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Sylvie Négrierb

a School of Computing and Mathematical Sciences, Liverpool John Moores University, UK
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Abstract

This paper presents an analysis of censored survival data for breast cancer specific mortality and disease-free survival. There are three stages
to the process, namely time-to-event modelling, risk stratification by predicted outcome and model interpretation using rule extraction. Model
selection was carried out using the benchmark linear model, Cox regression but risk staging was derived with Cox regression and with Partial
Logistic Regression Artificial Neural Networks regularised with Automatic Relevance Determination (PLANN-ARD). This analysis compares the
two approaches showing the benefit of using the neural network framework especially for patients at high risk. The neural network model also has
results in a smooth model of the hazard without the need for limiting assumptions of proportionality. The model predictions were verified using
out-of-sample testing with the mortality model also compared with two other prognostic models called TNG and the NPI rule model. Further
verification was carried out by comparing marginal estimates of the predicted and actual cumulative hazards. It was also observed that doctors
seem to treat mortality and disease-free models as equivalent, so a further analysis was performed to observe if this was the case. The analysis was
extended with automatic rule generation using Orthogonal Search Rule Extraction (OSRE). This methodology translates analytical risk scores
into the language of the clinical domain, enabling direct validation of the operation of the Cox or neural network model. This paper extends the
existing OSRE methodology to data sets that include continuous-valued variables.
c© 2007 Elsevier Ltd. All rights reserved.

Keywords: Time-to-event analysis; Rule extraction; TNG; NPI; PLANNARD
1. Introduction

This paper presents a longitudinal cohort study of time-
to-event for 2535 consecutive patients with primary operable
breast cancer, recruited prospectively at Centre Léon Berard
(Lyons-France), between 1996 and 2004, with 10 years of
follow-up. It is a baseline study because all of the covariates
are measured only once, clinical variables recorded at the point
of diagnosis, and histological values ascertained immediately
I An abbreviated version of some portions of this article appeared in
Lisboa, Etechells, Jarman, Aung, and Perol (2007) as part of the IJCNN 2007
Conference Proceedings, published under IEE copyright.
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following surgery. The purpose of the study is to compare
neural network modelling with a widely used statistical
methodology that is known to apply to breast cancer studies
on this timescale, namely Cox regression, also known as
proportional hazards modelling. There are two main events of
interest, namely mortality and treatment failure. The follow-
up period is discretised by month. The study demonstrates the
application of a fully regularised generic non-linear model of
covariate effects and time, the PLANN-ARD methodology, to
competing risks. This is compared with Cox regression within
a framework of risk stratification, similar to that used to derived
the well-known severity of illness score for breast cancer
known as the Nottingham Prognostic Index (NPI) (Galea,
Blamey, Elston, & Ellis, 1992; Haybittle et al., 1982). A further
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comparison is made between the newly derived mortality model
and two rule-based models obtained using Orthogonal Search
Rule Extraction (Etchells & Lisboa, 2006), one called TNG
staging (Jarman, Etchells, Ellis, Green, & Lisboa, 2007) derived
from a non-linear model analogous to NPI and the other the
NPI rule-based model (Jarman et al., 2007) derived from the
NPI. With these risk models it was observed that doctors seem
not to distinguish between disease-free and mortality models,
therefore this was tested by investigating whether there was
any difference in the observed survival when the target for the
mortality model was changed to disease-free survival.

While analytical modelling has the capability to show
differential mortality between patient groups, which can be
evaluated by out-of-sample predictions, the scores derived from
the neural network are not conveniently linear, as in the case
of Cox regression. This has given rise to concerns about
the transparency of the non-linear approach, which is central
to clinical verification of the model using accepted clinical
expertise. This was done by expressing the risk allocation
in terms of low-order Boolean rules that permit a direct
interpretation of the composition of each risk group. Moreover,
replacing the neural network by the rule set for each of the three
prognostic groups retains much of the discriminatory power
of the original non-linear model, but now pertaining to an
entirely white-box decision support system. The methodology
used to extract the rules, Orthogonal Search Rule Extraction
(OSRE) (Etchells & Lisboa, 2006), originally applied to data
sets with binary, categorical or ordinal-valued variables. In this
paper the OSRE methodology is extended to data sets that have
continuous-valued variables.

2. Data description

The cohort comprises a prospectively collected case series
of consecutive patients with primary operable breast cancer,
defined as clinical stages T0-4, N0-1 and M0. Inclusion criteria
for this study specify first diagnosis only, thus removing
recurrences, and rejects occurrences of bilateral carcinoma. For
the purpose of time-to-event modelling, the date of recruitment
was that of diagnosis.

All patients were diagnosed with an infiltrating tumour,
confirmed by histological analysis. Initial surgical excision was
carried out at Centre Léon Berard and was either localised,
i.e. a lumpectomy, or radical, i.e. a mastectomy. In all cases,
surgery included axillary clearance as part of the study
protocol. Patients received standard treatment which could
include adjuvant therapy, whether endocrine, chemo or both,
and radiotherapy when appropriate.

The patient cohort was divided longitudinally into a
modelling data set with patients recruited between 1996 and
2000 (N = 1156) and an out-of-sample test data set with
patients recruited during 2001–2004 (N = 1379). While the
longitudinal time best reflects the potential clinical use of the
model for risk staging of future patients, it necessarily curtails
the extent of follow-up in the out-of-sample data, to five years.
Therefore cross-validation was used internally to validate the
results obtained on the modelling data set.
The events of interest were breast cancer specific mortality,
with intercurrent death was treated as censorship, and Disease-
Free Survival (DFS), which is often taken as a better indicator
of the impact on the patient’s quality of life arising from the
disease and the effects of therapy. Neither measure of outcome
is entirely accurate, since death attributed to breast cancer may
incorrectly include, or exclude, related deaths such as heart
attacks that may have been induced by the load on the body
due to chemotherapy, for instance, or even by carcinoid heart
disease linked to metastatic spread to the liver. The time of
recurrence is also necessarily uncertain, as there is a latency
before clinical symptoms occur, with the consequence that the
date of recurrence may even coincide with the date of death
in cases where the recurrence was found only by post-mortem
examinations.

Two variables had missing values in double figures, namely
progesterone receptor count (92 occurrences) and pathological
tumour size (83 occurrences). The former is a categorical
variable. Given past experience in medical data sets where
the distribution of missing values is not always at random, a
separate attribute was created to denote missing. In the case
of tumour size, its distribution is positive definite and thus
noticeably skewed. For this reason, it was decided to impute
missing values using the median, rather than the mean, of
observations.

3. Analysis methodology

Censored data modelling in clinical sciences is predomi-
nantly carried out using Cox regression, which is termed pro-
portional hazards model for continuous time on account of the
factorisation of the hazard distribution separating out the co-
variate dependent from the time dependence, which is fitted to
a baseline population chosen by the user. The models in this
report select the baseline population as consisting of nil val-
ues for tumour size (the only continuous variable) and the most
prevalent attribute, for categorical variables. This choice max-
imises the sample size of the reference population. An alterna-
tive choice would be to take the attribute with the best outcome.

The primary purpose of Cox regression is to study the
relative influence on outcome from the explanatory variables,
rather than to make survival predictions for individuals, or
indeed groups. In this sense, the choice of baseline distribution
should, in principle, be immaterial as the relative effects of
different covariates remain approximately stable for different
choices. This interpretation of the purpose of Cox regression
also justifies its use as a linear-in-the-parameters risk staging
index. That is the approach used in this study, where the risk
score is extended to a non-linear model.

It is well know that in discrete time, Cox regression reverts
to a strictly proportional odds model for the hazard. This lends
the model naturally extensible for generic non-linear analysis
of covariate effects and time dependency as a Partial Logistic
Neural Network (PLANN) (Biganzoli, Boracchi, Mariani, &
Marubini, 1998).

In common with all generic non-linear models, whether
based on kernel functions (Boracchi, Biganzoli, & Marubini,
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2001), splines (Boracchi, Biganzoli, & Marubini, 2003)
or the Multi-Layer Perceptron neural network (Lisboa,
2002), PLANN must be appropriately regularised to prevent
overfitting the data. While out-of-sample verification of the
model inferences can be carried out by cross-validation
and longitudinal testing, neural network predictions can
be stabilised, for instance, by regularisation using weight
decay. However, this requires tuning the regularisation hyper-
parameter, typically by cross-validation.

An alternative, principled approach to regularisation, is to
adjust the hyper-parameters within a Bayesian framework. The
calculation of the evidence is non-analytical, but an effective
approximation is possible, which has been applied to the
Partial Logistic ANN resulting in an implementation with
Automatic Relevance Determination (PLANN-ARD) (Lisboa,
Wong, Harris, & Swindell, 2003). The term denotes the
allocation of separate regularisation, or smoothing parameters,
to each input covariate.

The application of the Bayesian regularisation framework
with an analytical approximation of the evidence requires a re-
weighting of the log-likelihood function to balance the data,
so that there is apparently an equal number of observations
for each model outcome (i.e. for risk vs. survival in the single
risk model, and across all risks and survival, for competing
risks). This is because the uncertainty in the calculation of the
model estimates is reflected in a shift in model output towards
a prior distribution where all outcomes are equally likely. The
empirically derived priors are reintroduced by appropriately
weighting the model outputs to re-instate the prevalence of
events in the data (Lisboa, Vellido, & Wong, 2000).

All attributes share the same value of this hyper-parameter,
which controls the convergence of the model coefficients,
or weights. Their function is to bias the loading of each
covariate, depending on an estimate of how informative that
covariate is to fit the data. This estimation is, in essence,
the inverse curvature of the Hessian matrix, so that a high
curvature indicates a well-determined loading factor, i.e. weight
coefficient. Uninformative explanatory variables are forced
towards zero, hence the term weight decay is generally used
for this type of regularisation, sometimes likened to the use of
ridge functions for stabilisation of logistic regression models.
An important consequence of this methodology is that an
overparameterised model will naturally soft-prune unnecessary
covariates leaving a core of statistically significant explanatory
variables in this non-linear model.

The PLANN methodology has been extended to competing
risks (Boracchi et al., 2003) and, more recently, the
ARD framework has been applied to form a Partial
Logistic Artificial Neural Network for Competing Risks
modelling with Automatic Relevance Determination (PLANN-
CR-ARD) (Arsene, Lisboa, Aung, Boracchi, & Biganzoli,
2006).

The application of the ARD framework to PLANN, both
for single- and competing risks, enables the estimation of
individual predictions of the hazard, calculated over time,
with confidence intervals. Given a fixed covariate vector, the
confidence intervals arise from the assumed distribution of
the weight values, which no longer have point estimates but,
rather, are assumed to obey a density function derived from
the Bayesian equation for the data fit and regularisation terms.
In other words, the confidence intervals reflect the shape of
the Hessian function for the model parameters, in the same
way as the calculation of the hyper-parameters does, and
following a local analytical approximation that exactly mirrors
the calculation of predicted standard errors in linear and logistic
regression models (Bishop, 1995).

One of the main advantages of the neural network
methodology for modelling time-to-event data with right
censorship is the ability to infer smooth estimates for
the hazard, without requiring a priori assumptions about
proportionality. This yields useful estimates of the marginal
hazards and of covariate effects.

The predictions of hazards for individual cases, which
arise by sampling the covariate space using the individual
patient’s covariate set, form a special case of a method used
to explore the covariate space of logistic regression models.
The implementation of model predictions, for instance, in
the software package GenStat, is weighted using estimated
population weights, formed by multiplying together a one-way
table of weights for each factor, containing the proportions
of cases recorded in each of its levels (Galea et al., 1992).
However, individual predictions form an extreme case where
the probability density is sampled by a δ-function, so its
appropriateness and accuracy requires careful validation.

Performance evaluation was carried out in three ways:

- The estimated cumulative hazard generated by the model
was compared with a crude empirical estimate calculated
directly from the event-rate in the training data, to verify the
accuracy of the model fit.

- The observed survival in the modelling data, described
by Kaplan–Meier curves for grouped data, was compared
with those for the corresponding risk groups generated by
applying the same risk scores to out-of-sample data, used
for testing.

- The rules describing the composition of each risk group were
verified against clinical expectation.

For this analysis the network was chosen by 5-fold cross-
validation on the training data repeated for several models
with differing numbers of hidden nodes, from 5 to 12, all
other parameters were unchanged. From these, the network
parameters were selected and PLANN-ARD run again, this
time only once, on all the training data in order to produce
just a single model that we could use to test the validation data
set. It was found that 10 hidden nodes, 20 iterations for early
stopping and all the control parameters set to 0.01 produced
stable results.

4. Rule extraction methodology

A principled rule extraction methodology is Orthogonal
Search-based Rule Extraction (OSRE) (Etchells & Lisboa,
2006). OSRE extracts conjunctive rules from smooth decision
surfaces derived by analytical models, whether they are derived
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from traditional statistical models which are linear-in-the-
parameters, such as logistic regression, or with generic non-
linear approximations to decision surfaces, as is the case for
the wide range of ANN architectures.

In this paper the OSRE methodology is used in the
derivation of Boolean rules when the explanatory variables are
continuously valued. The resulting rule proliferation requires
the introduction of a rule refinement strategy to reduce the
number of overlapping rules while preserving the cumulative
sensitivity and specificity of the original rule set. This naturally
leads to a rule hierarchy paradigm to rank the rules and
thus generate rule trees. The extended OSRE methodology
is a benchmark against alternative data-based rule extraction
methodologies by application to publicly available data sets.

The practical value of the rule extraction paradigm is further
illustrated with direct visualisation of decision surfaces in well-
separated data subspaces, enabling inferences about individual
data points to be contextualised within the grouped decisions
characterised by Boolean rules.

The OSRE methodology was developed to generate low-
order Boolean rules to describe decision surfaces predicted by
analytical inference models. In essence, the OSRE efficiently
searchers for axis-parallel hyper-cubes to the response surface
thresholded at an appropriate value, carving out Boolean
regions of data space which fit within the classification
regions predicted by the inference model. However, the search
mechanism is driven by the data points and so generates a
rule for each of them, resulting in a plethora of mutually-
overlapping rules. This requires equally efficient algorithms for
rule ranking and pruning, which form the core of the OSRE
procedures, typically resulting in a small subset of overlapping,
low-order rules to explain binary inferences derived from the
response surface.

The rule search starts by fitting a classifier to the data.
Currently it is achieved either with a logistic regression model
or by training a Multi-Layer Perceptron (MLP) regularised
with the well-known Bayesian framework with a Gaussian
approximation of the evidence (Mackay, 1992). Rules for the
data are then extracted by the search engine, initially generating
a rule for each data point, and pruned by validating them using
the data and known target outcomes.

The present OSRE methodology (Etchells & Lisboa, 2006)
involves coding the data into {0, 1} for binary variables and 1-
from-N binary coding for categorical and ordinal data. This
transforms the data into a Boolean space, where each possible
input pattern forms a ‘restricted’ space within this Boolean
space (we say ‘restricted’ space instead of subspace as the sum
of two permitted input patterns is not a permitted input pattern,
hence by definition not a vector subspace). Each permitted input
pattern is a Boolean atom, which is a vertex of a unit hyper-cube
of dimension the number of inputs into the network.

Orthogonal search in the context of the OSRE methodology
means moving in orthogonal directions in the space of variables
before coding. That is, choosing a point in the space and
stepping through the values of one variable whilst keeping
all others constant. This orthogonal movement when viewed
within the Boolean space is the stepping from one permitted
atom to one of the next nearest permitted atoms.

Selecting any input pattern and searching in each orthogonal
direction and evaluating the ANN at each point, is equivalent
to traversing a subset of the permitted atoms in the vicinity of
the given input pattern. Every search point that has an in-class
decision from the ANN translates to an ‘active’ atom.

This orthogonal searching results in the formation of
hyper-boxes in the space of the binary, categorical and
ordinal variables. These hyper-boxes are readily translated into
conjunctive (understandable) rules, based on an assumption
that the atoms encompassed by this rule are also active. This
assumption is validated by testing the rule with the training
data and ascertaining its specificity and sensitivity values. Rules
with poor specificity and sensitivity are discarded as: poor
specificity implies that the assumption that the rules internal
atoms are active is not sustainable; very poor sensitivity could
imply that the input pattern may well be an outlier or noise and
is not representative of the data in general.

A single search will not usually find a rule that describes the
behaviour of the network for all possible input patterns. As it
is not computationally practicable to investigate all the possible
input patterns, a strategy is to use the training data as starting
points for the orthogonal searches. Using the training data (and
the test data if the data are split for training purposes) for the
starting points has two important benefits. Firstly, the ANN is
trained using these data and hence the decision surface will
be accurately constructed about them, unless the data contains
severe outliers or noise. Secondly, the training data accounts
for only a tiny fraction of the possible input patterns, making
the search process tractable to a high number of inputs, whilst
retaining representation of the underlying logic of the data. A
full description of the algorithm can be found in Etchells and
Lisboa (2006).

A Continuous-Valued Variable (CVV) has values/observa-
tions that belong to a finite (or infinite) interval. A possible
strategy is to split the finite interval of the values of the CVVs
into a number of concurrent sub-intervals. Then a continuous
value can then be relabelled dependent on which interval they
belong and assigning an ordinal value accordingly. These coded
variables can then be further 1-from-N coded and used within
the present OSRE methodology. This strategy is problematic
in that the ANN will be forced to find a decision boundary
based on some arbitrary division of the original continuous
interval. Should the classification of the data change from one
end of a large interval to the other, the ANN would have great
difficulty in finding a decision boundary that separates the data
accurately. If this is to be avoided then the sub-interval widths
would have to be small, this would lead to many ordinal values
and this results in the proliferation of inputs to the networks
when 1-from-N coding is performed.

When training neural networks that have CVVs, it is good
practice to standardise the data; say scale into the interval
[−1, 1] or a standardised normal distribution N (0, 1), so that
continuous variables with large values do not dominate the
training process or the networks’ inferences. This leads to
a single input to the network for each CVV, hence keeping
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Fig. 1. Categorising the CVV.

the number of inputs to a minimum. A consequence of the
standardisation is that the interval of each CVV will usually be
no bigger than [−4, 4] if N (0, 1) or [−1, 1] if min–max scaling
to [−1, 1] is used.

As the OSRE methodology involves stepping through values
of one variable, whilst leaving all others constant, a practical
and pragmatic approach to orthogonal searching in the direction
of CVVs is to step through the CVV from its minimum to
maximum value by some constant distance, searching for a
change in the network’s response. Each step point can be
considered as an ordinal point, so for example stepping from
[−1, 1] in a step size of 0.5, leads to 5 ordinal points where each
ordinal point can be interpreted as a 1-from-N code Boolean
code. This means that each step point can be mapped into the
restricted Boolean space, constructed from this and all the other
variables.

As an example, a two variable problem with a categorical
variable a1 with values 1, 2 & 3 and a CVV a2 standardised
[−1, 1] and step size 0.5. The variable a1 values would be
mapped to a 1-from-3 coded binary vector and a2 variable
would be mapped to 1-from-5 coded vector (Fig. 1):

Hence, any two-dimensional point in the input space of
(a1, a2) would transform to a eight-dimensional restricted
Boolean space. For example the point (2, −0.5) would map to
the atom

[

a1︷ ︸︸ ︷
0, 1, 0,

a2︷ ︸︸ ︷
0, 1, 0, 0, 0].

This example illustrates that the process of stepping through
a CCV is equivalent to categorising the interval and hence
each point can be mapped into a restricted Boolean space so
the principled approach of OSRE is preserved. Importantly,
even though the input space can be mapped into a higher-
dimensional Boolean space for theoretical justification, this
need not be done for training and rule extraction purposes.
Hence there is no proliferation of inputs through 1-from-N
encoding even if the step size is reduced to 0.01 or smaller.

This makes the orthogonal search efficient and scalable to
small step sizes and very small step sizes allow the orthogonal
searches to find the decision boundary in the direction of the
CVV to within the accuracy of the step size.

An unfortunate side effect of stepping through small step
sizes is that OSRE can produce a plethora of rules, sometimes
as many rules as there are data. This is because the orthogonal
searching is performed relative to a data point and the distance
from a particular data point to the decision boundary may be
unique to that data point to within the tolerance of the step
size. The principle goal of OSRE is to produce rules that
are comprehensible to a human rule; this comprehensibility is
compromised if the rule extraction method produces too many
rules. A rule refinement technique is introduced that reduces the
Fig. 2. Rule R3 lies within the data space of R1, R2 and R4, therefore can be
removed from the rule list.

number of rules by deleting rules that are encompassed wholly
by other rules.

The disjunction (addition) of all the rules extracted using
OSRE form a number of Non-Mutually Exclusive intersecting
hyper-boxes in the input space forming a ‘hyper-shape’. It
is likely that many of the rules may be wholly submerged
within parts of this hyper-shape and do not add any extra
information/coverage (Fig. 2), and is therefore redundant. A
rule refinement method is introduced to reduce the rule set in
order to generate a more interpretable explanation of the data,
while increasing specificity and controlling any reduction in
sensitivity.

Taking the schematic in Fig. 2 as an illustration, the rule
R3 can be removed from the rule set as R3 is fully covered
by other rules within the set. Furthermore, in the search for
comprehensibility the next best candidate for removal would
be R4, as the additional coverage (or added value) of the rule
does not add much more information. This aspect is covered in
the Rule Hierarchy section below.

Each step of the rule refinement process relies heavily on
the Receiver Operator Characteristic plot, a two-dimensional
plot that has 1-specificity as the horizontal axis and sensitivity
on the vertical axis. The ROC point of a rule is a measure of
a conjunctive rule to successfully classify the data, sensitivity
measuring how much of the in-class data the rule covers and
specificity measuring how well it does not classify the out-of-
class data. The Global ROC point refers to the ROC point of the
disjunction of a set of rules.

The first step in the rule refinement strategy is to filter out
all rules whose individual specificity value is below some pre-
determined value e.g. 0.9. This will leave a rules set of size n,
where n could still be large. A filter of deleting rules with poor
sensitivity, say less than 0.1, could be applied here to possibly
reduce the rule list further.

The second step of the rule refinement process is the
evaluation of the specificity value for each individual rule that
will give the best global ROC point for a set of rules. That
is, say, filter out all rules with specificity less than 0.91 and
evaluate this rule list’s global ROC point, then filter out all rules
with specificity less than 0.92 etc., up to rules with specificity
equal to one. On completion of the procedure a Receiver
Operator Curve (ROC) can be produced that connects the global
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Fig. 3. The first stage in rule refinement finds the best specificity threshold
from 10 iterations in this example. Selecting the global coverage, in terms of
the true and false positive classifications that is closest to the vector [0 1], the
ideal point. Vector V7 in this representation.

vectors for each iteration. By selecting the specificity threshold
that has a ROC point closest to the vector [0 1], the ideal point,
a disjunction of rules that best describe the classification for
maximum coverage whilst controlling for false positives has
been chosen (Fig. 3).

At this point the number of rules has been reduced to those
below the false positive threshold whose disjunction gives the
best global coverage. However, the number of rules can still
be prohibitive and present a ‘black-box’ of rules in terms of
understanding the classification. Therefore, further steps are
required in the refinement of the rules that OSRE extracts to
reduce the number of rules to a minimum and still maintain an
acceptable coverage of the classification.

The third step of the rule refinement strategy eliminates
rules that are completely contained within the other rules, for
example R3 in Fig. 2. This first stage finds a smaller set (if it
exists) of rules that have exactly the same global sensitivity and
specificity as that of the whole rule set selected in the second
stage of refinement.

The rules generated by the OSRE after the second step are
placed in a list called RuleList.

Step 1. Find the ROC point of RuleList.

Step 2. Remove the first rule from the RuleList and determine
whether there is a change in the ROC point of this reduced
RuleList. If there is no change then this rule is added to a
list called RemoveRuleList. The removed rule is replaced back
into RuleList. Repeat the process for each rule in the RuleList.

Step 3. Remove the rules that belong to RemoveRuleList from
RuleList.

Step 4. Re-calculate the ROC point of RuleList. If this ROC
point is equal to the ROC point in step 1, go to step 6.

If we have reached step 5, we need to reintroduce rules from
RemoveRuleList to RuleList so as to move the ROC point of
RuleList back to the point calculated in step 1.

(At this stage of the algorithm, R3 in Fig. 2 would have been
identified as redundant and removed.)
Step 5. Select the rule in RemoveRuleList that, when
reintroduced to RuleList, moves the ROC point of RuleList
closest to the ROC point calculated in step 1. If there is a tie,
select one of the tied rules arbitrarily. Remove this rule from
RemoveRuleList and add it to RuleList. Repeat this process
until the ROC point of RuleList is equal to that of the ROC
point calculated in step 1.

There is now a reduced set of rules, with the same ROC point
as the original set of rules with the redundant rules filtered out.

At this stage in the rule refinement process we have a list of
Non-Mutually Exclusive rules that will have varied sensitivity
and minimum specificity determined in the second step of the
refinement. If this list is still long then the rules need to be
ordered into a hierarchy where a rule’s position is dependent
on how ‘accurate’ it is. The term ‘accurate’ could refer to the
sensitivity or the specificity of the rule, or some other indicator
of how well the rule separates the in- and out-of-class data.
A number of rule hierarchy methodologies are now introduced
that rank the rules so that the position of the rule in the hierarchy
is indicative of how much it ‘adds value’ to the ‘accuracy’
measure.

Simply ordering the rule list in terms of the sensitivity values
does not necessarily give a rule hierarchy that improves the
global sensitivity as it is traversed, as there may be significant
overlap of the rules. For example, a rule list has a number
of rules and the rule Ri has the highest sensitivity value of
0.62. The rule R j has the next highest sensitivity value of 0.54,
however as there is a lot of in-class data that obeys both rules
the sensitivity of Ri ∨ R j is only 0.68. However, the sensitivity
of a third rule Rk is only 0.3, but it happens that most of the
data covered by Rk is not covered by Ri and Ri ∨ Rk is 0.79.
As a consequence Rk is chosen over R j for the next rule in
the hierarchy. The following algorithm orders the rules in a
sensitivity first hierarchy:

Given a data set D and a rule set R and an empty list H

1. Using D calculate the sensitivity of each rule in R; choose
the rule, Ri , with the highest sensitivity (pick one at random
in the event of a tie) and add to the end of H .

2. Delete that data that obeys Ri from D.
3. Delete Ri from R.
4. If R is not empty go to step 1.
5. Return H .

The algorithm above can be modified to construct a
specificity first hierarchy by replacing step 1 with:

1. Using D calculate the specificity of each rule in R; choose
the rule, Ri , with the highest sensitivity (pick one at random
in the event of a tie) and add to the end of H .

Similarly a Positive Predicted Value (PPV) first hierarchy
can be constructed by changing step 1 to:

1. Using D calculate the PPV of each rule in R; choose the
rule, Ri , with the highest sensitivity (pick one at random in
the event of a tie) and add to the end of H .

A further measure of rule ‘accuracy’ is the distance from
its ROC point to the point (0, 1). A rule, or a set of rules,
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Fig. 4. Grouped survival for breast cancer specific mortality. The model type is
indicated in the figure title.

with a ROC point (0, 1) represents a perfect rule, that is covers
all the in-class data and none of the out-of-class data. As
the distance is calculated from the ROC point of the rules,
both sensitivity and specificity values are jointly considered
in this rule hierarchy. The distance hierarchy algorithm is a
modification of the sensitivity first algorithm by replacing step
1 with:

[1] Using D calculate the ROC point (x, y) of each rule in R
and evaluate d =

√
x2 + (1 − y)2; choose the rule, Ri , with

the highest value for d (pick one at random in the event of
a tie) and add to the end of H .

5. Breast cancer specific mortality

The result sections are presented in self-contained figures
and tables, following a brief critical commentary. In all single
risk studies, univariate significance tests were utilised first,
to identify a pool of covariates, from which multivariate
Cox regression identified statistically significant groups of
covariates by forward and backward stepwise feature selection.

All of the available variables were permitted in the model,
resulting in the following set of selected covariates:

DCL T: Tumour stage (clinical)
SBR: Histological grade
GENV: Axillar nodes involved
RPCELL: Progesterone receptor count
ATT CUTA: Skin invasion
Fig. 5. Cross-matching the risk scores for Cox regression and PLANN-ARD.

Fig. 6. Cross-matching the survival for Cox regression (abscissa) and PLANN-
ARD (ordinate).

The three variables typically used in quantitative prognostic
assessment of breast cancer risk are used, namely: tumour size,
generally considered as a measure of the likelihood of the
disease metastasizing; histological grade, which is a measure of
tumour aggressiveness; the number of axillary nodes affected,
which is the most likely route for the disease to spread.

The separation between the mean observed survival of the
highest and lowest survival groups identified without surgical
variables is around 75% dropping the group at highest risk to
around 25% at 10 years from diagnosis, shown in Fig. 4.

A cross-matching plot of the neural network and Cox
regression risk scores, shown in Fig. 5, indicates the extent to
which non-linearities are present.

This is evident for the patients at highest risk, where a ‘tail’
with a range of risk scores predicted by the Cox model has
a much narrower risk score prediction by the neural network.
These patients are more clearly identified as high risk by
PLANN-ARD, and preferentially so when surgical variables are
not included in the model.

A cross-correlation of risk group allocations by the two
models is shown in Fig. 6. Cells with small sample sizes
are conspicuous for their large confidence intervals. Some of
the off-diagonal cells are empty, as would be expected. In
particular, both cells in the top row have very low survival,
indicating the specificity of the neural network.

Table 1 shows the population sizes for the combined group
allocations by both methods and Fig. 7 is a verification test



P.J.G. Lisboa et al. / Neural Networks 21 (2008) 414–426 421
Fig. 7. Verification of the predicted vs. observed cumulative hazards for breast
cancer specific mortality applied to the total cohort.

Fig. 8. The marginal hazard shows the typical shape for malignant pathologies.

Fig. 9. Breast cancer specific survival predictions for groups allocated by the
rules derived from the analytical risk scores.

comparing the predicted cumulative hazard for the training
and test data sets, with the crude estimate of the empirical
Table 1
Composition of the cells in Fig. 3

PLANN group Cox group
1 2 3 4 Total

4 0 0 15 45 60
3 3 87 143 22 255
2 46 167 14 0 227
1 528 86 0 0 614
Total 577 340 172 67 1156

Fig. 10. Kaplan–Meier curves for, from top to bottom, PLANNARD, TNG
staging and the NPI rule model.

cumulative hazard calculated over the combined data set. The
marginal hazards averaged over the complete population are in
Fig. 8.
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Fig. 11. Kaplan–Meier curves with 95% confidence intervals for grouped data, comparing training and test data (top and bottom) for Cox regression and the
PLANN-ARD (left and right).
Explanations for the risk group allocations have been derived
for each of the preceding models, using the methodology of
Orthogonal Search Rule Extraction (OSRE). This method is
designed to automatically generate from the data Boolean rules
of low-order, i.e. involving a small number of covariates. This is
achieved at the expense of losing mutual exclusivity, so that one
patient’s allocation to a risk group may be explained by more
than one rule. Example rules are shown in Table 2. These rules
were used to validate the model using clinical expertise.

Generally speaking, group 1 is characterised by combina-
tions of good prognostic values, rising through mixtures of vari-
ables associated with different typical outcomes, to group 4
which combines specific values all associated with poor prog-
nosis, i.e. large tumours with high grade and axillary invasion.

The neural network (and equally Cox regression) can
be turned into a ‘white-box’ by replacing the risk group
allocations from analytical scores into strictly defined logical
Boolean rules. A few patients fall outside of the rules selected,
suggesting that they are outliers in the probability distribution
of the covariates. The rule-based group allocation is shown
in Fig. 9, separating out patients who fall specifically into rules
assigned to each group, but also those whose covariates fit
rules from risk groups 2 and 3, which is indicated as ‘2.5’.
The group of outliers is labelled ‘9’ and its survival is roughly
in the middle of the Kaplan–Meier plot. This figure achieves
a clinically transparent, rule-based, risk allocation from the
baseline indicators for breast cancer patients.

Further analysis was then carried out to compare the
PLANNARD mortality model with two rule-based models,
TNG staging and the NPI rule model (Jarman et al., 2007).
These models are a subset of the data made up of operable
breast cancer patients with the full set of rules and patient
numbers for the training and test data presented in Table 3. All
comparisons made are for the test data. The new model uses the
same three variables as these models: DCL T, GENV and SBR
plus two additions namely: RPCELL and ATT CUTA.

The aim is to discover if the additional variables further
discriminate the prognostic risk groups in terms of survival.
As can be seen from Fig. 10 all three models separate into 3
distinct survival groupings with the new PLANNARD model
displaying better separation than the two rule-based models.
This suggests that for this data the two extra variables are
adding to the discriminatory power of the new model. To
discover the generality of these results a future work would
involve a multi-centre study.

6. Disease-free survival

Disease-Free Survival (DFS) was also modelled as a single
risk, the event of interest being the first documented recurrence,
whether local or distal. Significant covariates were identified
by Cox regression with forward and backward stepwise feature
selection, resulting in the following variables being selected:

DCL T: Tumour stage (clinical)
SBR: Histological grade
GENV: Axillar nodes involved
RECELL: Estrogen receptor count
AGEPAT: Patient’s age
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Table 2
The rule sets for cancer specific mortality per group

Group 1 (N = 606) Group 2 (N = 304) Group 3 (N = 168) Group 4 (N = 78)

Rule 1: Rule 1: Rule 1: Rule 1:
SBR grade<= 2a SBR grade= 3a SBR grade= 3 SBR grade = 3
RPCEL>= 10% RPCEL < 50%a RPCEL< 50%a

T staging = T1 T staging = T0 or T1 T staging = T2 or T3 T staging = T2 or T3 or T4
No. Invaded Ganglia<= 2a No. Invaded Ganglia<= 2 No. Invaded Ganglia<= 2a No. Invaded Ganglia >= 3

Rule 2: Rule 2: Rule 2: Rule 2:
SBR grade<= 2a SBR grade<= 2a SBR grade<= 2a SBR grade = 3
RPCEL > 50% RPCEL < 50%a RPCEL < 50%a T staging = T3 or T4
T staging = T0 or T2 T staging = T2 or T3 T staging = T2 or T3
No. Invaded Ganglia<= 2a No. Invaded Ganglia <= 2a No. Invaded Ganglia >= 3

Rule 3: Rule 3: Rule3: Rule 3:
SBR grade<= 2a SBR grade= 2 or 3a SBR grade= 3 RPCEL < 50%a

T staging = T0 RPCEL< 10% RPCEL< 50%a T staging = T4
No. Invaded Ganglia<= 2a T staging = T1 or T2 or T3 T staging = T1 No. Invaded Ganglia>= 3

No. Invaded Ganglia = 0 or >= 3 No. Invaded Ganglia >= 3a

Number of cases true by rule set in
group 1 = 536

Number of cases true by rule set in
group 2 = 201

Number of cases true by rule set in
group 3 = 111

Number of cases true by rule set in
group 4 = 78

Number of cases true by rule set not in
group 1 = 0

Number of cases true by rule set not
in group 2 = 94

Number of cases true by rule set
not in group 3 = 11

Number of cases true by rule set not
in group 4 = 8

a Indicates that this rule statement is also inclusive of cases where the variable is missing.
NB NOD: N-stage (clinical)
MTUMINF: Nipple infiltrating tumour
MENOPAUS: Menopausal status

The structure of the significant explanatory variables follows
an expected pattern comprising the three core variables
associated with NPI, together with hormone receptor count,
now represented by estrogen rather than progesterone as was
the case in the mortality study.

The other half of the selected variables includes age and
clinical stage nodes, but interestingly also menopausal status.
This is unexpected alongside age, as there is a significant
overlap in the breast cancer relevant information that these
two variables contain. An additional factor, nipple infiltrating
tumour, is new compared with other studies, but this may
be because this variable was not appropriately represented in
previously published data sets.

One further remark to make is that stepwise feature selection
with the Cox model is known to be prone to select a few too
many variables. It is therefore possible that the model is slightly
overfitted, in particular that as many as two of the selected
variables may be in excess of the optimal set for robust future
predictions. The PLANN-ARD neural network is designed to
suppress the effect of uninformative variables in the model.

The robustness lent to the neural network by regulation
with ARD may explain why the results in Fig. 11 show
better separation and spread of mean group survivals for the
neural network compared with Cox regression, using the same
covariate sets.

Table 4 lists some of the derived rules that explain risk
group allocations for the vast majority of patients. As before,
the rules are a validation tool to ensure that the operation of
the neural network model (or Cox model) is consistent with
clinical knowledge, but also to derive new insights from patient
Fig. 12. Kaplan–Meier survival plots for the PLANNARD mortality risk
groups for separate observations: (top) mortality and (bottom) disease-free
survival.
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Table 3
The rule sets for TNG staging and the NPI rule model

Group Rule no. T sizea Nodesa Gradea Train (n) Test (n)

TNG staging
I 1.1 T1 N1 G1 or G2 224 231

1.2 T1 N2 G1 46 45
1.3 T2 N1 G1 16 12

Sub-total 286 288
II 2.1 T1 N1 G3 67 68

2.2 T1 N2 G2 81 103
2.3 T1 N3 G1 10 12
2.4 T2 N1 or N2 G2 77 84
2.5 T2 N2 G1 12 10

Sub-total 247 277
III 3.1 T1 N2 G3 28 42

3.2 T2 N1 G3 34 44
Sub-total 62 86

IV 4.1 T1 N3 G2 or G3 75 61
4.2 T2 N2 G3 44 30
4.3 T2 N3 Any G 78 84

Sub-total 197 175
Total 792 826

NPI rule model
I 1.1 T1 N1 G1 85 84

Sub-total 85 84
II 2.1 T1 N1 G2 139 147

2.2 T1 N2 G1 46 45
2.3 T2 N1 G1 16 12

Sub-total 201 204
III 3.1 T1 N1 G3 67 68

3.2 T1 N2 G2 81 103
3.3 T1 N3 G1 10 12
3.4 T2 N1 G2 44 50
3.5 T2 N2 G1 12 10

Sub-total 214 243
IV 4.1 T1 N2 G3 28 42

4.2 T1 N3 G2 43 25
4.3 T2 N1 G3 34 44
4.4 T2 N2 G2 33 34
4.5 T2 N3 G1 8 4

Sub-total 146 149
V 5.1 T1 N3 G3 32 36

5.2 T2 N2 or N3 G3 82 79
5.3 T2 N3 G2 32 31

Sub-total 146 146
Total 792 826

a Tsize = DCL T, Nodes = GENV, Grade = SBR.
groups whose survival is unexpected but who can, nevertheless,
be strictly characterised by a well-defined Boolean profile.

However, the statistically significant separation between the
prognostic scores of groups 2 and 3, found in the training data,
does not generalise to the test set. This is clear from Fig. 11.
Interestingly, the poor performance in risk group allocation by
the rule set for groups 2 and 3 also suggests that this separation
is not reliable, therefore the groups should be merged.

In the introduction it was noted that in general doctors
consider disease-free survival and mortality to be equivalent
when they used a prognostic model and often would talk
in terms of being disease free when using a mortality risk
model. To investigate whether this practise is appropriate two
KM survival plots, Fig. 12 were produced for the same risk
model namely: the new PLANNARD mortality risk model, for
separate observation, first the usual target; death, the second
with disease-free survival as the target.

Although the order of the risk groups remain the same
for the two targets of interest the proportional difference for
groups 1 and 2 are quite different and overall survival over
time is markedly lower for disease-free survival. This suggests
that mortality and disease-free survival should not be used
interchangeably when discussing prognosis.

7. Conclusion

The breast cancer specific mortality study confirmed that
successful risk-staging can be carried out both with Cox
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Table 4
The rule sets for disease-free survival for the group

Group 1 (N = 349) Group 2 (N = 481) Group 3 (N = 191) Group 4 (N = 135)

Rule 1: Rule 1: Rule 1: Rule 1:
SBR grade= 1a SBR grade >= 2a SBR grade >= 2 SBR grade >= 2
T staging not T4 RECEL>= 10% RECEL >= 10% T staging = T3 or T4a

No. Invaded Ganglia<= 2 T staging = T1 or T3 T staging= T1 or T3
23 < Age < 70 No. Invaded Ganglia<= 2 No. Invaded Ganglia <= 2a

23 < Age < 76 58 < Age < 86
No. Nodules >= 1a

Rule 2: Rule 2: Rule 2: Rule 2:
RECEL >= 10% SBR grade >= 2a SBR grade >= 2 SBR grade >= 2
T staging = T0 or T2 T staging = T0 or T2 RECEL >= 10% RECEL <= 50%a

No. Invaded Ganglia <= 2 No. Invaded Ganglia <= 2a T staging = T1 or T3 T staging = T1 or T3 or T4a

23 < Age <= 60 63 < Age < 90 No. Invaded Ganglia = 3 Ganglia >= 3a

35 < Age < 60
Rule 3: Rule 3: Rule3: Rule 3:
SBR grade = 1a SBR grade>= 2a SBR grade>= 2 SBR grade >= 2
T staging = T0 or T2 T staging = T1 or T3 RECEL <= 50%a T staging = T1 or T3 or T4a

No. Invaded Ganglia<= 2 No. Invaded Ganglia <= 2 T staging = T1 or T3 No. Invaded Ganglia >= 3a

23 < Age < 59 No. Invaded Ganglia <= 2a 57 < Age < 90
No. Nodules >= 1a 36 < Age < 64

Number of cases true by rule set in
group 1 = 303

Number of cases true by rule set in
group 2 = 286

Number of cases true by rule set in
group 3 = 115

Number of cases true by rule set in
group 4 = 116

Number of cases true by rule set not in
group 1 = 50

Number of cases true by rule set
not in group 2 = 87

Number of cases true by rule set
not in group 3 = 125

Number of cases true by rule set not in
group 4 = 45

a Indicates that this rule statement is also inclusive of cases where the variable is missing.
regression and with the PLANN-ARD neural network. The
neural network appears to be more specific to identify
patients at the extremes of high and low risk. Model
selection includes three widely accepted prognostic indicators
together with additional covariates known to have prognostic
significance.

Disease-free survival, treated as a single risk, yielded
models and risk groups that are consistent with those derived
in the mortality study. Interestingly, PLANN-ARD seems to
generalise better than Cox regression, perhaps because of the
explicit use of complexity regulation in the neural network
model, which enable soft-pruning and hence reduces any
possible overfitting to the training data. The neural network
makes smooth predictions of the mean and cumulative hazards.
These results were verified by comparing with crude empirical
estimates. Moreover, Boolean rules can be generated to explain
the allocation of individuals to risk groups, providing a
validation tool to ensure that the operation of the risk allocation
model is consistent with clinical judgement. In addition, there
is evidence that disease-free survival and mortality should
not be used interchangeably when discussing prognosis. A
further step can be taken to produce a fully rule-based risk
allocation system, which has good specificity for group survival
predictions and is fully transparent for clinicians.

Further evaluation of the predictive accuracy of time-to-
event models for censored data can be carried out within the
extension of the AUROC into a time-dependent performance
index in Antolini, Boracchi, and Biganzoli (2005). The
PLANN-ARD model is also currently being extended for the
analysis of multiple competing risks.
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