
Introduction and Related Work
Algorithm for frequent itemsets searching: sequential version

Preliminary results
Towards a parallel version using MapReduce

Conclusion and Perspectives

Searching frequent itemsets by clustering data
Towards a parallel approach using MapReduce

Maria Malek Hubert Kadima
LARIS-EISTI

Ave du Parc, 95011 Cergy-Pontoise, FRANCE
maria.malek@eisti.fr, hubert.kadima@eisti.fr

Journées BigData, CNAM, 24-25 juin, 2013 Searching frequent itemsets by clustering data

Introduction and Related Work
Algorithm for frequent itemsets searching: sequential version

Preliminary results
Towards a parallel version using MapReduce

Conclusion and Perspectives

1 Introduction and Related Work

2 Algorithm for frequent itemsets searching: sequential version
Algorithm parameters, structures and definition
Algorithm description: sequential version

3 Preliminary results

4 Towards a parallel version using MapReduce
K-means implementation
Apriori implementation on MapReduce
Our proposal

5 Conclusion and Perspectives

Journées BigData, CNAM, 24-25 juin, 2013 Searching frequent itemsets by clustering data

Introduction and Related Work
Algorithm for frequent itemsets searching: sequential version

Preliminary results
Towards a parallel version using MapReduce

Conclusion and Perspectives

Introduction

Applying association rules mining leads to find relationships
between items in large data bases that contain transactions.

The problem of frequent itemsets has been introduced by
Agrawal in 1993.

This Apriori algorithm is based on the downward closure
propriety:

if an itemset is not frequent, any superset of it will not be
frequent.

The Apriori algorithm performs a breadth-first search in the
search space by generating candidates of length K + 1 from
frequent k-itemsets.

Journées BigData, CNAM, 24-25 juin, 2013 Searching frequent itemsets by clustering data

Introduction and Related Work
Algorithm for frequent itemsets searching: sequential version

Preliminary results
Towards a parallel version using MapReduce

Conclusion and Perspectives

Frequent itemsets - example

Transactions

100 1 3 4

200 2 3 5

300 1 2 3 5

400 2 5

Results

If minSupp=2 :

frequent itemsets :

L1 = {1, 2, 3, 5}, L2 = {13, 23, 25, 35},L3 = {235}.
Association Rules :

R1 : 2→ 35 avec conf = 2
3 ,

R2 : 3→ 5 avec conf = 2
3 , etc.

Journées BigData, CNAM, 24-25 juin, 2013 Searching frequent itemsets by clustering data

Introduction and Related Work
Algorithm for frequent itemsets searching: sequential version

Preliminary results
Towards a parallel version using MapReduce

Conclusion and Perspectives

Downward closure propriety

Propriety

Let Xk be a frequent itemset, all frequent itemsets included in Xk

are frequent.

1 If ABCD is a frequent itemset,

2 then ABC ,ABD, BCD, AB,AC ,BC ,BD,CD,A,B,C ,D are
frequent itemsets .

Journées BigData, CNAM, 24-25 juin, 2013 Searching frequent itemsets by clustering data

Introduction and Related Work
Algorithm for frequent itemsets searching: sequential version

Preliminary results
Towards a parallel version using MapReduce

Conclusion and Perspectives

Related work

The Apriori algorithm is based on storing database in the
memory.
When the dataset size is huge, both the memory use and the
computational cost still be expensive.
The idea is to use a given data structure to achieve a
condensed representation of the data transactions (like trees
or intervals).
Other algorithms (fasters than Apriori):

FPGrowth(J.Han, J. Pei, and Y. Yin -2000),
Depth first implementation of Apriori (W. A. Kosters and
W. Pijls -2003),
A massively parallel FP-Growth algorithm implemented with
the MapReduce framework (H. Li, Y. Wang, D. Zhang, M.
Zhang, and E.Y. Chang-2008).

Journées BigData, CNAM, 24-25 juin, 2013 Searching frequent itemsets by clustering data

Introduction and Related Work
Algorithm for frequent itemsets searching: sequential version

Preliminary results
Towards a parallel version using MapReduce

Conclusion and Perspectives

Algorithm parameters, structures and definition
Algorithm description: sequential version

Algorithm idea

The idea is to start searching from a set of representative
examples instead of testing the 1-itemset,the k-itemset and
so on.

A clustering algorithm is firstly applied in order to cluster the
transactions into k clusters.

Each cluster is represented by the most representative
example.

We currently use the k-medoids algorithm in order to cluster
the transactions.

The set of the k representative examples will be used as the
starting point for searching frequent itemsets.

Journées BigData, CNAM, 24-25 juin, 2013 Searching frequent itemsets by clustering data

Introduction and Related Work
Algorithm for frequent itemsets searching: sequential version

Preliminary results
Towards a parallel version using MapReduce

Conclusion and Perspectives

Algorithm parameters, structures and definition
Algorithm description: sequential version

K-means algorithm: illustration

Journées BigData, CNAM, 24-25 juin, 2013 Searching frequent itemsets by clustering data

Introduction and Related Work
Algorithm for frequent itemsets searching: sequential version

Preliminary results
Towards a parallel version using MapReduce

Conclusion and Perspectives

Algorithm parameters, structures and definition
Algorithm description: sequential version

Algorithm parameters

Input and outpout

Input : a set of transactions called D,

Output :

A list named accepted that contains the retained frequent
itemsets.

A list named excluded that contains the retained no-frequent
itemsets.

Parameters

K is the initial number of clusters.

minSupp is the threshold used for computing frequent itemsets.

Journées BigData, CNAM, 24-25 juin, 2013 Searching frequent itemsets by clustering data

Introduction and Related Work
Algorithm for frequent itemsets searching: sequential version

Preliminary results
Towards a parallel version using MapReduce

Conclusion and Perspectives

Algorithm parameters, structures and definition
Algorithm description: sequential version

Algorithm structures and definition

Structure

An intermediate list that we call candidates containing the
itemsets to test.

Itemsets will be sorted by their decreasing lengths.

Definition

Global frequent itemsets Let D be a set of transactions. Let Li be
an i-itemset of length i, Li is a global frequent
itemset iff it is frequent in D.

Local frequent itemsets Let D be a set of transaction segmented
on k disjoints clusters. Let Li be an i-itemset of
length i, Li is a local frequent itemset iff it is
frequent in the cluster to whose it belongs.

Journées BigData, CNAM, 24-25 juin, 2013 Searching frequent itemsets by clustering data

Introduction and Related Work
Algorithm for frequent itemsets searching: sequential version

Preliminary results
Towards a parallel version using MapReduce

Conclusion and Perspectives

Algorithm parameters, structures and definition
Algorithm description: sequential version

Algorithm description-1

1 Apply the k-medoids on D (the transactions base) and stock
the k representative examples as well as the K clusters.

2 Let C1, C2, .., Ck be the k representative examples sorted by
their decreasing lengths, in D. The list candidates is initialized
to C1, C2, .., Ck .

3 While the list candidates 6= Φ do

Let Ci be the first element of candidates:
If Ci 6∈ accepted et Ci 6∈ excluded then

1 If Ci is a local frequent itemset then update-accepted(Ci),
exit.

2 If Ci is a global frequent itemset then
update-accepeted(Ci), exit.

3 else, update-excluded (Ci), and add frequent itemsets included
in Ci to the candidates list.

Journées BigData, CNAM, 24-25 juin, 2013 Searching frequent itemsets by clustering data

Introduction and Related Work
Algorithm for frequent itemsets searching: sequential version

Preliminary results
Towards a parallel version using MapReduce

Conclusion and Perspectives

Algorithm parameters, structures and definition
Algorithm description: sequential version

Algorithm description-2

The algorithm tests firstly if a given example e is a local
frequent itemset, if yes the list called accepted is updated,

otherwise the algorithm tests if e is a global frequent itemsest,
if yes the list accepted is updated,

otherwise the list excluded is updated.

update-accepted(Ci): Add to the list accepted, the itemset Ci and
all the itemsets included in it.

update-excluded(Ci): Add to the list excluded, the itemset Ci and
all the itemsets that include Ci .

Journées BigData, CNAM, 24-25 juin, 2013 Searching frequent itemsets by clustering data

Introduction and Related Work
Algorithm for frequent itemsets searching: sequential version

Preliminary results
Towards a parallel version using MapReduce

Conclusion and Perspectives

Preliminary results-1

Data set is composed of a set of navigation logs extracted
from the Microsoft site (UCI-machine learning repository)

The site is composed of 17 pages with some links between
each others that we present by the set of the characters :
{A, B, C , .., P, Q}.
Initial data logs file contained navigations paths of 388445
users.

By keeping only users who have sufficient paths length the
users number is reduced to 36014.

We call this set of transactions D.

Journées BigData, CNAM, 24-25 juin, 2013 Searching frequent itemsets by clustering data

Introduction and Related Work
Algorithm for frequent itemsets searching: sequential version

Preliminary results
Towards a parallel version using MapReduce

Conclusion and Perspectives

Preliminary results-2

K C1 C2 C3 C4 C5
E1 | C1 | E2 | C2 | E3 | C3 | E4 | C4 | E5 | C5 |

k=2 ABFG 55% ABDLK 45%
k=3 ABFFG 46% ABDKL 23% ABCF 31%
k=4 AFG 35% ABDKL 34% ABCFJ 17% ABDFG 14%
k=5 AFGJ 11% ABDKL 42% ABCFJ 19% ABDFG 23% BDFGN 5%

Table: Results of applying k-medoids on the transactions base D, we
report for each value of k the representative example Ei of each cluster Ci
as well as the cardinality of the cluster.

Journées BigData, CNAM, 24-25 juin, 2013 Searching frequent itemsets by clustering data

Introduction and Related Work
Algorithm for frequent itemsets searching: sequential version

Preliminary results
Towards a parallel version using MapReduce

Conclusion and Perspectives

Preliminary results-2

Itemset support found by the novel algorithm

AFGJ 2406 yes
ABCJL 2406 no
ABCFJ 1576 yes
ABCKL 1922 no
ABDFG 2628 yes
ABDGL 1813 no
ABDKL 1735 yes
ABFGJ 1834 no

Table: This tables shows all frequent itemsets whose supports are higher
than 1576 and whose length is 4 or 5. Four of the eight itemsets have
been found by the novel algorithm.

Journées BigData, CNAM, 24-25 juin, 2013 Searching frequent itemsets by clustering data

Introduction and Related Work
Algorithm for frequent itemsets searching: sequential version

Preliminary results
Towards a parallel version using MapReduce

Conclusion and Perspectives

Preliminary results-3

Table: The number of transactions in each cluster when k=4, and for
each k the frequency rate of the found representative example. The local
and global supports for representative examples when k=4

Journées BigData, CNAM, 24-25 juin, 2013 Searching frequent itemsets by clustering data

Introduction and Related Work
Algorithm for frequent itemsets searching: sequential version

Preliminary results
Towards a parallel version using MapReduce

Conclusion and Perspectives

Preliminary results-4

Figure: The red curve shows the number of frequent itemsets found
locally, the green one shows the number of frequent itemsets found
globally, and the orange one shows all the found frequent itemsets.

Journées BigData, CNAM, 24-25 juin, 2013 Searching frequent itemsets by clustering data

Introduction and Related Work
Algorithm for frequent itemsets searching: sequential version

Preliminary results
Towards a parallel version using MapReduce

Conclusion and Perspectives

Preliminary results-5

Figure: This figure shows the execution time evolution(micro seconds) in
function of K.

Journées BigData, CNAM, 24-25 juin, 2013 Searching frequent itemsets by clustering data

Introduction and Related Work
Algorithm for frequent itemsets searching: sequential version

Preliminary results
Towards a parallel version using MapReduce

Conclusion and Perspectives

K-means implementation
Apriori implementation on MapReduce
Our proposal

MapReduce

MapReduce

A Framework for parallel and distributed computing that has been
introduced by Google in order to handle huge data sets using a
large number of computers (nodes).

Map Step

The master node takes the input, divides it into smaller
sub-problems, and distributes them to worker nodes.

The worker node processes the smaller problem, and passes
the answer back to its master node in the form of list of
key-values couples.

Journées BigData, CNAM, 24-25 juin, 2013 Searching frequent itemsets by clustering data

Introduction and Related Work
Algorithm for frequent itemsets searching: sequential version

Preliminary results
Towards a parallel version using MapReduce

Conclusion and Perspectives

K-means implementation
Apriori implementation on MapReduce
Our proposal

MapReduce

Map Step

The master node takes the input, divides it into smaller
sub-problems, and distributes them to worker nodes.

The worker node processes the smaller problem, and passes
the answer back to its master node in the form of list of
key-values couples.

Reduce Step

The master node then collects the answers to all the
sub-problems,

and combines for a given key the intermediates values
computed by the different mappers in order to form the
output or the answer to the problem.

Journées BigData, CNAM, 24-25 juin, 2013 Searching frequent itemsets by clustering data

Introduction and Related Work
Algorithm for frequent itemsets searching: sequential version

Preliminary results
Towards a parallel version using MapReduce

Conclusion and Perspectives

K-means implementation
Apriori implementation on MapReduce
Our proposal

MapReduce : Schema

Journées BigData, CNAM, 24-25 juin, 2013 Searching frequent itemsets by clustering data

Introduction and Related Work
Algorithm for frequent itemsets searching: sequential version

Preliminary results
Towards a parallel version using MapReduce

Conclusion and Perspectives

K-means implementation
Apriori implementation on MapReduce
Our proposal

K-means implementation: scheme

Source : horkicky.blogspot.com

Journées BigData, CNAM, 24-25 juin, 2013 Searching frequent itemsets by clustering data

Introduction and Related Work
Algorithm for frequent itemsets searching: sequential version

Preliminary results
Towards a parallel version using MapReduce

Conclusion and Perspectives

K-means implementation
Apriori implementation on MapReduce
Our proposal

K-means implementation: description-1

Master Job

Divide the input data into smaller sub-sets, and distribute
them to mapper nodes.

Randomly choose a list containing k representative examples
and sent them to all mappers.

Launch a MapReduce job for each iteration until the algorithm
convergence (until stabilization of representative examples).

Journées BigData, CNAM, 24-25 juin, 2013 Searching frequent itemsets by clustering data

Introduction and Related Work
Algorithm for frequent itemsets searching: sequential version

Preliminary results
Towards a parallel version using MapReduce

Conclusion and Perspectives

K-means implementation
Apriori implementation on MapReduce
Our proposal

K-means implementation: description-2

Master Job

Launch a MapReduce job for each iteration until the algorithm
convergence (until stabilization of representative examples).

MapReduce

1 Mapper function: compute for each example the closer
representative example, and assign it to the associated
cluster.

2 Reducer function: collect for each representative example
the partial sum of the computed distances from all mappers,
and then re-compute the k new representative examples list.

Journées BigData, CNAM, 24-25 juin, 2013 Searching frequent itemsets by clustering data

Introduction and Related Work
Algorithm for frequent itemsets searching: sequential version

Preliminary results
Towards a parallel version using MapReduce

Conclusion and Perspectives

K-means implementation
Apriori implementation on MapReduce
Our proposal

K-medoids implementation: adaptation

Master Job

Launch a MapReduce job for each iteration until the algorithm
convergence (until stabilization of representative examples).

MapReduce

1 Mapper function: compute for each example the closer
representative example, and assign it to the associated
cluster.

2 Reducer function: collect for each couple of (cluster,
example) the partial sum of the computed distances from all
mappers, and then re-compute the k new representative
examples list.

Journées BigData, CNAM, 24-25 juin, 2013 Searching frequent itemsets by clustering data

Introduction and Related Work
Algorithm for frequent itemsets searching: sequential version

Preliminary results
Towards a parallel version using MapReduce

Conclusion and Perspectives

K-means implementation
Apriori implementation on MapReduce
Our proposal

Apriori implementation on MapReduce -1

Map

void map(void* map data)

for each transaction in map data
for (i = 0; i < candidates size; i++)

match = false ; itemset = candidates[i]
match = itemset exists(transaction, itemset)
if (match == true) emit intermediate(itemset, one)

Reduce

void reduce(void* key, void** vals, int vals length)

count = 0
for (i = 0; i < vals length; i++) count+ = *vals[i]
if (count ≥ support level * num transactions)/100.0
emit(key, count)

Journées BigData, CNAM, 24-25 juin, 2013 Searching frequent itemsets by clustering data

Introduction and Related Work
Algorithm for frequent itemsets searching: sequential version

Preliminary results
Towards a parallel version using MapReduce

Conclusion and Perspectives

K-means implementation
Apriori implementation on MapReduce
Our proposal

Apriori implementation on MapReduce-2

Mise jour de la liste des candidats

void update frequent candidates(void * reduce data out)

j = 0
length = reduce data out → length
for (j = 0; i < length; j++) temp candidates[j++] =
reduce data out → key
candidates = temp candidates

Journées BigData, CNAM, 24-25 juin, 2013 Searching frequent itemsets by clustering data

Introduction and Related Work
Algorithm for frequent itemsets searching: sequential version

Preliminary results
Towards a parallel version using MapReduce

Conclusion and Perspectives

K-means implementation
Apriori implementation on MapReduce
Our proposal

Parallel implementation of our algorithm

Apply the above parallel version of the the k-medoids
algorithm in order to obtain the the data set segmented into k
clusters.

Initialize the list of candidates to the k representative
exemples.

Re-distribute the k obtained clusters on k mappers,

Repeat
1 Send the list of candidates to the k mappers.
2 Each mapper computes the local support of each candidate.
3 The reducer collects all local supports for each candidate and

compute for some candidates the global supports if necessary.
4 The master updates accepted, excluded and candidates lists.

Until the list of candidates is empty.

Journées BigData, CNAM, 24-25 juin, 2013 Searching frequent itemsets by clustering data

Introduction and Related Work
Algorithm for frequent itemsets searching: sequential version

Preliminary results
Towards a parallel version using MapReduce

Conclusion and Perspectives

Conclusion

A new algorithm for searching frequent itemsets in large data
bases.

The idea is to start searching from a set of representative
examples instead of testing the 1-itemset, and so on.

The k-medoids clustering algorithm is firstly applied in order
to cluster the transactions into k clusters.

Each cluster is represented by the most representative
example.

Experimental results show that beginning the search of
frequent itemsets from these representative examples leads to
find a significant number of them locally .

Journées BigData, CNAM, 24-25 juin, 2013 Searching frequent itemsets by clustering data

Introduction and Related Work
Algorithm for frequent itemsets searching: sequential version

Preliminary results
Towards a parallel version using MapReduce

Conclusion and Perspectives

Perspectives

Update the algorithm in order to find all frequent itemsets.

We have proposed parallel version of this algorithm based on
the MapReduce Framework:

We are now implementing this parallel version and comparing
performances with other parallel implementation like the
massively parallel FP-Growth algorithm.

Journées BigData, CNAM, 24-25 juin, 2013 Searching frequent itemsets by clustering data

Introduction and Related Work
Algorithm for frequent itemsets searching: sequential version

Preliminary results
Towards a parallel version using MapReduce

Conclusion and Perspectives

Bibliographie I

Rakesh Agrawal and Ramakrishnan Srikant.

Fast algorithms for mining association rules in large databases.
In VLDB, pages 487–499, 1994.

Cheng-Tao Chu, Sang Kyun Kim, Yi-An Lin, YuanYuan Yu, Gary R. Bradski, Andrew Y. Ng, and Kunle

Olukotun.
Map-reduce for machine learning on multicore.
In NIPS, pages 281–288, 2006.

Jeffrey Dean and Sanjay Ghemawat.

Mapreduce: Simplified data processing on large clusters.
In OSDI, pages 137–150, 2004.

Jiawei Han, Jian Pei, and Yiwen Yin.

Mining frequent patterns without candidate generation.
SIGMOD Rec., 29(2):1–12, May 2000.

Wei Jiang, Vignesh T. Ravi, and Gagan Agrawal.

A map-reduce system with an alternate api for multi-core environments.
In CCGRID, pages 84–93, 2010.

L. Kaufman and P.J. Rousseeuw.

Clustering by means of medoids.
In Y. Dodge, editor, Statistical Data Analysis Based on the Norm and Related Methods, pages 405,416.
North-Holland, 1987.

Journées BigData, CNAM, 24-25 juin, 2013 Searching frequent itemsets by clustering data

Introduction and Related Work
Algorithm for frequent itemsets searching: sequential version

Preliminary results
Towards a parallel version using MapReduce

Conclusion and Perspectives

Bibliographie II

Walter A. Kosters and Wim Pijls.

Apriori, a depth first implementation.
In Proc. of the Workshop on Frequent Itemset Mining Implementations, 2003.

Haoyuan Li, Yi Wang, Dong Zhang, Ming Zhang, and Edward Y. Chang.

Pfp: parallel fp-growth for query recommendation.
In Proceedings of the 2008 ACM conference on Recommender systems, RecSys ’08, pages 107–114, New
York, NY, USA, 2008. ACM.

Sean Owen, Robin Anil, Ted Dunning, and Ellen Friedman.

Mahout in Action.
Manning Publications, 1 edition, January 2011.

Mingjun Song and Sanguthevar Rajasekaran.

A transaction mapping algorithm for frequent itemsets mining.
IEEE Transactions on Knowledge and Data Engineering, 18:472–481, 2006.

Weizhong Zhao, Huifang Ma, and Qing He.

Parallel k-means clustering based on mapreduce.
In CloudCom, pages 674–679, 2009.

Journées BigData, CNAM, 24-25 juin, 2013 Searching frequent itemsets by clustering data

	Introduction and Related Work
	Algorithm for frequent itemsets searching: sequential version
	Algorithm parameters, structures and definition
	Algorithm description: sequential version

	Preliminary results
	Towards a parallel version using MapReduce
	K-means implementation
	Apriori implementation on MapReduce
	Our proposal

	Conclusion and Perspectives

