France
Siarry, Patrick	University of Paris-Est Creteil, France
Solnon, Christine	INSA Lyon, France
Stutzle, Thomas	IRIDIA, Brussels, Belgium
Talbi, El-Ghazali	Inria Lille, France
Teytaud, Olivier	Inria Saclay, France
Teytaud, Fabien	University of the Littoral, Calais, France
Tonda, Alberto	INRA, France
Urbano, Paulo	University of Lisbon, Portugal
Veerapen, Nadarajen	Stirling University, Scotland, UK
Verel, Sébastien	Université du Littoral Côte d'Opale, France
ZFlores, Emigdio	Instituto Tecnologico de Tijuana, Mexico

Steering Committee

Stéphane Bonnevay	Université Lyon 1, France
Pierre Collet	Université Louis Pasteur de Strasbourg, Strasbourg
Pierrick Legrand	Université de Bordeaux, France
Evelyne Lutton	INRA, France
Nicolas Monmarché	Université François Rabelais de Tours, France
Marc Schoenauer	Inria, France

Organizing Committee

Université Lyon 1, France
Université Lyon 1, France
Université Lyon 1, France
Inria, France
Université Lyon 1, France
Inria, France
Université de Bordeaux, France
Université du Littoral Côte d'Opale, France

Invited Speakers

Guillaume Beslon, Professor at the Computer Science Department of the National Institute of Applied Science in Lyon (France), which is part of the Université de Lyon. Member of the Laboratoire d'InfoRmatique en Image et Systèmes d'information (LIRIS, UMR 5205 CNRS); Head of the Inria Beagle Team, former director of Rhône-Alpes Institute of Complex Systems (IXXI).

Can Artificial Evolution Shed Light on Evolution of Complexity in Real Organisms?

Artificial evolution has a long a successful history in optimization. Yet, artificial evolution in a computer can also be used as a model of "real evolution." This field of research, known as "digital genetics" or "in silico experimental evolution," is rapidly growing and results accumulate rapidly. In this talk, I will present how in silico experimental evolution can be used to study the C-value paradox, an open question in biology for more

than 40 years. To this aim, I will present aevol, a simulation software developed by the LIRIS/Inria Beagle Team, and show how using such tools can shed new light, often counterintuitive, on this old question.

Darrell Whitley. Prof. Whitley is Chair of the Department of Computer Science at Colorado State University. From 1993 to 1997 Prof. Whitley served as Chair of the Governing Board of the International Society for Genetic Algorithms. In 1999 ISGA merged with the Genetic Programming community to form the International Society for Genetic and Evolutionary Computation. From 1997 to 2002 Prof. Whitley served as Editor-in-Chief for the journal *Evolutionary Computation* published by MIT Press. In 2005 ISGEC became a Special Interest Group (Sigevo) of ACM. In 2007 Prof. Whitley was elected Chair of Sigevo.

Blind No More: Deterministic Move and Recombination Operators for Evolutionary Algorithms

For decades, most local search algorithms have relied on enumerating a neighborhood of solutions in order to locate improving moves. Evolutionary algorithms have similarly relied on random mutation and random recombination operators to generate new candidate solutions.

For k-bounded pseudo-Boolean optimization problems such as MAX-kSAT and NK-Landscapes, we have been able to prove it is possible to exactly identify improving bit flip moves in constant time under reasonable assumptions. Furthermore, this result can be generalized: We can also identify all improving moves within a Hamming radius r in constant time. This means that we no longer need to enumerate neighborhoods for local search, or to use random mutations to locate improving moves.

We can also prove that there exist deterministic forms of recombination that are also guaranteed to return the best possible offspring under reasonable assumptions. Given two parent solutions, the method identifies p subgraphs that partition the variable interactions of the parents. Given p subgraphs, recombination can be done in O(n) time such that crossover returns the best solutions out of 2^p offspring. This form of "partition crossover" has been developed for both k-bounded pseudo-Boolean optimization problems as well as for the traveling salesman problem. Empirical results suggest that partition crossover is highly effective at accelerating search. We can now quickly generate globally optimal results for problems with n = 100,000.

Contents

The Multi-Funnel Structure of TSP Fitness Landscapes: A Visual Exploration	1
Approaches for Many-Objective Optimization: Analysis and Comparison on MNK-Landscapes	14
Traffic Signal Optimization: Minimizing Travel Time and Fuel Consumption	29
How to Mislead an Evolutionary Algorithm Using Global Sensitivity Analysis	44
Quasi-random Numbers Improve the CMA-ES on the BBOB Testbed Olivier Teytaud	58
Progressive Differential Evolution on Clustering Real World Problems Vincent Berthier	71
Distributed Adaptive Metaheuristic Selection: Comparisons of Selection Strategies	83
Combining Mutation and Recombination to Improve a Distributed Model of Adaptive Operator Selection	97
Parameter Setting for Multicore CMA-ES with Large Populations Nacim Belkhir, Johann Dréo, Pierre Savéant, and Marc Schoenauer	109
Towards Human-Competitive Game Playing for Complex Board Games with Genetic Programming Denis Robilliard and Cyril Fonlupt	123
SGE: A Structured Representation for Grammatical Evolution Nuno Lourenço, Francisco B. Pereira, and Ernesto Costa	136

Greedy Semantic Local Search for Small Solutions Robyn Ffrancon and Marc Schoenauer	149
Effects of Cooperation in a Bioinspired Multi-agent Autonomous System for Solving Optimization Problems	163
Novelty-Driven Particle Swarm Optimization Diana F. Galvao, Joel Lehman, and Paulo Urbano	177
How a Model Based on P-temporal Petri Nets Can Be Used to Study Aggregation Behavior <i>Fatima Debbat, Nicolas Monmarché, Pierre Gaucher,</i> <i>and Mohamed Slimane</i>	191
A Distributed Hybrid Algorithm for the Graph Coloring Problem Ines Sghir, Jin-Kao Hao, Ines Ben Jaafar, and Khaled Ghédira	205
Variance Reduction in Population-Based Optimization: Application to Unit Commitment	219
On the Codimension of the Set of Optima: Large Scale Optimisation with Few Relevant Variables Vincent Berthier and Olivier Teytaud	234
Author Index	249