This day, co-organized by EDF R&D and the French ENBIS network (frENBIS) is part of our actions to promote statistics and machine learning methods within companies and industry.
We propose a morning of training on online expert aggregation methods led by Pierre Gaillard, Researcher at INRIA Grenoble and author of the OPERA package (Online Prediction by Expert Aggregation. The theoretical foundations of these methods will be discussed as well as examples of applications in R and Python (notebooks).
The afternoon will be dedicated to presentations from industry, start-ups and academics about industrial machine learning applications.
Location: EDF Lab Saclay
Date: May 23
The event is free with compulsory registration, please fill in the form at the bottom of the page.
All the presentations are given in French.
Morning | |
---|---|
09:00 - 09:30 Welcome Coffee | |
09:30 - 11:00 am | Expert Aggregation, Course 1 |
11:00 - 11:15 am | Pause |
11:15 - 12:30 Expert Aggregation, Course 2 |
Lunch Break__
Afternoon | ||
---|---|---|
1:45 - 2:25 pm IA in health: Navigating innovative algorithms and regulatory challenges | Malo Huard, Chief Scientific Officer MILVUE | |
14:25 - 15:05 | Data for good, or how to use mobile data to address societal issues | Stefania Rubrichi, Orange |
3:05 - 3:45 pm Temperature prediction by expert aggregation | Leo Pfitzner, Météo France | |
3:45 pm Café & Networking |
co-organized with the MAchine Learning et Intelligence Artificielle group of the SFdS
Date : Friday, June 17, 2022
Talks and discussions will be held in French
Scientific Topic:
Statistical learning for temporal data, new horizons and industrial applications.
Organizers : Christine Kéribin (université Paris-Saclay), Jean-Michel Poggi (université Paris-Saclay), Jairo Cugliari (université Lyon 2), Anne Gégout-Petit (université de Lorraine), Paul Poncet (ENGIE), Bertrand Iooss (EDF), Yannig Goude (EDF).
The MALIA group and the frENBIS network propose the joint organization of a satellite event during the 2022 JDS in Lyon. We plan a day on the theme of innovative statistical learning methods applied to temporal data in an industrial context. The day will be divided into 2 parts. In the morning a lecture will be given on deep learning methods applied to time series modeling. The afternoon will be devoted to a workshop consisting of 3 presentations on original work in the field of statistical learning for time series data and their industrial applications. A large place will be given to exchanges, the goal being to create links between different communities: academics, corporate R&D, start-ups evolving in different fields: statistics, learning, data science. If the health conditions allow it, we hope that the event will take place in person.
Provisional schedule :
9:00 am - 12:00 pm Training: in the spirit of previous trainings provided by the MALIA group, the idea is to provide an introduction to temporal data analysis via deep networks. We plan an introductory course accompanied by practical exercises (in Python a priori) on simplified use cases. Trainer: Vincent Guigue (Lip6).
14h-16h30 Workshop : More and more temporal data are generated and/or collected during industrial and commercial activities: counts, sensor data, physical model outputs, market data etc. Having methods to process these data, from basic analysis, visualization to predictive modeling, allows to address many societal and industrial issues. We propose three presentations illustrating innovative applications on these different aspects in the fields of telecoms (Orange), air pollution and energy. A large place will be left to discussions to make emerge subjects or problems favourable to the collaboration between academia and industry.
Provisional schedule : For each speaker: 30 mn of presentation + 15mn of questions & discussions
frENBIS organized a moment of exchange in the form of a webinar. It was also an opportunity to collect your expectations and proposals for frENBIS.
Date : Friday 8th April 2022 2 pm – 4 pm (online)
Schedule
Summary of your proposals/expectations regarding the frENBIS network.
co-organized with the Reliability and Uncertainty group of the SFdS
Date : Friday, June 11, 2021 (2:00 - 5:30 p.m.)
Scientific Topic: Stochastic approaches for certification of machine learning algorithms.
Organizers : frENBIS Steering Committee (Yannig Goude, Bertrand Iooss, Jairo Cugliari, Anne Gégout-Petit, Jean-Michel Poggi) & SFdS “Reliability and Uncertainty” group (Chair: Mitra Fouladirad)
This half-day was the opportunity to inaugurate the creation of the French network of ENBIS which aims to promote statistics for business and industry, to foster mutual fertilization between industry and academia while ensuring and developing links between the French statistical community and ENBIS.
The proposed topic was the certification of machine learning models for their integration in critical systems. Two presentations from the industry (aeronautics, railways, or automotive) and the academic world (for an example of mathematical problem formalization) will be proposed. Finally, the issues of interpretability of machine learning related to the problems of regulation and risk management in the field of energy will also be addressed. A large place was left to discussions in order to bring out topics or problems suitable for collaboration between academia and industry.
The presentations were recorded and are available in the member-area of Enbis Media Center.
Schedule :
For each speaker: 25mn of presentation + 15mn of questions & discussions
2:00 – Introduction SFdS / frENBIS
2:10 – Grégory Flandin (IRT Saint Exupéry / Projet DEEL): Machine Learning in Certified Systems
2:50 – Jayant Sen Gupta (Airbus AI Research): Of the necessity of building models that are robust to the training distribution
3:30 – Pause
3:50 – Joseph Mikael (EDF R&D): Reinforcement Learning in Risk & Asset Management
4:30 – Freddy Lecue (Chief AI Scientist @Thales Canada, Research Associate @INRIA France): On the role of domain knowledge in explainable machine learning
5:10 – Open discussion
5:40 - End
Machine Learning in Certified Systems - Machine Learning seems to be one of the most promising solution to automate partially or completely some of the complex tasks currently realized by humans, such as driving vehicles, recognizing voice, etc. However, ML techniques introduce new potential risks. Therefore, they have only been applied in systems where their benefits are considered worth the increase of risk. In practice, ML techniques raise multiple challenges that could prevent their use in systems submitted to certification constraints. But what are the actual challenges? Can they be overcome by selecting appropriate ML techniques, or by adopting new engineering or certification practices?
Of the necessity of building models that are robust to the training distribution - In this presentation, I will try to show why certification of machine learning models for safety critical applications requires to be robust to the training distribution. Indeed, as for standard systems, systems embedding data-based models should perform safely even in the worst case scenario. Having the error of the model uniform on the support of the input distribution would solve this issue. How can we improve model training to be closer to this ideal? I will show what Airbus has started to work on in the scope of DEEL project and now ANITI, hopefully motivating the French statistics community to work further in this direction.
Reinforcement Learning in Risk & Asset Management - In the past recent years, Reinforcement learning based methods has been proposed by practitioners and academics to enhance traditional risk & asset management decisions. These algorithms show tremendously good performances. However, before using these methods in an operational process a lot of questions arise for both practitioners and regulators. We are stuck in a middle ground in which the methodology is ready but confidence remains to be built. These questions are common with the automotive industry on autonomous vehicles: a framework certifying that we have given ourselves the means to build trust must be found. We propose to list out some of these questions and some of the attempts that are proposed to answer these questions.
On the role of domain knowledge in explainable machine learning - Machine Learning (ML), as one of the key drivers of Artificial Intelligence, has demonstrated disruptive results in numerous industries. However one of the most fundamental problems of applying ML, and particularly Artificial Neural Network models, in critical systems is its inability to provide a rationale for their decisions. For instance a ML system recognizes an object to be a warfare mine through comparison with its similar observations. No human-transposable rationale is given, mainly because common sense knowledge or reasoning is out-of-scope of ML systems. We present how domain knowledge through knowledge graphs could be applied to expose more human-understandable machine learning decisions, and present an asset, combining ML and knowledge graphs to expose a human-like explanation when recognizing an object of any class in a knowledge graph of 4,233,000 resources.