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Abstract 

We propose an approach to forecast the short-term passenger flows of the urban rail network of Paris. Based on dynamic 
Bayesian networks, this approach is designed to perform even in case of incomplete data. The structure of the model is built so 
that the flows are predicted from their spatiotemporal neighbourhood, while the local conditional distributions are described as 
linear Gaussians. A first application carried out on a single station highlights the need to incorporate information on the transport 
service. In the presence of missing data, we perform the structural expectation-maximization (EM) algorithm to learn both the 
structure and the parameters of the model. Short-term forecasting is conducted by inference via the bootstrap filter. Finally, we 
apply the model to an entire Paris metro line, using on-board counting, ticket validation and transport service data. The overall 
forecasting results outperform the historical average and last observation carried forward (LOCF) methods. They also evidence 
the key role of the transport service in the modeling. 
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1. Introduction 

RATP is the main public transport operator in the Paris region. It operates 16 metro lines, sections of 2 RER 
(commuter rail), 8 tramway lines and more than 350 bus lines. Currently, it uses several tools for passenger flow 
modeling, including GLOBAL and IMPACT (Leblond and Garcia Castello, 2016). These models are mainly 
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designed to assess the effects of infrastructure or transport policy changes over the long term. Hence, they do not 
provide short-term predictions and cannot take into account the effects of unanticipated or non-recurring events, 
such as service disruptions, closures of stations or crowd-attracting events. On the other hand, the diversity of 
available data is still largely untapped. Each service often works with a limited number of data sources and only has 
a partial view of the passenger mobility within the network. Moreover, these services have to face with incomplete 
data caused by failures or lack of collection systems. This issue leads to the implementation of imputation methods 
which can be time-consuming. 

From these observations, we propose a model to forecast the short-term passenger flows of the RATP urban rail 
network (metro and RER). The chosen approach is based on dynamic Bayesian networks, which are able to combine 
heterogeneous information sources and make predictions even in case of missing data. The model is designed to 
cater for various applications in transport system management, such as operation planning, passenger flow regulation 
or passenger information. 

In this paper, we first present a brief state of the art of short-term traffic forecasting. After introducing the 
Bayesian network representation, we perform a quick experiment on a single RER station with a complete set of 
ticket validation and counting data. Then we extend the model to the time factor, using dynamic Bayesian networks, 
and incorporate information on the transport service. The learning and inference processes are detailed for 
incomplete data and the application area is extended to an entire metro line. Finally, we conclude the paper and 
discuss the limitations of our approach. 

2. Short-term traffic forecasting: brief state of the art 

There is a vast scientific literature on short-term traffic forecasting. Various methods have been explored, which 
can be classified into naïve, parametric and nonparametric methods (van Hinsbergen et al., 2007). Due to their easy 
implementation, naïve methods have been widely used, including historical average (Smith and Demetsky, 1997) 
and last observation carried forward (LOCF), also called random walk (Williams, 1999). Among the parametric 
methods, ARIMA models have been explored since the late 1970’s (Ahmed and Cook, 1979). A great focus has also 
been given to Kalman filter algorithms (Okutani and Stephanedes, 1984). In recent years, nonparametric methods 
such as nonparametric regression (Clark, 2003) and neural networks (Vlahogianni et al., 2005) have been 
successfully applied. Their ability to better model nonlinear processes has contributed to their popularity. 

In his thesis, Haworth (2014) points out the lack of consensus on the most suitable method. Indeed, each dataset 
has its own characteristics (e.g., spatiotemporal resolution, transport network, type of data), which makes 
comparison to other studies difficult. Moreover, for time-saving purposes, the authors generally compare their 
sophisticated model to basic implementations of other models. 

Missing data is a common problem in real-world situations, including traffic flow forecasting. Surprisingly, few 
authors have dealt with this problem in a real-time setting (Haworth and Cheng, 2012). Hence, most of the short-
term forecasting models are ill-equipped to provide real-time predictions in case of incomplete data. Among the few 
solutions that have been proposed, particular attention has been afforded to Bayesian networks, both on urban road 
networks (Sun et al., 2006) and on highways (Whitlock and Queen, 2000). 

Most research in short-term traffic forecasting has focused on vehicle flows in road networks. By contrast, little 
work has been devoted to passenger flows in public transport networks, the existing models being mainly designed 
for long-term planning (Ma et al., 2014). Some authors have recently begun to tackle this issue, especially through 
neural network approaches (Celikoglu and Cigizoglu, 2007; Wei and Chen, 2012; Li et al., 2013). In these models, 
the flows are generally predicted on the basis of their historical values. The input data may also include other 
features, such as information from adjacent flows (Li et al., 2013), temporal factors (Wei and Chen, 2012; Li et al., 
2013) or weather conditions (Li et al., 2013). Although the service provided by the public transport operator has a 
potential impact on the passenger flows, it seems that this information has not yet been considered. 
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3. Bayesian network representation 

3.1. Bayesian networks 

Introduced by Pearl (1988), Bayesian networks are probabilistic graphical models that describe the conditional 
dependencies (and independencies) between random variables. These dependencies are represented by a directed 
acyclic graph and “quantified” by a joint probability distribution, which decomposes into a product of local 
conditional distributions: 

𝑝𝑝(𝑋𝑋1, … , 𝑋𝑋𝑛𝑛) =∏𝑝𝑝(𝑋𝑋𝑖𝑖|Pa𝑋𝑋𝑖𝑖)
𝑛𝑛

𝑖𝑖=1
 (1) 

where Pa𝑋𝑋𝑖𝑖  is the set of parents of 𝑋𝑋𝑖𝑖 . The flexibility of Bayesian networks allows to combine heterogeneous 
information sources. As an example, an expert can set a part of the model from his own knowledge, whereas the 
other part can be learnt from data (Leray, 2006). Furthermore, the information propagation mechanism makes 
inference (i.e., the forecasting process) possible even in case of incomplete data. This property is particularly useful 
in a real-time setting, where the implementation of an additional imputation process may be detrimental. 

When the variables are continuous, the conditional probability distributions of a Bayesian network can be 
described as linear Gaussians (Shachter and Kenley, 1989):  

𝑝𝑝(𝑋𝑋𝑖𝑖|Pa𝑋𝑋𝑖𝑖) = N(𝛽𝛽𝑖𝑖0 + 𝛽𝛽𝑖𝑖⊤Pa𝑋𝑋𝑖𝑖, 𝜎𝜎𝑖𝑖2) (2) 

where 𝛽𝛽𝑖𝑖0 , 𝛽𝛽𝑖𝑖  and 𝜎𝜎𝑖𝑖  are the parameters to be estimated for each 𝑖𝑖 , usually by maximum likelihood. Note that 
choosing this type of distribution implies assuming that the interactions between the variables are linear. 

3.2. Application to passenger flow forecasting 

According to Sun et al. (2006), there is an intuitive causal relationship between the flows measured at given 
points and those located downstream in the transport network. Thus, by considering that each flow depends on its 
adjacent upstream flows, the structure of the Bayesian network derives directly from the topology of the transport 
network. We first test this principle on passenger flows of the urban rail station Nanterre-Préfecture (RER line A). 
The experiment is carried out on the basis of a complete set of ticket validation and counting data collected during 
weekdays and aggregated by 10 minutes. We focus on two families of flows: 

 the flow of passengers moving from the entrance hall to the north-east wing of the station (manually counted), 
predicted from two upstream ticket validation flows (264 observations collected on December 5, 2013, March 11 
and 27, 2014); 

 the flow of passengers boarding trains from Cergy – Le Haut / Poissy to Paris (manually counted), predicted from 
three upstream flows: the passengers moving from the entrance hall to the north-east wing of the station and two 
other ticket validation flows (143 observations collected on March 11 and 27, 2014). 

Given the limited number of available observations, the forecasting performance is evaluated by 10-fold cross-
validation (Kohavi, 1995). This method consists in randomly dividing the dataset X into 10 subsets X1, … ,X10 of 
(approximately) equal size. For each 𝑘𝑘 ∈ {1, … ,10}, the model is trained on X\X𝑘𝑘  and tested on X𝑘𝑘 . The final 
performance is estimated by averaging the 10 obtained accuracy measures. In this paper, we adopt the weighted 
mean absolute percentage error (WMAPE): 
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𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊(𝑥𝑥, �̂�𝑥) =
∑ |𝑥𝑥(𝑡𝑡) − �̂�𝑥(𝑡𝑡)|𝑁𝑁
𝑡𝑡=1
∑ 𝑥𝑥(𝑡𝑡)𝑁𝑁
𝑡𝑡=1

 (3) 

where �̂�𝑥 is the estimate of 𝑥𝑥 and 𝑁𝑁 is the number of observations in the dataset. Like the mean absolute percentage 
error (MAPE), the WMAPE is easy to interpret. On the other hand, it favors models that are effective in predicting 
the high values of the flows. 

When we focus on the passengers moving from the entrance hall to the north-east wing of the station, the model 
provides encouraging results, with an estimated WMAPE of 16.3% (see Fig. 1(a)). However, the performance 
significantly decreases when considering the passengers boarding trains from Cergy – Le Haut / Poissy to Paris, with 
an estimated WMAPE of 48.2%. As can be seen in Fig. 1(b), the large fluctuations of this flow are poorly fitted by 
the model. These fluctuations are closely related to the transport service. Indeed, if there is no train at the platform, 
the flow is interrupted (troughs) and the passengers have to wait for the next train before boarding (peaks). Thus, 
although the results of this experiment illustrate the potential of the Bayesian network approach, they also highlight 
the need to incorporate information on the transport service. 

 
(a) 

 
(b) 

Fig. 1. Actual and predicted values of two flows in Nanterre-Préfecture: (a) passengers moving from the entrance hall to the north-east wing; 
(b) passengers boarding trains from Cergy – Le Haut / Poissy to Paris. 

4. Dynamic Bayesian network approach 

4.1. Spatiotemporal modeling 

Dynamic Bayesian networks extend Bayesian networks to model systems that evolve over time (Dean and 
Kanazawa, 1989). Each node 𝑋𝑋𝑖𝑖

(𝑡𝑡) represents the instantiation of the variable 𝑋𝑋𝑖𝑖 at time slice 𝑡𝑡. The parents of 𝑋𝑋𝑖𝑖
(𝑡𝑡) 

can belong to 𝑡𝑡, 𝑡𝑡 − 1,… , 𝑡𝑡 − 𝑟𝑟, where 𝑟𝑟 is the order of the dynamic Bayesian network (Ghahramani, 1998). 
In the previous experiment, we predict the passenger flows using their upstream flows at the same time slice. To 

forecast their future values, it is necessary to extend this principle to the time factor. Following Sun et al. (2006), we 
define a parameter 𝑟𝑟𝑢𝑢 such that each flow at time slice 𝑡𝑡 depends on its adjacent upstream flows at 𝑡𝑡 − 1,… , 𝑡𝑡 − 𝑟𝑟𝑢𝑢. 
Assuming that the historical values of the flows provide information on their trend, we define another parameter 𝑟𝑟ℎ 
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such that each flow at time slice 𝑡𝑡 depends on its values at 𝑡𝑡 − 1, … , 𝑡𝑡 − 𝑟𝑟ℎ. These dependencies are represented by a 
dynamic Bayesian network of order 𝑟𝑟 = max(𝑟𝑟𝑢𝑢, 𝑟𝑟ℎ). 

As evidenced by the previous results, the passenger flows are closely related to the transport service. To 
incorporate this type of information, we rely on the following observation: the longer the time interval between two 
trains, the more passengers board the latter. Let 𝐹𝐹 be a flow of passengers traveling between two successive stop 
points and 𝐷𝐷𝐹𝐹

(𝑡𝑡) the set of departure times from the stop point of origin of 𝐹𝐹 during time slice 𝑡𝑡 (several departures 
may occur during the same time slice). We define the “transport service variable” associated with 𝐹𝐹 at 𝑡𝑡:  

𝑆𝑆𝐹𝐹
(𝑡𝑡) = {

max 𝐷𝐷𝐹𝐹
(𝑡𝑡) − max ⋃ 𝐷𝐷𝐹𝐹

(𝑘𝑘)

𝑘𝑘<𝑡𝑡
, if 𝐷𝐷𝐹𝐹

(𝑡𝑡) ≠ ∅

0, otherwise
 (4) 

where max 𝐷𝐷𝐹𝐹
(𝑡𝑡) and max ⋃ 𝐷𝐷𝐹𝐹

(𝑘𝑘)
𝑘𝑘<𝑡𝑡  are the latest departure times during and before 𝑡𝑡 respectively. 𝑆𝑆𝐹𝐹

(𝑡𝑡) is equivalent 
to the sum of the time intervals that precede the departures occurring during 𝑡𝑡. In the dynamic Bayesian network, it 
directly influences 𝐹𝐹(𝑡𝑡). Similarly to a passenger flow, it also depends on its adjacent upstream transport service 
variables and on its historical values. 

Fig. 2 provides an example of passenger flows with their corresponding dynamic Bayesian network unrolled over 
three time slices. For the sake of clarity, we take low order parameters: 𝑟𝑟𝑢𝑢 = 1 (solid arcs in Fig. 2(b)) and 𝑟𝑟ℎ = 2 
(dashed arcs). In this example, 𝐹𝐹1  is upstream of 𝐹𝐹4 , and 𝐹𝐹3  is upstream of 𝐹𝐹2  and 𝐹𝐹4 . 𝐹𝐹3  and 𝐹𝐹4  are directly 
influenced by the transport service (dotted arcs). 
 

 

Fig. 2. (a) Example of passenger flows. (b) Corresponding dynamic Bayesian network with 𝑟𝑟𝑢𝑢 = 1 and 𝑟𝑟ℎ = 2, unrolled over three time slices. 

4.2. Learning with incomplete data 

With a complete dataset (like in the previous experiment), the parameters of a linear Gaussian Bayesian network 
can be easily estimated by maximum likelihood. However, in case of incomplete data, the traditional estimation 
method is no longer able to provide analytical solutions. In such a vast public transport network, the missing data are 
too scattered to use listwise deletion. In their paper, Sun et al. (2006) propose to replace the variables whose values 
are missing by their parents in the dynamic Bayesian network. Unfortunately, this method is hardly applicable 
because it implies that the parents are complete, which is not necessarily true in many situations. 

Proposed by Dempster et al. (1977), the expectation-maximization (EM) algorithm is a method for iteratively 
finding the maximum likelihood estimates of the parameters when the training dataset has missing (or hidden) 
values. Starting from an initial guess of the parameters, this method performs two steps at each iteration. In the 
expectation (E) step, it completes the dataset from the observed data and the current estimates of the parameters. In 
the maximization (M) step, it uses this completed dataset to update the parameters by maximizing the log-likelihood. 

       
    (a)       (b) 
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As proven by Dempster et al. (1977), the log-likelihood increases at each iteration until convergence to a local 
maximum. 

Depending on the order parameters 𝑟𝑟𝑢𝑢  and 𝑟𝑟ℎ , the number of arcs (and thus of parameters) in the dynamic 
Bayesian network can be huge. In addition to increasing the computational complexity, this situation may lead to 
overfitting and decrease the forecasting performance. To avoid these problems, we try to reduce the dimension of 
the model by selecting the best subset of arcs among those described in the previous subsection. The selection of an 
optimal substructure in the presence of incomplete data can be performed by the structural EM algorithm. Proposed 
by Friedman (1997) and extended to dynamic Bayesian networks by Friedman et al. (1998), this algorithm performs 
similarly to the parametric version described above. The difference comes in the M step, where it improves not only 
the parameters but also the structure of the model. In the same way, the structural EM algorithm is guaranteed to 
increase a scoring function until convergence to a local maximum (Friedman, 1997). In this paper, we adopt the 
Bayesian information criterion (BIC) score (Schwarz, 1978), which takes into account the log-likelihood while 
penalizing the complexity of the structure. 

4.3. Short-term forecasting 

The short-term forecasting process consists in determining the passenger flows at the next time slice, which can 
be regarded as an inference problem in the dynamic Bayesian network. A comprehensive review of inference 
methods for dynamic Bayesian networks can be found in the thesis of Murphy (2002) or in the more recent book of 
Koller and Friedman (2009). The approximate inference methods are generally less time-consuming than the exact 
methods. Given the complexity of our model, they appear to be a better choice to ensure real-time predictions. 

The bootstrap filter (Gordon et al., 1993), also known as survival of the fittest (Kanazawa et al., 1995), is a 
stochastic simulation algorithm which can perform inference in real time. It consists in generating weighted sample 
sequences by sampling the unobserved values. These sequences are propagated forward in time proportionally to 
their weight, which reflects their likelihood for the measures collected over time. Initially applied to first-order 
dynamic models (Gordon et al., 1993; Kanazawa et al. 1995), the bootstrap filter has been extended to higher-order 
models (Pan and Schonfeld, 2011). 

5. Large-scale experiment 

5.1. Experimental method 

We apply the dynamic Bayesian network approach to Paris metro line 2. More precisely, we forecast the flows at 
the next time slice, harnessing three types of information: 

 on-board flows of line 2 (48 flows) and connecting lines (12 flows), recorded at train departures by on-board 
weighing systems; 

 passenger flows entering or leaving controlled areas (i.e., areas requiring a valid ticket) served by line 2 (30 
flows) and connecting controlled areas (5 flows), recorded by ticket validation; 

 the transport service operated for line 2 (48 variables) and connecting lines (66 variables). 

The data are collected during 33 weekdays from March 2 to April 17, 2015, between 7.30 and 9.30 am (morning 
peak) and aggregated by 2 minutes, totalling 1980 observations. Due to failures of collection systems and to the fact 
that some trains are equipped with weighing systems, 80 of the 95 passenger flows are incomplete. Their overall 
missing data rate is 4.8%, but reaches more than 50% for some flows (this rate is only 0.2% for the transport service 
variables). In addition to this high spatial dispersion, the missing data cover nearly all time slices recorded (99.7%). 

The dataset is divided into a training and a test set, which contain the data of the first 24 days and of the last 9 
days respectively. First, we learn the structure and the parameters of the dynamic Bayesian network from the 
training set, using the structural EM algorithm (see subsection 4.2). In this experiment, we take as order parameters 
𝑟𝑟𝑢𝑢 = 𝑟𝑟ℎ = 4, which empirically provide good forecasting results. The performance of the model is evaluated on the 
test set, using the bootstrap filter (see subsection 4.3). 
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Since the transport service is scheduled by the public transport operator, we assume that the actual values of the 
transport service variables at time slice 𝑡𝑡  are already known at 𝑡𝑡 − 1  and do not need to be predicted. This 
assumption may appear optimistic, since unexpected changes may occur at the last moment. To be more realistic, 
these values should be preset to their “expectation” at 𝑡𝑡 − 1. However, this information is not stored and thus cannot 
be used in this experiment. 

5.2. Forecasting results 

Table 1 gives the average forecasting errors for the 48 on-board passenger flows of line 2 and the 30 flows 
entering or leaving controlled areas served by line 2. In addition to the complete version of the model, two partial 
versions are tested to assess the individual contribution of each type of relationship: a version without transport 
service and a version without relationships between the adjacent flows. We also compare the results to those of two 
naïve methods: historical average, which consists in forecasting the flows by averaging their historical values at the 
corresponding time slices (Smith and Demetsky, 1997), and LOCF, which simply uses the last observed value 
(Williams, 1999). 

Table 1. Average forecasting errors for the passenger flows related to Paris metro line 2 (WMAPE in %). 

Passenger flows 
Dynamic Bayesian network 

Historical average LOCF 
(complete) (w/o transport service) (w/o adj. relationships) 

On-board 17.1 36.2 19.3 39.6 63.1 

Entering/leaving controlled areas 18.9 19.0 19.2 17.2 24.8 

All passenger flows 17.8 29.6 19.3 31.0 48.4 

 
Overall, the dynamic Bayesian network approach outperforms the historical average and LOCF methods, with 

average WMAPEs of 17.8% versus 31.0% and 48.4% respectively. The transport service largely contributes to these 
good forecasting results. Indeed, when incorporating this type of information, the average WMAPE for the on-board 
flows drops from 36.2% to 17.1%. The ability of the model to fit the large fluctuations of these flows is well 
illustrated by Fig. 3, which shows the actual and predicted values of the flow from Blanche to Place de Clichy 
(WMAPE of 17.0%) for the test days from April 7 to 9, 2015. 

 

Fig. 3. Actual and predicted values of the passenger flow from Blanche to Place de Clichy, from April 7 to 9, 2015, between 7.30 and 9.30 am. 

The forecasting results also highlight the important role of the relationships between the adjacent flows. Their 
contribution is clearly visible for the on-board flows, the average WMAPE dropping from 19.3% to 17.1%. 
However, we observe that our approach is less effective than historical average for the flows entering or leaving 
controlled areas (average WMAPE of 18.9% versus 17.2%). One possible reason lies in the relative position of these 
flows in the application area. Indeed, either they are on the edge and have no upstream flows, or they are in wide 
interchange stations where too few of their upstream flows are recorded. Hence, they cannot exploit the full potential 
of the model. On the other hand, their day-to-day regularity may explain the good results of historical average. 
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6. Conclusion 

In this paper, we propose a dynamic Bayesian network approach to forecast the short-term passenger flows of the 
urban rail network of Paris. This approach is designed to provide real-time predictions even in case of incomplete 
data. Based on Sun et al. (2006), the flows are predicted from their spatiotemporal neighbourhood. As evidenced by 
the first test on Nanterre-Préfecture, they also depend on the transport service. Thus, we propose a structure that 
incorporates this information. In the presence of incomplete data, the structural EM algorithm is performed both to 
reduce the dimension of the structure and to find the maximum likelihood estimates of the parameters. Then the 
bootstrap filter is applied for short-term forecasting. The experiment carried out on Paris metro line 2 provides 
encouraging results and confirms the key role of the transport service. 

Despite its good overall performance, our approach still has limitations. First, the choice of conditional linear 
Gaussian distributions simplifies the computation but implies that the interactions between the variables are linear, 
which is questionable. Therefore, we may wonder whether the use of distributions that allow to model nonlinear 
processes, such as Gaussian mixture models, would be more appropriate. Another drawback is that the structure and 
the parameters of the model do not evolve over time. In case of major disruptions, the relationships between the 
variables may change to patterns that have never been observed, which may lead to decreased forecasting 
performance. 

In future work, we could improve the performance of the model by introducing new factors, such as temporal 
features (e.g., day of the week, month, vacation) or external conditions (e.g., weather, sporting or cultural events). 
As pointed out by Leray (2006), one of the strengths of Bayesian networks is their high modularity, which allows 
the gradual incorporation of new information sources and the construction of increasingly sophisticated models. 
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