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Abstract—Many data management applications, such as setting
up Web portals, managing enterprise data, managing community
data, and sharing scientific data, require integrating data from
multiple sources. Each of these sources provides a set of values
and different sources can often provide conflicting values. To
discover the true values, data integration systems should resolve
conflicts. In this paper, we present a formal probabilistic frame-
work in the expert/authority setting. Each expert has a partial
and maybe imperfect view of a binary target tuple b that an
authority wishes recovering. The goal of this paper consists of
proposing a multi-party aggregating function of experts’ views to
recover b with an error rate as small as possible. In addition, it is
assumed that some of the experts are corrupted by an adversary
A. This adversary controls and coordinates the behavior of the
corrupted experts and can thus perturb the aggregating process.
In this paper, we present a simple aggregating function and we
provide a formal upper-bound over of the output tuple error
expectation in the worst case, i.e. whatever the behavior of the
adversary is.

I. INTRODUCTION

Fusion of conflicting data, when for instance several experts
have very different ideas about the same phenomenon, has
long been identified as a challenging task in the data fusion
community. The inherent imperfection of data is the most
fundamental challenging problem of data fusion systems, and
thus the bulk of research work has been focused on tackling
this issue. In [3], the authors distinguish two kinds of data
conflict: (a) uncertainty about the attribute value, caused
by missing information; and (b) contradictions, caused by
different attribute values.

There are a number of mathematical theories [7] available
to represent data imperfection [11], such as probability theory
[5], fuzzy set theory [12], possibility theory [8], rough set
theory [10], and Dempster-Shafer evidence theory (DSET) [6].
Most of these approaches are capable of representing spe-
cific aspect(s) of imperfect data. For example, a probabilistic
distribution expresses data uncertainty, fuzzy set theory can
represent vagueness of data, and evidential belief theory can
represent uncertain as well as ambiguous data.

In [2], the authors present a novel approach that considers
dependence between data sources in truth discovery. Intu-
itively, if two data sources provide a large number of common
values and many of these values are rarely provided by other
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sources (e.g., particular false values), it is very likely that
one copies from the other. They apply bayesian analysis to
decide dependence between sources and design an algorithm
that iteratively detects dependence and discovers truth from
conflicting information. They also extend their model by
considering accuracy of data sources and similarity between
values.

In this paper, each source/expert has a partial and maybe
imperfect view of a target binary database b which can be
seen as a binary tuple. For concreteness, each expert only
knows a subset of components of b with maybe some errors.
In our model, the views of the experts are drawn according
to an arbitrary probability distribution D belonging to a
given family of probability distributions D. In addition, we
consider the existence of an unique entity, called an adversary,
totally controlling a minority of sources/experts: in particular,
it knows each corrupted expert view but not the views of
uncorrupted experts (called honest experts). This adversary can
be seen as an active noise generator. This paper aims to build
a way to aggregate expert views in order to recover b whatever
the behavior of the adversary is. As far as we know, it is the
first time that such an assumption is considered in data fusion.
The novelty of our approach makes difficult comparisons with
other existing solutions. In our opinion, the main interest of
the paper is that the proposed solution is totally formalized
making clear the assumptions and the results.

II. PROBLEM STATEMENT

Just to illustrate this problem from a police investigation
perspective, let us consider T witnesses which have partially
seen a crime scene and have identified a set N of n suspects.
One of these witnesses is assumed to be the police. We define
the tuple b = (b1, ..., bn) ∈ {−1, 1}n by bi = 1 if and only
if Suspect i is guilty. Witness j knows (maybe erroneously)
the culpability or non-culpability of a subset Sj ⊂ N of the
suspects, i.e., Witness j knows (bi)i∈Sj

. An adversary A has
corrupted some of the witnesses. The adversary A can change
the testimony of any corrupted witness. Those witnesses which
have not been corrupted are said to be honest. The challenge
consists in elaborating a multi-party aggregating function of
testimonies allowing the police to recover b (or something
close).



Let us consider now an other example in the user/server
setting. The server wishes recovering a binary tuple b =
(b1, . . . , bn) ∈ {−1, 1}n. For instance, the server could be
an online encyclopedia. In order to index its pages, some
questions could be asked to the users. For instance, does the
ith page contains pornographic pictures? Each user sends this
information for a subset of pages. One can imagine that some
users are corrupted by an adversary A. How can the server
fight against any adversary A to recover the truth about its
pages?

Typically, an authority wishes recovering a binary tuple b
partially and imperfectly known by T experts. The knowl-
edge of the jth expert can be represented by a tuple cj ∈
{−1, 0, 1}n where cji = 0 means that Expert j does not know
bi. Moreover, if bicji < 0 means that bi is erroneously known
by Expert j. In this paper, we assume that c = (c1, . . . , cT )
is randomly drawn according to a probability distribution D.
Each expert j sends its tuple cj to the authority. The objective
of the authority is to recover b from the values cji. At this
step, the problem is trivial for some probability distributions
D. Indeed, if the experts do not input too many incorrect
values cji (i.e. bicji < 0) then the majority vote is relevant,
i.e. (sign(

∑
j cji))i=1,...n ≈ b.

However, the majority vote strategy could be not relevant
anymore if some experts misbehave by sending malicious val-
ues cji. Worse, one can assume the existence of a coalition of
experts aiming to perturb the recovering of b. For concreteness,
these experts decide to collaborate by elaborating a common
malicious strategy. A simple way to represent this scenario
consists of assuming the existence of an adversary A which
has corrupted a minority C of experts. A can be seen as an
external unique entity which totally controls and coordinates
the behavior of the corrupted experts1. In our problem, its
power consists in arbitrarily modifying the tuples cj sent by
the corrupted experts. The challenge consists in elaborating
an aggregating function Aggregate allowing the authority to
recover b (or something close) whatever the behavior of A is.

Clearly, for some probability distributions D, our prob-
lem cannot be solved. Indeed, let us assume that the sets
Sj = {i ∈ {1, . . . n}|cji ̸= 0} do not overlap. In this
case, each component bi is known by at most one expert
and it is not possible to distinguish a corrupted value from
an honest one. Consequently, the adversary A could generate∑

j∈C |Sj | errors in the recovering of b and nothing can be
done to prevent this (without any other assumption). Thus,
only probability distributions D ensuring overlapping makes
our problem relevant.

In the next section we propose a formalization of this
problem. In Section IV, we propose a function Aggregate
exploiting the redundancy of the knowledge of the experts.
The principle of this function is very simple. The experts
which disagree on too many instances i with too many other
experts are eliminated. It follows that a corrupted expert which

1The definition and the properties of the adversaries considered in this paper
are directly inspired from the Secure Multiparty Computation framework see
([9], [1])

inputs too many incorrect values is eliminated. Consequently,
it should behave almost honestly to not be eliminated. In
Section V, we provide an upper-bound for the expectation
error of the tuple output by Aggregate in the worst case,
i.e., independent of the adversary A. In Section VI, numerical
values dealing with simple probability distributions D are
given. The analysis of these results shows that Aggregate
dramatically outperforms the naive approach consisting of
taking a majority vote.

III. FORMALIZATION

Let n, T, ϑ be positive integers s.t. ϑ < T/2, let N =
{1, . . . , n} and let ∆ = {−1, 0, 1}T×n. The target tuple is
denoted by b ∈ {−1, 1}n and J = {1, . . . , T} refers to the
set of the T experts. The set of the subsets C ⊂ J s.t. |C| ≤ ϑ
is denoted by Pϑ(J ).

A. Definition of D⊥

Definition 1. Let V be the set of probability distributions
defined over {−1, 0, 1}n and let D⊥ denote the family of
probability distributions over ∆ defined by

D⊥ = {D1 × · · · ×DT |Di ∈ V}

Throughout this paper, we will only consider probability
distributions D ∈ D⊥ (defined over ∆). Let (c1, . . . , cT ) ∈ ∆
be randomly drawn according to D ∈ D⊥. By definition of
D⊥, it is ensured that the T tuples c1, . . . , cT are independent.
In the setting of this paper, it means that each expert j has
generated its tuple cj independently of the tuples of the other
experts. For instance, one can imagine that the experts are
anonymous and do not know each other. It can make sense in
an open network such as the Web. This will be used to simplify
the adversary model by reducing its power. Conversely, one
can easily imagine some settings where this assumption is not
relevant and further investigations should be done to remove
or at least to restrict it.

B. Overview

Let D ⊆ D⊥ be a family of probability distributions over ∆,
let D ∈ D and let c = (c1, . . . , cT ) ∈ ∆ be drawn according
to D. The objective is to elaborate a function Aggregate :
∆ → {−1, 1}n (computing by the authority) inputting c and
outputting a binary tuple o ∈ {−1, 1}n as close as possible to
b. More precisely, it is desired to minimize the error rate er(o)
defined as the Hamming distance between b and o divided by
2n, i.e.,

er(o) =
1

2n
∥o− b∥1

In order to elaborate this function, the authority is not assumed
to know D but only D. As suggested in the introduction,
we assume the existence of an adversary A able to corrupt
a chosen subset C of experts. The set of uncorrupted experts
(also called honest) is denoted by H = J \ C. We propose to
overestimate the real-life adversary power by assuming that it
knows everything except the tuples cj of uncorrupted experts.
In particular, it is assumed that A knows the target tuple b,



the function Aggregate, the probability distribution D ∈ D
and can replace corrupted experts’ inputs by arbitrary values in
{−1, 0, 1}. In other words, A can arbitrarily modify at most ϑ
arbitrarily chosen tuples cj . Roughly speaking, A can be seen
as an active noise generator. The tuple o outputs by Aggregate
should be as close as possible to b regardless of the behavior of
A. The authority wishes building a function Aggregate robust
against any adversary A for families D as large as possible.

C. The adversary model
First, we consider an adversary A which can control at

most ϑ < T/2 experts: we do not see how to fight against
adversaries corrupting a majority of experts. It is a quite
restricting assumption for some realistic applications but it
seems difficult to overcome it.

Moreover, in this paper we only consider probability distri-
butions D ⊂ D⊥. By definition of D⊥, the tuples c1, · · · , cT
are independent. It means that the knowledge of the tuples
(cj)j∈C is not informative about the “honest” tuples (cj)j∈H.
This can be used to restrict the power of the adversary A
by assuming that it chooses the tuples2 (c∗j )j∈C a priori, i.e.
before to know the tuples (cj)j∈C . In other words, A can be
seen as a pair (C, δ) ∈ Pϑ(J ) ×∆ where C refers to the set
of corrupted experts and δ contains the malicious values, i.e.
for any j ∈ C, Expert j inputs the jth row δj of δ.

D. The objective
Consider a family of probability distributions D ⊂ D⊥, D ∈

D, a function Aggregate : ∆ → {−1, 1}n and an adversary
A = (C, δ). We define

er
Aggregate
A (D)

def
= E(er(o))

as the expectation of er(o) = 1
2n∥o−b∥1 where o is the tuple

output by the following protocol:

Protocol 1.

// In this protocol, it is assumed that all the communications
are done via secure channels.

1) A corrupts the subset C of experts,
2) Let (c1, . . . , cT ) be drawn according to D,
3) For each j ∈ J , Expert j receives3 cj and sends a tuple

c∗j to the authority defined as follows:{
c∗j = cj if j ∈ H
c∗j = δj if j ∈ C

4) The authority outputs o = Aggregate(c∗1, . . . , c∗T )

The authority is interested in building a function Aggregate
minimizing

erAggregate(D) = sup
A∈Pϑ(J )×∆;D∈D

er
Aggregate
A (D) (1)

2that it will send to the authority
3for instance from real-life.

c∗1 c∗2 c∗3 c∗4 c∗5 b MV Agg
-1 0 1 1 0 -1 1 -1
0 -1 1 1 0 -1 1 -1
1 1 1 0 0 1 1 1
1 0 1 0 1 1 1 1
1 1 0 0 1 1 1 1
0 1 0 0 1 1 1 1

Fig. 1.

Table illustrating the Majority Vote (MV) and Aggregate (Agg)
in the case n = 5, T = 5, θ = 2. The sets α(j) computed in
Aggregate(c∗1, . . . , c

∗
5) are equal to α(1) = α(2) = α(5) =

{1, 2, 5} and α(3) = α(4) = {3, 4}. As |α(3)| = |α(4)| <
T−θ = 3, Expert 3 and Expert 4 are eliminated, i.e. w3 = w4 =
0. It follows that Aggregate(c∗1, . . . , c

∗
5) consists of taking a

majority vote over c∗1, c
∗
2 and c∗5 .

for families D as large and realistic as possible4.

IV. A PROPOSAL FOR AGGREGATE

A. Case of perfect honest experts

We first assume that the experts do not receive incorrect
values, i.e. cjibi ≥ 0 for any (i, j) ∈ N × J . Consequently,
honest experts do not input incorrect values. Because of this
assumption, we can define a natural elimination strategy where
the honest experts cannot be eliminated and the corrupted
experts cannot input too many incorrect values without being
eliminated. Our solution exploits the fact that honest experts
only input correct values and that the corrupted experts are in
a minority. We say that two experts j and j′ are compatible
if they do not disagree on at least one instance i ∈ N . For
any j ∈ J , α(j) refers to the subset of experts j′ ∈ J which
are compatible with j.

α(j) = {j′ ∈ J | ∀i ∈ N c∗jic
∗
j′i ≥ 0}.

Clearly, for each j ∈ H

|α(j)| ≥ |H| ≥ T − ϑ.

The definition of the function Aggregate is based on this
fact. It simply consists of eliminating experts j ∈ J verifying
|α(j)| < T − ϑ before estimating ci by a majority vote. In
other words, the weight wj of Expert j in the majority vote
is defined by

wj =

{
1 if |α(j)| ≥ T − ϑ
0 otherwise.

According to the previous discussion, honest experts are not
eliminated. Intuitively, if a corrupted expert inputs many
incorrect values, then it becomes incompatible with almost
all honest experts, implying that it is eliminated because
|α(j)| ≈ ϑ < T −ϑ. As a corollary, a corrupted expert should
behave “almost honestly” in order to avoid elimination. This
naturally leads to the following definition of Aggregate.

4As explained in the introduction, D cannot contain all probability distri-
butions but only redundant ones.



Aggregate (c∗1, . . . , c
∗
T ) =

sign

∑
j∈J

wj c∗ji


i∈N

B. General case

In this section, we extend the previous study by assuming
that honest experts can input incorrect values cji, i.e. cjibi < 0.
The function Aggregate should be adapted to not exclude too
many honest experts. To achieve this, it suffices to strengthen
the definition of incompatibility between two experts and to
relax the strategy of elimination. The new function Aggregate
is parameterized by two new positive integers 0 ≤ σ ≤ n and
0 ≤ τ ≤ T − 2ϑ. Two experts j and j′ are compatible if they
do not disagree on more than σ instances i ∈ N and an expert
will be eliminated if it is compatible with less than T −ϑ− τ
experts.

Aggregateσ,τ (c
∗
1, . . . , c

∗
T )

1) I(j, j′) := {i ∈ N — c∗jic
∗
j′i < 0}

//I(j, j′) is the set of components of b where the
experts j and j′ disagree

2) α(j) := {j′ ∈ J | |I(j, j′)| ≤ σ}
//α(j) is the set of the experts compatible with

Expert j

3) wj :=

{
1 if |α(j)| ≥ T − ϑ− τ
0 otherwise.

// wj is the weight of Expert j in the final vote

4) Output
(

sign
(∑

j∈J wj c∗ji

))
i∈N

The previous section deals with the case σ = τ = 0. In
practice, σ, τ are chosen as large as possible ensuring that the
honest experts are eliminated with a very small probability.

V. ANALYSIS

Let D ⊂ D⊥. In this section, we propose an upper bound
of erAggregateσ,τ (D) which can be efficiently computed for
some families of probability distributions D. Given D ∈ D
and a subset H ⊂ J of honest experts, we consider the
two quantities ΓD,H(u, v) and ρσ,τD,H defined as follows (these
quantities are formally defined in Appendix A):

• ΓD,H(u, v) is the probability that (strictly) more than u
components of b are (correctly) known5 by (strictly) less
than v honest experts.

• ρσ,τD,H is the probability there is at least one honest expert
incompatible with more than τ other honest experts. Note

5We say that a component bi is correctly known by v honest experts if
bi

∑
j∈H cji = v.

that ρσ,τD,H upper-bounds the probability that at least one
honest expert is eliminated.

We then consider the suprema ΓD(u, v), ρ
σ,τ
D of these quanti-

ties over the choices of D ∈ D and H ⊂ J s.t. |H| ≥ T − ϑ.

ΓD(u, v) = max
D∈D;H⊂J :|H|≥T−ϑ

ΓD,H(u, v)

ρσ,τD = max
D∈D;H⊂J :|H|≥T−ϑ

ρσ,τD,H

Moreover, the number of incorrect values c∗ji sent to the
authority by the corrupted experts which are not eliminated6 is
denoted by Ωσ,τ

A,D (see Appendix A to get a formal definition).
The supremum of the expectation of this quantity is denoted
by Ωσ,τ

D , i.e.

Ωσ,τ
D = max

A∈Pϑ(J )×∆,D∈D
E(Ωσ,τ

A,D)

These three suprema can be used to upper-bound
erAggregateσ,τ (D).

Proposition 1. We have,

erAggregateσ,τ (D) ≤ ρσ,τD

+ min
0≤u≤n;0≤v≤T

(
ΓD(u, v) +

u

n
+

Ωσ,τ
D
nv

)
Proof. (Sketch). See Appendix B for details. Let u, v be
integers arbitrarily chosen. Let us consider the event “E =
no honest expert is eliminated and there are at less than u
components I = {i1, . . . , it≤u} such that

∑
j∈H cjik ≤ v for

any k = 1, . . . , t”. E is not satisfied with a probability smaller
that than ρσ,τD + ΓD(u, v). In this case, we upper-bound the
error rate by 1. Assume now that E is satisfied. In this case,
the error can be upper-bounded by u

n + Ω
nv where Ω is the

number of input malicious values: it suffices to assume that the
components bi∈I are erroneously predicted and to notice that
at most Ω

v components of N \ I can be erroneously predicted.
We conclude by using the fact that E(Ω) ≤ Ωσ,τ

D .

For some families of probability distributions D, there exists
σ, τ such that this upper-bound is small and can be efficiently
computed. This is the object of the next section.

VI. NUMERICAL APPLICATION

Notation. Bp,m denotes the cdf of the binomial distribution
with parameters p,m. Let X1, . . . , Xm be m independent
random variables belonging to {−1, 0, 1} drawn according
to the same probability distribution, i.e. Pr(Xi = k) = pk.
The cdf of the probability distribution of Z = X1 + · · ·+Xm

is denoted by Bp−1,p0,m.

Let p, pe ∈ [0, 1] such that pe < p. In this section, we consider
a very simple family Dp,pe

⊂ D⊥ of probability distributions.
Each component of b is known by each (honest) expert with a

6we say that Expert j is eliminated when wj = 0. An eliminated expert
does not participate in the majority vote



probability larger than p. Some of them are erroneously known
with a probability smaller than pe.

Definition 2. Dp,pe
⊂ D⊥ is the family of probability distribu-

tions D defined over ∆ satisfying the following requirements:
• cji and cj′i′ are independent if (i, j) ̸= (i′, j′).

• Pr(cji ̸= 0) ≥ p

• Pr(bicji < 0) ≤ pe

The quantities ΓDp,pe
(u, v), ρσ,τDp,pe

and Ωσ,τ
Dp,pe

can be easily
computed or at least upper-bounded.

Lemma 1. We have,
1) Ωσ,τ

Dp,pe
≤ ϑ ·maxi∈U

(
iB1−Bp−pe,i(σ),T−ϑ(ϑ+ τ)

)
2) ΓDp,pe

(u, v) = 1− BBpe,1−p,T−ϑ(v−1),n(u)

3) ρσ,τDp,pe
≤ T ·

(
1− B1−B2pe(p−pe),n(σ),T−ϑ−1(τ)

)
Proof. To prove this lemma, we consider the worst7 probabil-
ity distribution D ∈ Dp,pe defined by Pr(cji ̸= 0) = p and
Pr(bicji < 0) = pe. Moreover, we assume that the adversary
controls exactly ϑ experts.

1 - The set Sj of correct values cji received by each honest
expert j ∈ H is denoted by

Sj∈H = {i ∈ N|bicji > 0}

The set Mj of incorrect values input by a corrupted expert
j ∈ C is denoted by

Mj∈C = {i ∈ N|bic∗ji < 0}

Let us upper-bound the probability pj that Expert j is not
eliminated, i.e. wj = 1. It suffices that |Sk

∩
Mj | > σ to

ensure that an honest Expert k and Expert j are incompatible.
For each i ∈ Mj , the probability that bicki > 0 is equal to
p − pe. Consequently, as cji and cki′ are independent, the
probability that Expert j and Expert k are incompatible is
smaller than

ρ|Mj |
def
= PrD(|Sk

∩
Mj | > σ) = 1− Bp−pe,|Mj |(σ)

and as Expert j is eliminated if it is incompatible with more
than ϑ+ τ honest experts,

PrD(wj = 1) ≤ Bρ|Mj |,T−ϑ(ϑ+ τ)

It follows that the number of incorrect values input by Expert
j is upper-bounded, in mean, by

|Mj |(Bρ|Mj |,T−ϑ(ϑ+ τ)) ≤ max
i∈U

(iBρi,T−ϑ(ϑ+ τ))

Thus,
Ωσ,τ

A,D ≤ ϑ ·max
i∈U

(iBρi,T−ϑ(ϑ+ τ))

7It is the probability distribution where the probability that an honest expert
inputs correct values is the smallest and the probability that it inputs incorrect
values is the largest.

2 - Let hi = bi
∑

j∈H cji. As cji and cj′i′ are independent,

Pr(hi < v) = Bpe,1−p,T−ϑ(v − 1) = ρv

and the random variables hi are independent. Thus, the prob-
ability that the number of instances i ∈ N satisfying hi < v
is strictly larger than u is equal to

ΓD,H(u, v) = 1− Bρv,n(u)

3 - Let j and j′ be two honest experts and let i ∈ N .

PrD(cjicj′i < 0) = 2pe(p− pe)

It follows that the probability that Expert j is incompatible
with Expert j′ is equal to

ρ = 1− B2pe(p−pe),n(σ)

As the values input by honest experts are independent, the
probability that Expert j is incompatible with more than τ
other honest experts is equal to 1 − Bρ,T−ϑ−1(τ) implying
that

ρσ,τD,H ≤ T · (1− Bρ,T−ϑ−1(τ))

By injecting these upper-bounds in the inequality of
Proposition 1, we get an upper-bound UBp,pe,σ,τ of
erAggregateσ,τ (Dp,pe

). Evaluating UBp,pe,σ,τ requires comput-
ing a “min” over a finite set. To achieve this, we propose a
brute force computation by considering all the possible cases.
For the parameters used in our experiments, no optimizations
are needed8. Let us recall that σ, τ are parameters of Ag-
gregate and thus they can be arbitrarily chosen. Let σ∗, τ∗

minimizing UBp,pe,σ,τ , i.e.

(σ∗, τ∗)
def
= argmin

0≤σ≤n;0≤τ≤T−2ϑ

UBp,pe,σ,τ

Recovering σ∗, τ∗ requires computing a “min” over a finite
set. To achieve this, we propose a brute force computation by
considering all the possible cases.

Results. Computations of UBp,0,0,0 are proposed (see Fig 3)
for several values of n, T, ϑ, p. For instance when n = 1000,
T = 1000, p = 0.1, pe = 0 and ϑ = T/4 = 250, the error
rate erAggregate0,0(Dp,0) is less than 2% on average against any
adversary A. These results could be compared to the naive
approach consisting of a simple majority vote. In (almost) all
our experiments, ϑ ≥ p(T−ϑ) ensuring that this naive strategy
leads to an error rate larger than 50% in the worst case, i.e.
each corrupted experts sends n incorrect values. Indeed, in this
case, the number of honest inputs is, in mean, smaller than the
number of corrupted inputs making the majority vote fail.

Moreover, for several pairs (n, T ), we fixed ϑ = T/5 and
we searched9 p ensuring that UBp,0,0,0 ≈ 1% (see Fig. 4).
We observe that p decreases with both n and T . For instance,

8In fact, ΓD,H(u, v) converges quickly to 0 when u, v grow. Thus, only
“small” values of u and v need considered.

9With a dichotomic search.



TABLE I
COMPUTATION OF UBp,0,0,0 FOR SEVERAL VALUES OF n, T, ϑ, p.

(n, T, p) \ ϑ/T 0.10 0.20 0.25 0.30 0.35 0.40
(102, 103, 0.2) 0.0% 1.3% 2.1% 4.8% 9.0% 18.8%
(103, 103, 0.1) 0.2% 1.0% 1.8% 3.5% 6.2% 10.0%
(103, 102, 0.1) 0.8% 3.8% 6.3% 9.7% 15.2% 23.0%
(104, 102, 0.1) 0.1% 0.4% 0.7% 1.2% 2.0% 3.4%
(104, 50, 0.1) 0.9% 1.7% 2.1% 3.0% 3.9% 5.8%
(104, 50, 0.2) 0.0% 0.1% 0.1% 0.3% 0.4% 0.9%

TABLE II
GIVEN n, T, ϑ = T/5, WE GIVE A VALUE OF p ENSURING THAT

UBp,0,0,0 = 1± 0.1%. THIS VALUE WAS OBTAINED BY A DICHOTOMIC
SEARCH.

n \ T 200 400 800 1600 3200 6400
200 27.3% 24.1% 24.1% 24.1% 24.1% 24.1%
400 23.0% 17.5% 14.2% 13.4% 13.3% 13.3%
800 18.6% 12.6% 12.0% 10.9% 9.8% 9.3%

1600 14.2% 9.8% 8.5% 7.7% 7.7% 7.1%
3200 12.3% 7.7% 6.3% 5.5% 5.5% 5.2%
6400 9.8% 6.0% 4.9% 4.4% 3.8% 3.8%

12800 6.0% 4.4% 3.8% 3.2% 3.0% 2.8%

TABLE III
FIX n = 2000 AND T = 500, WE COMPUTED UBp,pe,σ∗,τ∗ FOR

DIFFERENT VALUES OF ϑ, p, pe . THE OPTIMAL PARAMETERS τ∗, σ∗ ARE
GIVEN IN SUBSCRIPT.

(p, pe) \ ϑ/T 0.10 0.20 0.30 0.40
(5%, 0.15%) 2.3%100,0 7.0%90,0 18.2%80,0 51.8%50,0

(10%, 0.30%) 1.2%250,0 3.5%80,1 7.9%70,1 19.2%60,1

(15%, 0.45%) 0.8%220,1 2.4%200,1 5.3%90,2 12.3%70,2

(20%, 0.60%) 0.7%240,2 1.9%60,1 4.1%110,3 8.6%200,4

(p, pe) \ ϑ/T 0.10 0.20 0.30 0.40
(5%, 0.3%) 3.3%160,0 9.9%140,0 25.2%120,0 65.7%30,1

(10%, 0.6%) 1.9%190,1 5.3%170,1 12.2%70,2 26.7%60,2

(15%, 0.9%) 1.6%260,2 4.0%150,3 8.4%130,3 17.2%60,4

(20%, 1.2%) 1.4%270,4 3.3%170,5 6.6%100,6 13.3%50,7

(p, pe) \ ϑ/T 0.10 0.20 0.30 0.40
(5%, 0.45%) 4.4%200,0 12.9%180,0 32.7%50,1 72%40,1

(10%, 0.9%) 2.7%270,1 7.1%40,1 15.2%120,1 32.7%50,3

(15%, 1.35%) 2.1%190,4 5.4%170,4 11.1%90,5 23.0%80,5

(20%, 1.8%) 1.9%340,5 4.6%180,7 9.1%110,8 17.8%70,9

it suffices that each honest expert knows each component of
b with a probability larger than 7.7% to allow the authority
to recover b with an error smaller (in mean) than 1% when
the number of experts is larger than 1600 and the size of b is
larger than 1600.

Computations of UBp,pe,σ∗,τ∗ for different values of ϑ, p, pe
are presented in Fig 5. As expected, we see that σ∗, τ∗ grow
with pe and ϑ.

VII. CONCLUSION AND FUTURE WORK

Relevant upper-bounds over erAggregate(D) were proposed
in this paper. We proposed a numerical application deal-
ing with simple families Dp,pe

of probability distributions
ensuring that each component of b is (maybe imperfectly)
known by each (honest) expert with a probability larger than

p. These families could make sense for some applications.
Other families D could be considered. However, it could be
difficult to give an analytic upper-bound of erAggregate(D).
Nevertheless, approximations can be obtained by sampling
worst-case probability distributions D ∈ D.

Moreover, we are convinced that Aggregate and its analysis
(under the specific conditions of this paper) can be improved.
Furthermore, the target tuple b is binary but natural extensions
to numerical tuples b ∈ Rn could be provided by applying
threshold ε, i.e. cji and cj′i are said to be equal if |cji−cj′i| <
ε. The new parameter ε should be carefully chosen in order
that most of honest experts input the same values cji within ε.
In [4], Dubois et al. propose that each expert sends an interval
Ii containing the true value bi. Investigations should be done
to adapt our work to this setting.
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[1] R. Cramer, I. Damgård, and J. B. Nielsen. Multiparty computation from
threshold homomorphic encryption. In EUROCRYPT, pages 280–299,
2001.

[2] Xin Luna Dong, Laure Berti-Equille, and Divesh Srivastava. Integrating
conflicting data: The role of source dependence. Proc. VLDB Endow.,
2(1):550–561, August 2009.

[3] Xin Luna Dong and Felix Naumann. Data fusion - resolving data
conflicts for integration. PVLDB, 2(2):1654–1655, 2009.

[4] Didier Dubois and Henri Prade. Possibility theory and data fusion in
poorly informed environments. Control Engineering Practice, 2(5):811–
823, 1994.

[5] Hugh Durrant-Whyte and Thomas C Henderson. Multisensor data
fusion. Springer handbook of robotics, pages 585–610, 2008.

[6] Terrence L. Fine. Review: Glenn shafer, a mathematical theory of
evidence. Bulletin of the American Mathematical Society, 83(4):667–
672, 07 1977.

[7] Bahador Khaleghi, Alaa Khamis, Fakhreddine O. Karray, and Saiedeh N.
Razavi. Multisensor data fusion: A review of the state-of-the-art. Inf.
Fusion, 14(1):28–44, January 2013.

[8] CV Negoita, LA Zadeh, and HJ Zimmermann. Fuzzy sets as a basis for
a theory of possibility. Fuzzy sets and systems, 1:3–28, 1978.

[9] O.Goldreich, S.Michali, and A.Wigderson. How to play any mental
game or a completeness theorem for protocols with honest majority. In
STOC, pages 218–229, 1987.

[10] Zdzislaw Pawlak. Rough Sets: Theoretical Aspects of Reasoning About
Data. Kluwer Academic Publishers, Norwell, MA, USA, 1992.

[11] F.K.J. Sheridan. A survey of techniques for inference under uncertainty.
Artificial Intelligence Review, 5(1-2):89–119, 1991.

[12] Lotfi A Zadeh. Fuzzy sets. Information and control, 8(3):338–353,
1965.



APPENDIX A
FORMAL DEFINITION OF QUANTITIES CONSIDERED IN

SECTION 5

• Let u, v be positive integers s.t. u ≤ n and v ≤ T . Let
Iv = {i ∈ N|bi

∑
j∈H cji < v}. ΓD,H(u, v) denotes the

probability under D that the cardinality of Iv is strictly
larger than u, i.e.

ΓD,H(u, v) = Pr(|Iv| > u)

• Let I(j, j′) := {i ∈ N — c∗jic
∗
j′i < 0} and let

αD,H(j) = {j′ ∈ H||I(j, j′)| > σ}.

ρσ,τD,H = Pr(∃j ∈ H, |αD,H(j)| > τ)

• Ωσ,τ
A,D =

∑
j∈C wj |{i ∈ N|c∗jibi < 0}|

APPENDIX B
PROOF OF PROPOSITION 1

Proof. According to notation of Section 3, o denotes the ran-
dom tuple output by Aggregateσ,τ . For the sake of simplicity,

er
Aggregateσ,τ

A (D) will be denoted by er.
The event G refers to the fact that no honest expert is

eliminated10, i.e. wj = 1 for any j ∈ H. By definition,
Pr(G) ≤ ρσ,τD .

Let u, v be arbitrary positive integers s.t. u ≤ n and v ≤ T .
Let Iv = {i ∈ N|bi

∑
j∈H cji ≤ v}. The event |Iv| ≥ u will

be denoted by F . By definition,

Pr(F ) = ΓD,H(u, v) ≤ ΓD(u, v)

In the following of the proof, er′ denotes the expectation of
the error of o assuming that G,F are realized, i.e.,

er′ =
1

2n
E(∥b− o∥1| G,F )

Clearly, er ≤ Pr(G) + Pr(F,G) + Pr(F,G)er′ implying that

er ≤ ρσ,τD + ΓD(u, v) + Pr(F,G)er′

Let us focus on er′ by assuming that the events G,F are
realized. According to the definition of F , the cardinality of
Iv is smaller than u implying that

|{i ∈ Iv|oi ̸= bi}| ≤ u

By definition, for each i ∈ Iv , bi
∑

j∈H cji ≥ v. It follows
that

|{i ∈ Iv|oi ̸= bi}| ≤
Ωσ,τ

A,D

v

Consequently, the error of o is smaller than 1
n (u +

Ωσ,τ
A,D

v ),
implying that

er′ ≤ u

n
+

1

nv
E(Ωσ,τ

A,D|G,F )

10The fact that G is realized means that all the values input by the honest
experts are considered by Aggregateσ,τ .

As Ωσ,τ
A,D is a positive random variable,

E(Ωσ,τ
A,D|G,F ) ≤

E(Ωσ,τ
A,D)

Pr(G,F )
≤

Ωσ,τ
D

Pr(G,F )

It follows that

er ≤ ρσ,τD + ΓD(u, v) + Pr(G,F )

(
u

n
+

Ωσ,τ
D

nvPr(G,F )

)
≤ ρσ,τD + ΓD(u, v) +

u

n
+

Ωσ,τ
D
nv

As u, v were arbitrarily chosen, er ≤ ρσ,τD +

min
0≤u≤n;0≤v≤T

(
ΓD(u, v) +

u
n +

Ωσ,τ
D
nv

)
. This concludes the

proof.


