
HEMH2: An Improved Hybrid Evolutionary
Metaheuristics for 0/1 Multiobjective Knapsack

Problems

Ahmed Kafafy, Ahmed Bounekkar, and Stéphane Bonnevay

Laboratoire ERIC - Université Claude Bernard Lyon 1,
Ecole Polytechnique Universitaire, 15 Boulevard Latarjet,

69622 Villeurbanne cedex, France
ahmedkafafy80@gmail.com,{bounekkar,stephane.bonnevay}@univ-lyon1.fr

Abstract. Hybrid evolutionary metaheuristics tend to enhance search
capabilities, by improving intensification and diversification, through in-
corporating different cooperative metaheuristics. In this paper, an im-
proved version of the Hybrid Evolutionary Metaheuristics (HEMH) [7] is
presented. Unlike HEMH, HEMH2 uses simple inverse greedy algorithm
to construct its initial population. Then, the search efforts are directed
to improve these solutions by exploring the search space using binary dif-
ferential evolution. After a certain number of evaluations, path relinking
is applied on high quality solutions to investigate the non-visited regions
in the search space. During evaluations, the dynamic-sized neighborhood
structure is adopted to shrink/extend the mating/updating range. Fur-
thermore, the Pareto adaptive epsilon concept is used to control the
archiving process with preserving the extreme solutions. HEMH2 is veri-
fied against its predecessor HEMH and the MOEA/D [13], using a set of
MOKSP instances from the literature. The experimental results indicate
that the HEMH2 is highly competitive and can achieve better results.

Keywords: Hybrid Metaheuristics, Adaptive Binary Differential Evo-
lution, Path Relinking, 0/1 Multiobjective Knapsack Problems.

1 Introduction

Multiobjective combinatorial optimization problems (MOCOP) are often charac-
terized by their large size and the presence of multiple and conflicting objectives.
The basic task in multiobjective optimization is to identify the set of Pareto op-
timal solutions or even a good approximation to Pareto front (PF). Despite the
progress in solving MOCOP exactly, the large size often means that metaheuris-
tics are required for their solution in a reasonable time.
Solving multiobjective optimization problems (MOOP) using evolutionary algo-
rithms (MOEAs) has been investigated by many authors [3, 13, 15, 16]. Pareto
dominance based MOEAs such as SPEA [15], NSGAII [3] and SPEA2 [16] have
been dominantly used in the recent studies. Based on many traditional math-
ematical programming methods for approximating PF [10], the approximation
of PF can be decomposed into a set of single objective subproblems. This idea
is adopted in MOGLS [5] and MOEA/D [13]. Many of the search algorithms

attempt to obtain the best from a set of different metaheuristics that perform to-
gether, complement each other and augment their exploration capabilities. They
are commonly called hybrid metaheuristics. Search algorithms must balance be-
tween sometimes-conflicting two goals, intensification and diversification [1]. The
design of hybrid metaheuristics can give the ability to control this balance [9].
This paper tends to improve the hybrid evolutionary metaheuristics (HEMH)
proposed in [7] through developing a new version called HEMH2 with two vari-
ants HEMHde and HEMHpr. The motivations of this work are to overcome the
limitations from which the performance of HEMH suffers. In HEMH2, an adap-
tive binary differential evolution is used as a reproduction operator rather than
classical crossover. Also, path relinking is applied on high quality solutions gener-
ated after a certain number of evaluations. Moreover, all improvement proposals
and their effects on the search process will be discussed in details. The rest of
the paper is organized as follows: section 2 presents some of the basic concepts
and definitions. HEMH framework is reviewed in section 3. Section 4 explains
the adaptive binary differential evolution. Path relinking strategy is discussed
in section 5. The proposed HEMH2 and its variants are presented in section 6.
Additionally, the experimental design and results are involved in sections 7 and 8
respectively. Finally, the conclusions and future works are involved in section 9.

2 Basic Concepts and Definitions
Without loss of generality, the MOOP can be formulated as:

MaximizeF (x) = (f1(x), f2(x), · · · , fm(x))
Subject to : x ∈ Ω (1)

where F (x) is the m-dimensional objective vector, fi(x) is the ith objective to
be maximized, x = (x1, · · · , xn)T is the n-dimensional decision vector, Ω is the
feasible decision space. In the case x ∈ Z, the MOOP is called MOCOP.
Definition 1: A solution x dominates y (noted as: x < y) if: fi(x) ≥ fi(y)∀i ∈
{1, · · · ,m} and fi(x) > fi(y) for at least one i.
Definition 2: A solution x is said to ε-dominate a solution y for some ε > 0 (
noted as: x <ε y) if and only if: fi(x) ≥ (1 + ε)fi(y), ∀i ∈ {1, · · · ,m}.
Definition 3: A solution x is called efficient (Pareto-optimal) if: @ y ∈ Ω : y < x
Definition 4: The Pareto optimal set (P ∗) is the set of all efficient solutions:

P ∗ = {x ∈ Ω |@ y ∈ Ω , y < x}
Definition 5: The Pareto front (PF) is the image of P ∗ in the objective space:

PF = {F (x) = (f1(x), · · · , fm(x)) : x ∈ P ∗}
Definition 6: Given a reference point r∗ and a weight vector Λ = [λ1, · · · , λm]
such that λi ≥ 0,∀i ∈ {1, · · · ,m} , the weighted sum (Fws) and the weighted
Tchebycheff (FTc) scalarizing functions corresponding to (1) can be defined as:

Fws(x,Λ) =
∑m
i=1 λifi(x) (2)

FTc(x, r∗, Λ) = Max1≤i≤m {λi(r∗i − fi(x))} (3)
Definition 7: Given a set of m knapsacks and a set of n items, the 0/1 Multi-
objective Knapsack Problem (MOKSP) can be written as:

Max : fi(x) =
∑n
j=1 cijxj , ∀i ∈ {1, · · · ,m}

s.t. :
∑n
j=1 wijxj ≤Wi, ∀i ∈ {1, · · · ,m}
x = (x1, · · · , xn)T ∈ {0, 1}n

(4)

where, cij ≥ 0 is the profit of the jth item in the ith knapsack,wij ≥ 0 is the
weight of the jth item in the ith knapsack, and Wi is the capacity of the ith

knapsack. When xj=1, it means that the jth item is put in all knapsacks.
The MOKSP is NP-hard and can model a variety of applications.

3 HEMH, an overview
In HEMH, a combination of different cooperative metaheuristics is provided
to handle 0/1 MOKSP. The MOEA/D framework [13] is adopted to carry out
the combination. The weighted sum defined in (2) is considered to decompose
the MOKSP in (4) into a set of N single objective subproblems, based on a
set of N evenly distributed weight vectors {Λ1, · · · , ΛN}. HEMH attempts to
simultaneously optimize these subproblems. The HEMH framework consists of
the following:
– A population P of N individuals, P = {x1, · · · , xN}, where xi represents

the current solution of the ith subproblem.
– A set of N evenly distributed weight vectors {Λ1, · · · , ΛN}, correspond to

the N subproblems. Each Λ = [λ1, · · · , λm] has m components correspond to
m-objectives, such that:

∑m
i=1 λi = 1, ∀λi ∈ {0/H, · · · , H/H}, and H ∈ Z+.

– A neighborhood Bi for each subproblem i ∈ {1, · · · , N}, which includes all
subproblems with the T closest weight vectors {Λi1, · · · , ΛiT } to Λi.

– An archive to collect all efficient solutions explored over the search process.
The HEMH consists of two basic phases, initialization and main loop. In the
initialization phase, an initial population of high quality solutions is constructed
by applying DMGRASP on each subproblem. Then, the search efforts are con-
centrated on the promising regions to explore new efficient solutions. In the main
loop phase, for each subproblem i, the mating/updating range Mi is chosen to
be either the neighborhood Bi or the whole population P . Then, two individuals
are randomly selected from Mi for reproduction. Single point crossover and mu-
tation or greedy randomize path relinking is applied on the selected individuals
to generate a new offspring, which is used to update Mi and the archive. This
process is repeated until a certain number of evaluations. We refer to [7] for more
details. The limitations that affect the HEMH performance are briefed as:
– Despite using DMGRASP achieves high quality initial solutions, it consumes

more time and evaluations especially with large populations. Thus, the sec-
ond phase will not have enough chance to improve the search process.

– Collecting all efficient solutions causes waste in time and storage space es-
pecially in many objective cases. So, archiving process should be controlled.

– For each subproblem i, the mating/updating range Mi is either the fixed
(static) size neighborhood Bi or the whole population P . This may cause
less execution of path relinking, or consume more time.

– Reproduction is made only by single point crossover and mutation or greedy
randomized path relinking.

– Path relinking adopts single bit flipping per move and also uses local search
to improve the generated solution. This causes more time consumption.

From the above, this paper presents an improved version of HEMH called HEMH2
with two variants HEMHde and HEMHpr, which have the ability to overcome
those limitations and can achieve an enhanced performance.

4 Adaptive Binary Differential Evolution

Differential evolution (DE) is a simple and efficient evolutionary algorithm to
solve optimization problems mainly in continuous search domains [2, 11]. DE’s
success relies on the differential mutation, that employs difference vectors built
with pairs of candidate solutions in the search domain. Each difference vector
is scaled and added to another candidate solution, producing the so-called mu-
tant vector. Then, DE recombines the mutant vector with the parent solution
to generate a new offspring. The offspring replaces the parent only if it has an
equal or better fitness. DE has some control parameters as the mutation factor
F , that used to scale the difference vectors, and the crossover rate CR. In this
paper, an adaptive binary DE strategy is introduced to improve the exploration
capabilities of HEMH instead of classical crossover and mutation. This strategy
is described in Alg. 1. Given a population P of N individuals, where each indi-
vidual represented by a n-component 0/1 vector. The main idea is to select at
random three distinct individuals xa, xb and xc from P for each target individ-
ual xi ∈ P , ∀i ∈ {1, · · · , N}. The mutant individual vi is produced by applying
binary differential mutation on the selected individuals according to (5). First,
the difference vector is calculated by applying logical XOR on the two parent
differential individuals xb and xc. Then, vi is determined by applying logical
OR on the parent based individual xa and the difference vector previously ob-
tained. Finally, the new generated offspring ui is produced by applying crossover
according to (6).

vi = xa + (xb ⊕ xc) (5)

uij =

{
vij if rnd(j) ≤ CR, or j ∈ e, ∀j = 1, · · · , n.
xij otherwise, ∀j = 1, · · · , n.

(6)

where rnd(j) ∈ [0, 1] is a random number generated for the jth component, n is
the individual length, e is a random sequence selected from the range {1, · · · , n}
to insure that at least one component of ui is contributed by vi and CR ∈ [0, 1]
denotes crossover rate. Here, CR is adapted periodically to avoid the premature
convergence based on (7) proposed in [14].

CR = CR0 · e(−a.(G/Gmax)) (7)
where G and Gmax are the current and the maximum evolutionary generations,
CR0 is the initial crossover rate. a is a constant.

Algorithm 1 :ABDEvol(x, xa, xb, xc, CR0, a)

Inputs:
x: Current solution

xa, xb, xc: Parents individuals
CR0 ∈ [0, 1]: Crossover rate
a: Plus constant

1: Begin:

2: CR← CR0 · e(−a.(G/Gmax)); . Adapt CR

3: for all j ∈ {1, · · · , n} do: . For all items

4: vj = xaj + (xbj ⊕ x
c
j); . Binary Diff. Mutation

5: uj ←
{
vj if rnd(j) ≤ CR ∨ j ∈ e,
xj otherwise.

6: end for
7: return u;
8: End

Algorithm 2 :InverseGreedy(x, Λ)

Inputs:
x: Initial Solution
Λ = [λ1, · · · , λm]: Search direction

1: Begin: CL← ∅;
2: for all j ∈ {1, · · · , n} do: xj ← 1; . Put all

3: while ∃j|j /∈ CL ∧Minnj=1

(∑m
i=1 λicij∑m
i=1

wij

)
do:

4: CL← Append(j);
5: end while
6: while x violates any constraint in (4) do:
7: j ←ExtractTheFirst(CL);
8: x←RemoveItem(x, j);
9: end while
10: return x;
11: End

Algorithm 3 :PathRelinking(xs, xt, Λ)

Inputs:

xs, xt: Starting and Guiding solutions
Λ = [λ1, · · · , λm]: weight vector of the current subproblem

1: Begin:
2: x∗ ←GetTheBestOf(xs, xt, Λ);
3: if x∗ 6= xs then: Swap(xs, xt);
4: z∗ ← Fws(x∗, Λ);CL&CLcmp ← ∅;

5: while ∃j|j /∈ CL ∧ xsj 6= xtj ∧ x
s
j = 0 ∧

Maxnj=1

(∑m
i=1 λicij/

∑m
i=1 wij

)
do:

6: CL← Append(j);
7: end while
8: while ∃j|j /∈ CLcmp ∧ xsj 6= xtj ∧ x

s
j = 1 ∧

Minnj=1

(∑m
i=1 λicij/

∑m
i=1 wij

)
do:

9: CLcmp ← Append(j);
10: end while
11: x← xs;
12: ∆(x, xt)← |{j ∈ {1, · · · , n} : xj 6= xtj}|;
13: while ∆(x, xt) ≥ 2 do: . Relinking loop

14: if |CL| 6= 0 ∧ |CLcmp| 6= 0 then:

15: `1 ← ExtractTheFirst(CL)

16: `2 ← ExtractTheFirst(CLcmp)
17: else if |CL| > 1 then:

18: `1 ← ExtractTheFirst(CL)

19: `2 ← ExtractTheFirst(CL)
20: else:
21: `1 ← ExtractTheFirst(CLcmp)

22: `2 ← ExtractTheFirst(CLcmp)
23: end if
24: x← FilppBits(x, `1, `2);
25: y ←Repair(x, Λ)
26: if (Fws(y, Λ) > z∗) then:
27: x∗ ← y; z∗ ← Fws(y, Λ);
28: end if
29: ∆(x, xt)← |{j ∈ {1, · · · , n} : xj 6= xtj}|;
30: end while
31: return x∗;
32: End

Algorithm 4 :HEMH2(N, T, t, ε, γ, CR0, a)

Inputs:
N: Population size or no. of subproblems
T,: Min. neighborhood size
t: Max. replaced solutions
ε: Min. hamming distance
γ: Controls Path-relinking execution
CR0 ∈ [0, 1], a: Crossover rate, Plus constant

1: Begin:
2: Wv ← {Λ1, · · · , ΛN}; . Set of N weight vectors

3: for i← 1 to N do: . Construct Neighborhoods

4: Bi ← [i1, · · · , iN]; . where Λi1, · · · , ΛiN are

5: end for . increasingly sorted by ED to Λi

6: Arch← ∅; . Empty archive

7: Evl← 0;
8: for i← 1 to N do: . Initialization phase

9: xi ←InverseGreedy(xi, Λi);

10: P ←AddSubProblem(xi, Λi);

11: Extremes←Update(xi);Update(Evl);
12: end for
13: while (Evl < Mevls) do: . Main Loop

14: for i← 1 to N do: . for each subproblem i

15: xa, xb, xc ← Selection(Bi, i);
16: . Where: xi 6= xa 6= xb 6= xc

17: xj , xk ← RandSelection(xa, xb, xc);

18: D ← ∆(xj , xk); . Hamming distance

19: E ← γ ×Mevls; . min. eval for PR

20: if (D ≥ ε ∧ Eval ≥ E) then:

21: y ←PathRelinking(xj ,xk,Λi);
22: else:
23: u←ABDEvol(xi, xa, xb, xc, CR0, a);

24: y ←Repair(u,Λi)
25: end if
26: P ←UpdateSolutions(y, t, Bi);
27: Arch← UpdateArchivepaε(y);
28: Extremes←Update(y);Update(Evl);
29: end for
30: end while
31: Arch← AddExtremes(Extremes);
32: return Arch;
33: End

5 Path Relinking
Path relinking generates new solutions by exploring trajectories that connect
high quality solutions. Starting from the starting solution xs, path relinking
builds a path in the neighborhood space that leads toward the guiding solution
xt. The relinking procedure has a better chance to investigate in more details the
neighborhood of the most promising solutions if relinking starts from the best of
xs and xt [12]. In this paper, a path relinking with two bits per move [8] is used
as an intensification strategy, integrated with the adaptive binary DE. It will be
invoked on the higher generations to guarantee applying the relinking process
on high quality solutions. Alg. 3 describes the proposed procedure. Firstly, the
best of xs and xt is chosen to start with. Then, the best fitness z∗ and the best
solution x∗ are initialized. The candidate lists CL and CLcmp are constructed.
The procedure builds the path that connects xs with xt gradually by creating
intermediate points through flipping two bits/move. Initially, the intermediate x
is set to xs. Then, the Hamming distance ∆(x, xt) is calculated. The next move
is carried out by flipping two of unmatched `1, `2 to be matched. If both CL and
CLcmp are not empty, then the first elements of CL and CLcmp are extracted

to be `1 and `2 respectively. Else, if one of them is empty, then, the first and
the second elements of the non-empty one will be extracted to be `1 and `2

respectively. The new intermediate x is obtained by flipping the two items x`1
and x`2 . If x is infeasible, then x is repaired to get y that updates both x∗ and
z∗. This process is repeated until there is only two unmatched items between
the current x and the guiding xt.

6 The Proposed HEMH2
Motivated by the results achieved in [8], some proposals are adopted to im-
prove HEMH performance and to overcome the limitations discussed. The main
differences between HEMH2 and its predecessor are briefly presented as follows:

– Initial population is created using the simple inverse greedy algorithm (Alg.2)
for each search direction rather than DMGRASP. The quality of the obtained
initial solutions will be affected, but this will give a better chance to the
second phase to improve and enhance the search process.

– Instead of collecting all efficient solutions, the Pareto-adaptive epsilon domi-
nance (paε-dominance) [4] is adopted to control the quality and the quantity
of the efficient solutions collected in the archive.

– Dynamic neighborhood size that permit to shrink/extend the neighborhood
for each subproblem is considered. Consequently, the parent solutions of a
subproblem are always selected from its neighborhood. This can overcome
the limitations of the binary differential mutation.

– The adaptive binary DE is used as a reproduction operator instead of crossover
and mutation beside the path relinking.

– Path relinking is applied only after a certain number of evaluations as a post
optimization strategy. This action guarantees the existence of high quality
solutions. Moreover, path relinking flips two bits at each relinking step.

– In HEMH2, local search is avoided either after path relinking or after inverse
greedy construction as proposed in HEMH.

Now, the reasons behind the above proposals are explained. Firstly, there is no
doubt that generating the initial population using DMGRASP can achieve bet-
ter quality solutions, but it forces us to use small populations. In some cases,
local search highly consumes more time and evaluations to investigate a small
specified region in the search space. Consequently, the main loop phase has a
small chance to improve the search process. To overcome this limitation, the
inverse greedy construction is proposed. From the empirical results, the inverse
greedy obtains solutions as close as possible to the boundary regions than simple
greedy construction. Secondly, using paε-dominance will control the size of the
archive, especially in many objective cases. Consequently, saving more resources
of time and storage space with persevering the quality of the collected solu-
tions. Thirdly, the poor performance of the binary differential mutation occurs
when treating differential individuals with large Hamming distance. Selecting
parents from the whole population can encourage this scenario. In HEMH2, par-
ents of each subproblem are always selected from its neighborhood which has
a dynamic size, this guarantees obtaining individuals with suitable Hamming

distances. Fourthly, the adaptive binary DE empirically has the ability to ex-
plore the search space better than classical crossover and mutation. Thus, the
performance of HEMH will be improved by adopting adaptive binary DE for
reproduction rather than crossover. Finally, the proposed path relinking applies
two bits flipping/move, that minimizes the whole relinking time. Also, avoiding
local search saves both time and evaluations.
In Alg. 4, the HEMH2 procedure is introduced. Firstly, a set of N evenly dis-
tributed weight vectors is created. Then, the neighborhood structure is con-
structed for each subproblem i by assigning all subproblems sorted increasingly
by the Euclidean distance between their weight vectors and the current weight
vector Λi. After that, an initial population P is created by applying the inverse
greedy (Alg.2) for each search direction. Now, the main loop is executed until
achieving the maximum evaluations Mevls (line 13). For each subproblem i,
Selection routine is invoked to determine the current size of the neighborhood
Bi such that: |Bi| = T + r, where T and r represent the number of different
and repeated solutions in Bi respectively. This means, the Selection routine
extends Bi size to guarantee the existence of at least T different solutions and
randomly selects three of them xa, xb and xc for reproduction. Two of the three
selected parents xj , xk are chosen randomly. Then, path relinking is used only if
the Hamming distance ∆(xj , xk) is greater than a certain value ε and the num-
ber of evaluations Eval exceeds a certain ratio γ of the maximum evaluations
Mevls allowed to guarantee applying path relinking on high quality solutions.
Else, the adaptive binary DE is applied to generate a new offspring y. The new
generated offspring y is evaluated and used to update the neighborhood (Bi)
according to the parameter t, which controls the number of replaced solutions.
The Archive is also updated by y according to paε-dominance [4]. Finally, the
Extreme solutions are added to the archive which is returned as an output.
In order to study the effects of both adaptive binary DE and path relinking oper-
ators distinctly, two additional algorithms variants called HEMHde and HEMHpr

are considered. Both of them have the same procedure as HEMH2 explained in
Alg. 4 except that HEMHde only adopts adaptive binary DE for reproduction.
Whereas, HEMHpr replaces the adaptive binary DE in HEMH2 procedure by
crossover and mutation.

7 Experimental Design

In this paper, both MOEA/D and HEMH are involved to verify our proposals.
The comparative study for different algorithms is carried out on a set of test
instances from the literature [15] listed in Table 1. All experiments are performed
on a PC with Intel Core i5-2400 CPU, 3.10 GHz and 4.0 GB of RAM.

7.1 Parameter settings

Here, the different parameters used for each algorithm are discussed. For MOEA/D
and our proposals HEMHde, HEMHpr and HEMH2, the parameter H which con-
trols the population size N by the relation (N = CH+m−1

m−1) is determined for
each instance in Table 1 according to the complexity. The initial population used

in MOEA/D is randomly generated such that each member x = (x1, · · · , xn)T ∈
{0, 1}T , where xi = 1 with probability equal to 0.5. For HEMH, the parame-
ter H́ that controls the population size Ń is also considered. HEMH uses the
parameters α=0.1 and β=0.5. The maximum number of evaluations (Mevls) is
used as a stopping criterion for each algorithm. For fair comparison, the same
archiving strategy based on paε-dominance [4] are applied to each algorithm to
get the final approximation set. The paε-dominance uses the archive size (As)
listed in Table 1. HEMH applies the path relinking proposed here. Single-point
crossover and standard mutation are considered. Mutation was performed for
each item independently with probability (1/n). The other control parameters
are listed in Table 2. Finally, the statistical analysis is applied on 30 independent
runs for each instance.

Table 1: Set of knapsack instances
Inst. m n N(H) Ń(H́) As Mevls

KS252 2 250 150(149) 75(74) 150 75000
KS502 2 500 200(199) 100(99) 200 100000
KS752 2 750 250(249) 125(124) 250 125000
KS253 3 250 300(23) 153(16) 200 100000
KS503 3 500 300(23) 153(16) 250 125000
KS753 3 750 300(23) 153(16) 300 150000
KS254 4 250 364(11) 165(8) 250 125000
KS504 4 500 364(11) 165(8) 300 150000
KS754 4 750 364(11) 165(8) 350 175000

Table 2: Set of common parameters

Parameters
HEMH

- -de -pr -2
Neighborhood size: T 10 10 10 10
Max. replaced sols: t 2 2 2 2
Parents selection: δ 0.9 - - -
Min. support: σ {1} - - -
Ratio controls PR: γ - - 0.8 0.8
Min. Ham. Distance: ε 10 - 10 10
Crossover rate: CR0 - 0.4 - 0.4
Plus constant: a - 2 - 2

7.2 Assessment Metrics

Let A,B ⊂ <m be two approximations to PF , P ∗, r∗ ⊂ <m be a reference set
and a reference point respectively. The following metrics can be expressed as:

1. The Set Coverage (IC) [15] is used to compare two approximation sets.
The function IC maps the ordered pair (A,B) to the interval [0, 1] as:

IC(A,B) = |{u|u ∈ B, ∃v|v ∈ A : v < u}| /|B| (8)
where IC(A,B) is the percentage of the solutions in B that are dominated by
at least one solution from A. IC(B,A) is not necessarily equal to 1-IC(A,B).
If IC(A,B) is large and IC(B,A) is small, then A is better than B in a sense.

2. The Hypervolume (IH) [15] for a set A is defined as:
IH(A) = L(∪u∈A {y|u < y < r∗}) (9)

where L is the Lebesgue measure of a set. IH(A) describes the size of the
objective space that is dominated by A and dominates r∗. We use the refer-
enced indicator such that: IRH(A) = IH(P ∗)− IH(A) and r∗ is the origin.

3. The Generational (IGD) and Inverted Generational Distance (IIGD) of a
set A are defined as:

IGD(A,P ∗) = 1
|A|

∑
u∈A{minv∈P∗d(u, v)}

IIGD(A,P ∗) = 1
|P∗|

∑
u∈P∗{minv∈Ad(u, v)} (10)

where d(u, v) is the Euclidean distance between u,v in <m. The IGD(A,P ∗)
measures the average distance from A to the nearest solution in P ∗ that
reflects the closeness of A to P ∗. In contrast, the IIGD(A,P ∗) measures the
average distance from P ∗ to the nearest solution in A that reflects the spread
of A to a certain degree.

4. R-indicator (IR3
) [6] uses a set of utility functions u, which can be any

scalar function. both of weighted sum and weighted Tchebycheff functions
with a sufficiently large set of evenly distributed normalized weight vectors
(Λ) are used. IR3 can be evaluated as follows:

IR3(A,P ∗) =

∑
λ∈Λ [u∗(λ, P ∗)− u∗(λ,A)] /u∗(λ, P ∗)

|Λ|
(11)

where u∗(λ,A)=maxz∈Au(λ, z), u(λ, z) =−(max1≤j≤mλj |z∗j−zj |+ρ
∑m
j=1 |z∗j−

zj |), ρ is a small positive integer, and for each weight vector λ ∈ Λ, λ =
[λ1, · · · , λm] such that λi ∈ [0, 1] and

∑m
i=1 λi = 1.

Here, the reference set P ∗ for each instance is formed by gathering all efficient
solutions found by all algorithms in all runs. Also, all approximation sets are
normalized in the range [1,2].

IC(*,HEMHde) IC(HEMHde, ∗) IC(*,HEMHpr) IC(HEMHpr,*) IC(*,HEMH2) IC(HEMH2,*)

M
O

E
A

/
D

1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V
al

ue
s

Column Number

MO−Hde

1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V
al

ue
s

Column Number

HEMHde−MOEAD

1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V
al

ue
s

Column Number

MO−Hpr

1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V
al

ue
s

Column Number

Hpr−MO

1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V
al

ue
s

Column Number

MO−H2

1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V
al

ue
s

Column Number

H2−MO

H
E

M
H

1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V
al

ue
s

Column Number

H
H

de

1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V
al

ue
s

Column Number

Hde−H

1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V
al

ue
s

Column Number

H
H

pr

1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V
al

ue
s

Column Number

Hpr
H

1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V
al

ue
s

Column Number

H
H

2

1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V
al

ue
s

Column Number

H2
H

Fig. 1: Results of IC indicator

8 Experimental Results

Here, the different simulation results are shown in details. Firstly, Fig.1 depicts
the results of IC metric. It contains a chart (with scale 0 at the bottom and 1
at the top) for the ordered pairs depicted. Each chart consists of nine box plots
representing the distribution of IC values. Each box plot (from left to right)
represents an instance in Table 1 (from top to down) respectively. It is clear
from the results in Fig.1 that all proposals HEMH2, HEMHde and HEMHpr

outperform the original MOEA/D in all test instances. Whereas, Both HEMH2
and HEMHde outperform HEMH for all test instances. Also, HEMHpr slightly
performs better than HEMH in most test instances.
In Tables 3, 4, 5 and 6, the average values of the indicators IRH , IGD, IIGD
and IR3 are listed respectively. Additionally, Figures 2, 3, 4 and 5 visualize
theses values in the same order. Each of those tables contains the average values
achieved over 30 independent runs for each test instance for each algorithm.
Based on those results, it is clear that the proposals HEMH2, HEMHde and
HEMHpr outperform the original MOEA/D and HEMH. Sience they have the
minimum average values. Moreover, the proposed HEMH2 and HEMHde has the
superiority for all test instances, followed by HEMHpr, which confirm the results
of IC metric.
In some cases, it is observed that HEMHde achieves better results than HEMH2
and HEMHpr, depending on adaptive binary DE, which reflects that the adaptive

binary DE capabilities in exploring the search space is more effective than path
relinking and classical crossover and mutation.

Table 3: Average Referenced Hypervolume (IRH)

Inst.
Algorithms

MOEA/D HEMH HEMHde HEMHpr HEMH2
KP252 4.66E-02 1.02E-02 6.07E-03 9.33E-03 6.08E-03
KP502 5.67E-02 1.55E-02 5.57E-03 1.16E-02 5.56E-03
KP752 4.73E-02 1.64E-02 3.84E-03 7.34E-03 3.94E-03
KP253 2.24E-01 1.21E-01 8.85E-02 1.09E-01 8.77E-02
KP503 2.76E-01 1.16E-01 7.39E-02 9.01E-02 7.39E-02
KP753 2.89E-01 8.85E-02 6.48E-02 7.63E-02 6.39E-02
KP254 8.56E-01 5.55E-01 4.26E-01 4.90E-01 4.27E-01
KP504 1.07E+00 4.53E-01 3.96E-01 4.10E-01 3.84E-01
KP754 1.23E+00 3.93E-01 3.54E-01 3.64E-01 3.41E-01

0.0E+00

5.0E-01

1.0E+00

1.5E+00

Fig. 2: Average Results

Table 4: Average Generational Distance (IGD)

Inst.
Algorithms

MOEA/D HEMH HEMHde HEMHpr HEMH2
KP252 1.50E-03 5.17E-04 3.40E-04 5.74E-04 3.37E-04
KP502 1.53E-03 4.41E-04 1.44E-04 3.12E-04 1.54E-04
KP752 1.33E-03 4.77E-04 7.52E-05 1.91E-04 7.81E-05
KP253 1.98E-03 6.83E-04 3.92E-04 6.82E-04 3.88E-04
KP503 2.25E-03 4.95E-04 2.76E-04 4.25E-04 2.70E-04
KP753 2.16E-03 3.63E-04 2.17E-04 2.77E-04 2.07E-04
KP254 2.52E-03 1.14E-03 6.07E-04 9.13E-04 6.14E-04
KP504 3.45E-03 6.63E-04 4.08E-04 5.14E-04 3.62E-04
KP754 3.79E-03 4.91E-04 2.88E-04 3.56E-04 2.53E-04

0.0E+00

1.0E-03

2.0E-03

3.0E-03

4.0E-03

Fig. 3: Average Results

Table 5: Average Inv. Generational Dist. (IIGD)

Inst.
Algorithms

MOEA/D HEMH HEMHde HEMHpr HEMH2
KP252 9.32E-04 4.83E-04 3.49E-04 4.51E-04 3.50E-04
KP502 7.31E-04 2.72E-04 1.31E-04 2.10E-04 1.32E-04
KP752 5.41E-04 2.43E-04 7.89E-05 1.14E-04 7.95E-05
KP253 6.31E-04 4.48E-04 3.83E-04 4.41E-04 3.84E-04
KP503 5.28E-04 3.33E-04 2.58E-04 2.99E-04 2.60E-04
KP753 4.55E-04 2.46E-04 1.93E-04 2.24E-04 1.95E-04
KP254 6.75E-04 5.69E-04 4.88E-04 5.33E-04 4.91E-04
KP504 5.95E-04 4.04E-04 3.46E-04 3.67E-04 3.46E-04
KP754 5.46E-04 3.28E-04 2.71E-04 2.85E-04 2.70E-04

0.0E+00

2.0E-04

4.0E-04

6.0E-04

8.0E-04

1.0E-03

Fig. 4: Average Results

Table 6: Average R3 indicator (IR3
)

Inst.
Algorithms

MOEA/D HEMH HEMHde HEMHpr HEMH2
KP252 6.05E-03 1.88E-03 1.29E-03 2.32E-03 1.30E-03
KP502 7.30E-03 2.06E-03 6.89E-04 1.62E-03 7.12E-04
KP752 6.88E-03 2.47E-03 5.46E-04 1.21E-03 5.54E-04
KP253 1.11E-02 5.62E-03 4.49E-03 5.24E-03 4.48E-03
KP503 1.34E-02 5.16E-03 3.83E-03 4.60E-03 3.78E-03
KP753 1.42E-02 4.25E-03 3.38E-03 3.92E-03 3.32E-03
KP254 1.61E-02 9.70E-03 7.86E-03 8.84E-03 7.84E-03
KP504 2.02E-02 7.91E-03 7.18E-03 7.40E-03 7.06E-03
KP754 2.39E-02 7.02E-03 6.02E-03 6.26E-03 5.82E-03

0.0E+00

5.0E-03

1.0E-02

1.5E-02

2.0E-02

2.5E-02

Fig. 5: Average Results

9 Conclusion

In this paper, an improved hybrid evolutionary metaheuristics HEMH2 and two
other variants called HEMHde and HEMHpr were proposed to enhance HEMH

performance. The HEMH2 adopts the inverse greedy procedure in its initializa-
tion phase. Both adaptive binary DE and path relinking operators are used. The
HEMHde only uses adaptive binary DE. Whereas, HEMHpr uses crossover and
mutation beside path relinking. The proposals were compared with the original
MOEA/D and HEMH using a set of MOKSP instances from the literature. A set
of quality indicators was also used to assess the performance. The experimental
results indicate the superiority of all proposals over the original MOEA/D and
HEMH based on the assessment indicators used in this study. According to the
results, we can deduce that the adaptive binary DE included in both HEMH2
and HEMHde has better exploration capabilities which overcome the local search
capabilities contained in the original HEMH. Therefore both of HEMH2 and
HEMHde outperform HEMH. In some cases, HEMHde can achieve highly com-
petitive results compared with HEMH2 based on the adaptive binary DE which
can achieve better performance than path relinking. In the future work, the tun-
ing parameters of HEMH2 and its variants will be investigated. Moreover, other
metaheuristics will be studied to improve the performance of HEMH2 and to
handle other types of combinatorial optimization problems.

References

1. Blum, C., Roli, A. Metaheuristics in combinatorial optimization: Overview and conceptual com-
parison, ACM Computing Surveys (CSUR), vol. 35, no.3, pp. 268-308. (2003).

2. Chakraborty, U. K., Ed., Advances in Differential Evolution, ser. Studies in Computational
Intelligence, vol. 143, Berlin: Springer-Verlag,(2008).

3. Deb, K., Pratab, A., Agrawal S. and Meyarivan, T. A fast and elitist multiobjective genetic
algorithm: NSGAII. IEEE Trans. on Evolutionary Computation, vol.6, n. 2, 182-197, (2002).

4. Hernández-Dı́az, A. G., Santana-Quintero, L. V. , Coello, C. A., Luque, J. M., Pareto-adaptive
epsilon-dominance. Evolutionary Computation, vol. 15, no. 4, pp. 493-517, (2007).

5. Jaszkiewicz, A. On the performance of multiple-objective genetic local search on the 0/1 knap-
sack problem - A comparative experiment, IEEE Transactions on Evolutionary Computation,
vol. 6, no. 4, pp. 402-412, (2002).

6. Knowles, J., Corne, D.; On metrics for comparing nondominated sets. In IEEE International
conference in E-Commerce technology, vol. 1 pp. 711-716(2002).

7. Kafafy A., Bounekkar A., Bonnevay S.:A hybrid evolutionary metaheuristics (HEMH) applied
on 0/1 multiobjective knapsack problems.GECCO-2011: 497-504.

8. Kafafy A., Bounekkar A., Bonnevay S.:Hybrid metaheuristics based on MOEA/D for 0/1 mul-
tiobjective knapsack problems: A comparative study, IEEE World Congress on Computational
Intelligence (WCCI2012), Brisbane, June 10-15, pp.3616-3623.

9. Lozanoa, M. and Garca-Martnez, C. Hybrid metaheuristics with evolutionary algorithms spe-
cializing in intensification and diversification: Overview and progress report, Computers and
Operations Research, vol. 37, no. 3, pp. 481-497, (2010).

10. Miettinen, K. Nonlinear Multiobjective Optimization. Boston, MAA: Kluwer, (1999).
11. Price, K. V. and Storn, R. M., and Lampinen, J. A., Differential Evolution: A Practical Ap-

proach to Global Optimization, 1st ed., ser. Natural Computing Series. Springer, (2005).
12. Ribeiro, C., Uchoa, E. and Werneck, R. F. A hybrid GRASP with perturbations for the Steiner

problem in graphs. INFORMS Journal on Computing, vol. 14, n. 3, 228-246 (2002).
13. Zhang, Q. and Li, H. MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decompo-

sition. IEEE Trans. on Evolutionary Computation, vol 11, no. 6, pp 712-731 (2007).
14. Zhang, M., Zhao, S. and Wang, X., Multi-objective evolutionary algorithm based on adaptive

discrete Differential Evolution. IEEE Congress on Evolutionary Computation (CEC 2009), pp.
614-621, (2009).

15. Zitzler, E. and Thiele, L. Multiobjective evolutionary algorithms: A comparative case study and
the strength Pareto evolutionary algorithm. IEEE Transaction on Evolutionary Computation,
vol. 3, pp. 257-271 (1999).

16. Zitzler, E., Laumanns, M. and Thiele, L. SPEA2: Improving the Strength Pareto Evolutionary
Algorithm for Multiobjective Optimization. In Proceeding. of Evolutionary Methods for Design,
Optimization and Control with Application to Industrial Problems (EUROGEN 2001). 95-100,
Athena, Greece, (2001).

