Gradient Boosting

Ensemble method for supervised learning
Using an explicit loss function

Ricco RAKOTOMALALA
Université Lumière Lyon 2
Outline

1. Preamble
2. Gradient boosting for regression
3. Gradient boosting for classification
4. Regularization (shrinkage, stochastic gradient boosting)
5. Tools and software
6. Conclusion – Pros and cons
7. References
Preamble

Boosting and Gradient Descent
Boosting is an ensemble method which aggregates classifiers learned sequentially on a sample for which the weights of individuals are adjusted at each step. The classifiers are weighted according to their performance. [RAK, page 28].

Input: B number of models, ALGO learning algorithm, Ω training set, with size = n, y target attribute, X matrix with p predictive attributes.

MODELES = { }
All the instances have the same weight ω₁ᵢ = 1/n
For b = 1 to B Do
 Fit the model M_b from Ω(ωᵇ) using ALGO (ωᵇ weighting system at the step b)
 Add M_b into MODELES
 Calculate the weighted error rate for M_b : εᵇ = ∑ᵢ₌₁ⁿ ωᵇᵢ × I(yᵢ ≠ ̂yᵢ)
 If εᵇ > 0.5 or εᵇ = 0, STOP the process
 Else
 Calculate αᵇ = ln(1 - εᵇ)
 The weights are updated ωᵇ₊₁ᵢ = ωᵇᵢ × exp[αᵇ, I(yᵢ ≠ ̂yᵢ)]
 And normalized so that the sum is equal to 1
 End For

A weighted (αᵇ) vote is used for prediction (this is an additive model)

f(x) = sign ∑ᵦ₌₁ᴮ αᵇ × Mᵇ(x)
Gradient descent is an iterative technique that allows to approach the solution of an optimization problem. In supervised learning, the construction of the model is often to determine the parameters that enable to optimize (max or min) an objective function (ex. Perceptron – Least squares criterion, pages 11 et 12).

\[J(y, f) = \sum_{i=1}^{n} j(y_i, f(x_i)) \]

\(f() \) is a classifier with some parameters
\(j() \) is a cost function comparing the observed value of the target and the prediction of the model for an observation
\(J() \) is an overall loss function, additively calculated from all observations

\(\Rightarrow \) The aim is to minimize \(J() \) with regard to \(f() \) i.e. the parameters of \(f() \).

\(f_b(x_i) = f_{b-1}(x_i) - \eta \times \nabla j(y_i, f(x_i)) \)

\(f_b() \) is the version of classifier at step “‘b’”
\(\eta \) is the learning rate which enables to lead the process
\(\nabla \) is the gradient i.e. the first order partial derivative of the cost function with regard to the classifier

\[\nabla j(y_i, f(x_i)) = \frac{\partial j(y_i, f(x_i))}{\partial f(x_i)} \]
We can show that ADABOOST consists in to optimize an exponential loss function i.e. each classifier M_t learned from the weighted sample resulting from M_{t-1} allows to minimize an overall loss function [BIS, page 659 ; HAS, page 343]

$$J(f) = \sum_{i=1}^{n} \exp(-y_i \times f(x_i))$$

$$f_b = f_{b-1} + \frac{\alpha_b}{2} \times M_b$$

$$\omega_i^b = \omega_i^{b-1} \times \exp[\alpha_{b-1}.I(y_i \neq M_{b-1}(i))]$$

We can show that ADABOOST consists in to optimize an exponential loss function i.e. each classifier M_t learned from the weighted sample resulting from M_{t-1} allows to minimize an overall loss function [BIS, page 659 ; HAS, page 343]

$$J(f) = \sum_{i=1}^{n} \exp(-y_i \times f(x_i))$$

$$f_b = f_{b-1} + \frac{\alpha_b}{2} \times M_b$$

$$\omega_i^b = \omega_i^{b-1} \times \exp[\alpha_{b-1}.I(y_i \neq M_{b-1}(i))]$$

y $\in \{-1, +1\}$

$J()$ is the overall loss function

$f()$ is the aggregate classifier composed of a linear combination of the base classifiers M_b

The aggregate classifier at step “b” is corrected with the individual classifier M_b learned from the reweighted sample. M_b is the gradient here i.e. each intermediate model allows to reduce the loss of the global model.

The "gradient" classifier comes from a sample where the weights of individuals depend on the performance of the previous model (idea of iterative corrections)
Gradient Boosting for Regression

Gradient Boosting = Gradient Descent + Boosting
The regression is a supervised learning process which estimates the relationship between a **quantitative dependent variable** and a set of independent variables.

\[y_i = M_1(x_i) + \varepsilon_{1i} \]

\(\varepsilon \) is the error term. It represents the inadequacy of the model.

\(M \) is any kind of model, we use **regression tree**.

\[e_{i1} = y_i - M_1(x_i) \]

\(e \) is the residual. Estimated value of the error. High value (in absolute value) reflects a bad prediction.

The aim is to model this residual with a second classifier \(M_2 \) and associate it with the previous one for a better prediction.

\[e_{i1} = M_2(x_i) + \varepsilon_{2i} \]

We can proceed in the same way for the residual \(e_2 \), etc.

\[\hat{y}_i = M_1(x_i) + M_2(x_i) \]

The role of \(M_2 \) is (additively) compensate the inadequacy of \(M_1 \), thereafter we can learn \(M_3 \), etc.
Overall loss function
Connection with gradient descent

The sum of the squares of errors is a well-known overall indicator of quality in regression:

\[j(y_i, f(x_i)) = \frac{1}{2}(y_i - f(x_i))^2 \]

\[J(y, f) = \sum_{i=1}^{n} j(y_i, f(x_i)) \]

Calculation of the gradient. It is actually equal to the residual, but with an opposite sign i.e. residual = negative gradient:

\[\frac{\partial j(y_i, f(x_i))}{\partial f(x_i)} = \frac{\partial}{\partial f(x_i)} \left[\frac{1}{2} (y_i - f(x_i))^2 \right] = f(x_i) - y_i \]

Thus, we have an iterative process for the construction of the additive model. Modeling the residuals in step "b" (regression tree \(M_b\)) corresponds to a gradient. Ultimately, we minimize the overall cost function \(J()\):

\[f_{b}(x_i) = f_{b-1}(x_i) + M_{b}(x_i) \]
\[= f_{b-1}(x_i) + (y_i - f_{b-1}(x_i)) \]
\[= f_{b-1}(x_i) - 1 \times \frac{\partial j(y_i, f(x_i))}{\partial f(x_i)} \]
\[= f_{b-1}(x_i) - \eta \times \nabla j(y_i, f(x_i)) \]

The learning rate \(\eta\) is equal to 1 here.
We have an iterative process where, at each step, we use the negative value of the gradient: $-\nabla j(y,f)$ [WIK]

Or, more simply, FOR $m = 1, \ldots, B$ (B : parameter of the algorithm)

Must be calculated for all the individuals of the training sample $(i = 1, \ldots, n)$

$j() = \text{square of the error} \Rightarrow \text{negative gradient} = \text{residual}$

The depth of the trees is a possible parameter

The models are combined in additive fashion

γ_b is chosen at each step in order to minimize (using a numerical optimization approach)

$$\gamma_b = \arg \min_{\gamma} \sum_{i=1}^{n} j(y_i, f_{b-1}(x_i) + \gamma M_b(x_i))$$

The advantage of this generic formulation is that one can use other loss functions and the associated gradients.
Other loss functions

- Other gradient formulation
- Other behavior and performance of the aggregate model

<table>
<thead>
<tr>
<th>Loss function</th>
<th>$-\nabla j(y_i, f(x_i))$</th>
<th>Pros / Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{1}{2}(y_i-f(x_i))^2$</td>
<td>$y_i-f(x_i)$</td>
<td>Sensitivity to small differences, but not robust against the outliers</td>
</tr>
<tr>
<td>$</td>
<td>y_i-f(x_i)</td>
<td>$</td>
</tr>
</tbody>
</table>
| **Huber** | $y_i-f(x_i)$ si $|y_i-f(x_i)| \leq \delta_b$
$\delta_b \cdot \text{sign}(y_i-f(x_i))$ si $|y_i-f(x_i)| > \delta_b$ Where δ_b is a quantile of $\{|y_i-f(x_i)|\}$ | Combine the benefits of the square error (more sensitive to small values of the gradient) and absolute error (more robust against the outliers) |
Gradient Boosting for Classification

Working with the indicator variables (dummy variables)
The categorical target variable is K values \{1, \ldots, K\}. The algorithm remains identical but: we must define a loss function adapted to the classification process, and calculate the appropriate gradient.

\[\pi_k \] corresponds to the class membership probability for "k" (value "k" de Y).

Loss function: MULTINOMIAL DEVIANCE
(binomial deviance is a special case for binary target attribute)

For the class "k", the gradient is the difference between the associated dummy variable and the class membership probability.

\[\nabla j(y_i, f(x_i)) = y_i^k - \pi^k(x_i) \]

We must deal with the dummy variables \(y^k\), and fit a regression tree on the negative gradient 1 tree for each dummy variable. \(f^k\) is the aggregate model for the class "k", needed for the calculation of \(\pi^k\).
Algorithm for classification

Y (target) is coded with K dummy variables y^k

Fit K trivial trees $f^k_0()$ for each y^k

REPEAT UNTIL CONVERGENCE

- Calculate K negative gradients $-\nabla j(y^k, f^k)$
- Fit a regression tree M^k_b for each $-\nabla j(y^k, f^k)$

$f^k_b = f^k_{b-1} + \gamma_b M^k_b$

We obtain K aggregate models f^k. The class membership probability is calculated with the “softmax” function

$$\pi^k(x_i) = \frac{e^{f^k(x_i)}}{\sum_{k=1}^{K} e^{f^k(x_i)}}$$

The assignment rule is

$$\hat{Y}_i = \arg \max_k \pi^k(x_i)$$

Even if we are in the classification context, the internal mechanism is based on a regression tree algorithm. GRADIENT TREE BOOSTING.
Regularization
Approaches to prevent overfitting
Other than the limitation of the depth of the trees
Include an additional parameter (learning rate) in the update rule

\[f_b = f_{b-1} + \nu \gamma_b M_b \]

An additional parameter \((0 < \nu \leq 1)\) is used in order to “smooth” the update rule. Empirically, we observe that a low value of \(\nu (\nu < 0.1)\) improves the performance, but the converge is slower (number of needed iterations \(B\) is higher).

Random sampling is introduced. At each step, only a fraction \(\beta (0 < \beta \leq 1)\) of the learning sample is used for the construction of the trees \(M_b\) [HAS, page 365]

\(\beta = 1\), we have the standard algorithm. Typically, \(0.5 \leq \beta \leq 0.8\) is suited for a moderate sized dataset [WIK]. Advantages:

1. Reduce the computation time.
2. Prevent overfitting by introducing randomness in the learning process (such as Random forest and Bagging)
3. OOB estimation of the error rate (such as Bagging)
Practice of gradient boosting

Software and packages
```python
# importation of the training set
import pandas
dtrain = pandas.read_table("ionosphere-train.txt", sep="\t", header=0, decimal=".")
print(dtrain.shape)
y_app = dtrain.as_matrix()[:,32]  # target attribute
X_app = dtrain.as_matrix()[:,0:32]  # input attributes

# importation of the GradientBoostingClassifier class
from sklearn.ensemble import GradientBoostingClassifier
gb = GradientBoostingClassifier()

# display the parameters
print(gb)

# fit on the training set
gb.fit(X_app, y_app)

# importation of the test set
dtest = pandas.read_table("ionosphere-test.txt", sep="\t", header=0, decimal=".")
print(dtest.shape)
y_test = dtest.as_matrix()[:,32]
X_test = dtest.as_matrix()[:,0:32]

# prediction on the test set
y_pred = gb.predict(X_test)

# evaluation : test error rate = 0.085
from sklearn import metrics
err = 1.0 - metrics.accuracy_score(y_test, y_pred)
print(err)
```

There is also a variable sampling mechanism during the node splitting process, as with Random Forest.
Scikit-learn propose un outil pour déterminer par validation croisée les "paramètres optimaux" d'un algorithme d'apprentissage automatique.

```python
from sklearn.grid_search import GridSearchCV

# Combination of the parameters to evaluate. The tool performs an exhaustive search
# The calculations are intensive in cross-validation
parametres = {
    "learning_rate": [0.3, 0.2, 0.1, 0.05, 0.01],
    "max_depth": [2, 3, 4, 5, 6],
    "subsample": [1.0, 0.8, 0.5]
}

# The supervised learning algorithm to use: Gradient boosting
gbc = GradientBoostingClassifier()

# Create the object for searching
grille = GridSearchCV(estimator=gbc, param_grid=parametres, scoring="accuracy")

# Perform the process on the training set
resultats = grille.fit(X_app, y_app)

# best combination of parameters : {'subsample': 0.5, 'learning_rate': 0.2, 'max_depth': 4}
print(resultats.best_params_)

# prediction with the 'model' identified by cross-validation
ypredc = resultats.predict(X_test)

# performances of the 'best' model: test error rate = 0.065
err_best = 1.0 - metrics.accuracy_score(y_test, ypredc)
print(err_best)
```
R

package “gbm”

```r
# import data files (train and test)
dtrain <- read.table("ionosphere-train.txt",header=T,sep="\t")
dtest <- read.table("ionosphere-test.txt",header=T,sep="\t")

# package "gbm"
library(gbm)

# fit the model on the training set
gb1 <- gbm(class ~ ., data = dtrain, distribution="multinomial")

# prediction: predict provides a score
# the threshold for class assignment is 0
p1 <- predict(gb1,newdata=dtest,n.trees=gb1$n.trees)
y1 <- factor(ifelse(p1[,1,1] > 0, "b", "g"))

# confusion matrix and error rate
m1 <- table(dtest$class,y1)
err1 <- 1 - sum(diag(m1))/sum(m1)
print(err1)
```

Distribution=« bernoulli » is also possible, but the target attribute must be coded 0/1 in this case.
package "mboost"
library(mboost)
fit with the default settings (see documentation online)
gb2 <- blackboost(class ~ ., data = dtrain, family=Multinomial())
prediction on the test set
y2 <- predict(gb2,newdata=dtest,type="class")
confusion matrix and test error rate = 11.5%
m2 <- table(dtest$class,y2)
err2 <- 1 - sum(diag(m2))/sum(m2)
print(err2)

Modifying the settings of the underlying base classifier (deeper regression tree)
library(party)
parametres <- ctree_control(stump=FALSE,maxdepth=10,minsplit=2,minbucket=1)
fit with the settings
gb3 <- blackboost(class ~ ., data = dtrain, family=Multinomial(),tree_controls=parametres)
prediction on the test set
y3 <- predict(gb3,newdata=dtest,type="class")
test error rate = 12.5% (clearly, deeper tree is not suitable here)
m3 <- table(dtest$class,y3)
err3 <- 1 - sum(diag(m3))/sum(m3)
print(err3)
“xgboost” it proposes a parallel implementation, making the calculation feasible on large datasets (and also other base classifiers than tree)

```r
# package "xgboost"
library(xgboost)

# convert the data in a format tractable by xgboost
XTrain <- as.matrix(dtrain[,1:32])
yTrain <- ifelse(dtrain$class=="b",1,0) # codage 1/0 de la cible

# fit with the default settings (eta=0.3, max.depth=6)
gb4 <- xgboost(data=XTrain,label=yTrain,objective="binary:logistic",nrounds=100)

# prediction on the test set
XTest <- as.matrix(dtest[,1:32])
p4 <- predict(gb4,newdata=XTest)

# we obtain PI("b") - we convert in class prediction
y4 <- factor(ifelse(p4 > 0.5,"b","g"))

# confusion matrix and test error rate = 9.5%
m4 <- table(dtest$class,y4)
err4 <- 1 - sum(diag(m4))/sum(m4)
print(err4)

# fit with other settings
gb5 <- xgboost(data=XTrain,label=yTrain,objective="binary:logistic",eta=0.5,max.depth=10,nrounds=100)

# prediction
p5 <- predict(gb5,newdata=XTest)
y5 <- factor(ifelse(p5 > 0.5, "b","g"))

# confusion matrix and test error rate = 9%
m5 <- table(dtest$class,y5)
err5 <- 1 - sum(diag(m5))/sum(m5))
print(err5)
```
Gradient boosting is based on many parameters that influence heavily their performances. They can interact with each other, making their handling difficult. The challenge is to make the right trade-off between fully exploit the available data and to prevent overfitting.

Characteristics of the underlying trees

- Maximum depth trees, number of samples required to split a node, number of samples required in leaves. Small tree: prevent overfitting, but risk of under fitting. Conversely for large tree.

Learning rate \(\eta \)

- Too low, slow convergence; too high, oscillation, overfitting. Good value around 0.1. If we decrease \(\eta \), we must increase the number of trees for offset.

Number of trees

- The risk of overfitting is low if we increase the number of trees. But the calculation time increases obviously.

Sampling of the instances \(\beta \)

- Stochastic gradient boosting. \(\beta = 1 \), the algorithm uses all the instances. \(\beta < 1 \) reduces the overdependence to the training set and prevents overfitting. Possible value is about 0.5

Sampling of the variables

- Mechanism analogous to the Random Forest. Allows to "diversify" trees and therefore reduce the variance. Perhaps jointly handled with characteristics of trees (large trees imply less bias). This parameter is available only in some packages (xgboost, scikit-learn)
Conclusion
The "gradient boosting" is an ensemble method that generalizes the boosting by providing the opportunity of use other loss functions.

The global frameworks are identical: underlying algorithm = tree, construction in sequential way of models, "variable importance" measurement allows to assess the relevance of the predictors, similar problems for set the right values of parameters.

But unlike boosting, even in the classification context, the underlying algorithm is a regression tree.

Tools/software exist, but we really need to go into the details of the documentation to understand what is behind implementations and the handling of parameters.
Gradient boosting (GBM : Gradient Boosting Machine)

Pros and cons

- Compared with to the "usual" boosting, GBM makes the emphasis on the difference \((y - \pi)\) during the construction of the regression trees with the deviance loss function
- Lots of flexibility with the choice of loss functions, adaptable to the characteristics of the studied problems
- GBM has shown its effectiveness in several challenges!

Advantages

- Non-explicit model (as for all ensemble methods)
- Many parameters which can interact and influence heavily the behavior of the approach (number of iterations, regularization parameters, etc.)
- Overfitting can occur if values of parameters are not suitable

Drawbacks

- Computationally intensive (especially when number of trees is high)
- Memory occupation of the trees

Especially in classification process which is the main subject of this course.
References
References

[WIK] Wikipédia, « Gradient boosting ».